首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
【目的】初步探讨酿酒酵母(Saccharomyces cerevisiae)中Snf1/AMPK蛋白激酶影响细胞壁完整性的机制。【方法】通过同源重组交换的方法,构建酿酒酵母Snf1/AMPK蛋白激酶催化亚基的敲除菌株snf1Δ,并通过基因回补对敲除菌株表型进行验证。在含有刚果红(Congo red)和荧光增白剂(Calcofluor white)的平板上检测snf1Δ菌株细胞壁的完整性,通过q RT-PCR的方法检测snf1Δ菌株中已知的细胞壁合成相关基因的表达情况。【结果】SNF1基因敲除影响细胞壁的完整性,并影响酿酒酵母对热激应答的反应。进一步研究发现,SNF1突变菌株中β-1,3-葡聚糖合成相关基因与β-1,6-葡聚糖合成相关基因的表达量均明显降低。【结论】结果显示酿酒酵母Snf1蛋白激酶影响细胞壁的完整性,此影响发生在转录水平上,即通过调节细胞壁合成相关基因的转录来实现,揭示了Snf1蛋白的一个新角色。  相似文献   

2.
姜楠  刘晓光  潘皎  王雅洁  朱旭东 《微生物学报》2009,49(11):1459-1464
摘要:【目的】新型隐球酵母是人类条件致病真菌,主要感染免疫缺陷患者。该酵母最显著的特征是细胞外包被主要的致病因子-多糖荚膜,其调控机制复杂。本文研究旨在阐述编码铜依赖转录因子的CUF1基因对其荚膜生物合成的负调控作用。【方法】以野生型菌株为对照,对CUF1缺失的突变菌株进行菌落形态观察、荚膜墨汁染色的显微观察、细胞聚沉试验以及荚膜定量分析。【结果】与野生型菌株相比,Δcuf1突变株产生的菌落更粘,显微镜下亦可明显观察到荚膜更厚。同样数量的细胞,突变株聚沉平衡后体积更大。此外,荚膜粗提物定量称重分析也证明突  相似文献   

3.
摘要 目的:探讨丁酸钠(NaB)通过调节沉默信息调节因子1(SIRT1)/单磷酸腺苷活化蛋白激酶(AMPK)信号通路对慢性肾衰竭(CRF)大鼠肾功能的影响。方法:选用SD大鼠72只,随机分为6组(12只/组):control组、Model组、NaB低剂量组(100 mg/kg)、NaB中剂量组(200 mg/kg)、NaB高剂量组(400 mg/kg)、抑制剂组(400 mg/kg NaB+2 mg/kg SIRT1/AMPK通路抑制剂EX527);采用饲喂0.5%腺嘌呤饲料以建立CRF大鼠模型,建模成功后,灌胃和腹腔注射相应药物。使用试剂盒检测大鼠24 h尿蛋白(24 h U-pro)、血清肌酐(SCr)、尿素氮(BUN)水平;采用苏木精-伊红(HE)及Masson染色法观察肾脏病理改变,并计算胶原容积分数(CVF);采用茜素红染色法与主动脉钙含量测定评估主动脉钙化情况;采用酶联免疫吸附法(ELISA)检测各组大鼠肾脏组织白细胞介素(IL)-6、IL-β、肿瘤坏死因子(TNF)-α水平;采用过氧化氢酶(CAT)、丙二醛(MDA)、活性氧(ROS)检测试剂盒检测大鼠肾脏组织中CAT、MDA、ROS水平;采用蛋白免疫印迹法(WB)检测各组大鼠SIRT1/AMPK信号通路及骨形态发生蛋白2(BMP2)、Runt相关转录因子2(Runx2)蛋白的表达。结果:与control组比较,Model组大鼠肾脏组织损伤严重、胶原纤维沉积显著、主动脉钙化严重,CAT活性、SIRT1、p-AMPK/AMPK表达水平显著降低(P<0.05),CVF、主动脉钙含量和SCr、BUN、24 h U-pro、IL-6、IL-β、TNF-α、MDA、ROS水平及BMP2、Runx2蛋白表达水平显著升高(P<0.05);与Model组比较,NaB低、中、高剂量组大鼠肾脏组织损伤减轻、胶原纤维沉积面积明显减少、主动脉钙化程度减轻,CVF、主动脉钙含量和SCr、BUN、24 h U-pro、IL-6、IL-β、TNF-α、MDA、ROS水平及BMP2、Runx2蛋白表达水平显著降低(P<0.05),CAT活性、SIRT1、p-AMPK/AMPK表达水平显著升高(P<0.05);SIRT1/AMPK通路抑制剂EX527可降低高剂量NaB对CRF大鼠主动脉钙化和肾功能的改善作用(P<0.05)。结论:NaB可能通过激活SIRT1/AMPK信号通路,减轻肾脏组织炎症、氧化应激损伤、主动脉钙化和肾纤维化,从而起到改善CRF大鼠肾功能的作用。  相似文献   

4.
摘要:YPK1是酵母中和哺乳动物蛋白激酶SGK同源的一种丝氨酸∕苏氨酸蛋白激酶,在酿酒酵母(Saccharomyces cerevisiae)生理调节中有重要的作用,和酵母细胞壁的完整性、细胞骨架中肌动蛋白极性、细胞内吞作用、细胞在氮源缺乏和营养条件调节下细胞内部的翻译情况密切相关。【目的】为了深入研究YPK1蛋白激酶的细胞功能以及在细胞信号传导中的作用,【方法】我们构建了过量表达YPK1的高拷贝质粒,研究了过量表达YPK1的酵母细胞在盐胁迫条件下的生长情况,【结果】发现过量表达YPK1会导致酵母细胞对盐胁迫高度敏感,并且这种敏感性依赖于TOR1的存在。【结论】我们的研究结果首次初步揭示YPK1与细胞盐胁迫应答的关系,并初步证明YPK1的功能充分发挥需要TOR1的参与。  相似文献   

5.
摘要 目的:探究槲皮素调节AMPK/SIRT1/NF-κB通路对乙型肝炎(HB)大鼠肝组织损伤的影响。方法:采用随机数字表法将65只Wistar大鼠分为Ctrl组、HB组、槲皮素低剂量组(槲皮素L组,50 mg/kg)、槲皮素高剂量组(槲皮素H组,200 mg/kg)及槲皮素H+AMPK抑制剂组(200 mg/kg槲皮素+10 mg/kg Compound C),每组各13只,采用尾静脉注射携带1.3拷贝HBV基因组的重组8型腺相关病毒(rAAV8-1.3HBV)法建立HB大鼠模型(Ctrl组除外);酶联免疫吸附实验(Elisa)检测血清中HB表面抗原(HBsAg)、HB e抗原(HBeAg)、肝功能指标[谷丙转氨酶(ALT)、谷草转氨酶(AST)、总胆红素(TBIL)]水平及肝组织中炎性因子[白介素-1β(IL-1β)、肿瘤坏死因子α(TNF-α)]水平;实时荧光定量PCR(qRT-PCR)检测血清中HBV-DNA水平;苏木素-伊红(HE)染色、曼森氏(Masson)染色观察肝组织病理改变;免疫印迹法(WB)检测肝组织中AMPK/SIRT1/NF-κB通路蛋白表达水平。结果:与Ctrl组比较,HB组血清中HBsAg、HBeAg、HBV-DNA、ALT、AST、TBIL水平均升高(P<0.05);肝组织可见肝静脉扩张、充血,肝细胞排列紊乱、水肿、坏死,同时发生明显纤维化;肝组织中AMPK磷酸化、SIRT1蛋白水平均降低,IL-1β、TNF-α水平及核NF-κB蛋白水平均升高;经槲皮素L、槲皮素H干预后上述情况均得到改善,且槲皮素H干预改善更明显(P<0.05);而增加AMPK抑制剂干预后,槲皮素H干预的改善作用被削弱(P<0.05)。结论:槲皮素能够减轻HB大鼠肝组织损伤,保护其肝功能,其机制可能与调节AMPK/SIRT1/NF-κB通路有关。  相似文献   

6.
摘要 目的:探讨红景天苷(Sal)调节单磷酸腺苷活化蛋白激酶(AMPK)/哺乳动物雷帕霉素靶蛋白(mTOR)/Unc51样激酶1(ULK1)信号通路对结肠癌SW480细胞裸鼠肝脏损伤的影响。方法:通过皮下注射SW480细胞悬浮液建立肝转移裸鼠模型,将造模后的裸鼠随机分为模型组、Sal低剂量(Sal-L,50 mg/kg Sal)组、Sal中剂量(Sal-M,100 mg/kg Sal)组、Sal高剂量(Sal-H,200 mg/kg Sal)组,Sal-H+AMPK抑制剂(Compound C,200 mg/kg Sal+10 mg/kg Compound C)组,以未接种SW480细胞悬液的裸鼠作为对照组。腹部主动脉取血,检测裸鼠血清中丙氨酸氨基转移酶(AST)、天冬氨酸氨基转移酶(ALT)水平;处死裸鼠,检测肝转移瘤数目及肝脏重量;HE染色观察肝脏组织病理变化;qRT-PCR检测肝脏组织中AMPK、mTOR、ULK1 mRNA表达水平;Western blot检测肝脏组织中自噬(Beclin1、p62)蛋白及通路相关蛋白表达。结果:与对照组相比,模型组裸鼠组织中出现肝转移瘤,肝脏重量、AST、ALT水平、mTORmRNA、ULK1 mRNA、p62表达显著增加(P<0.05);Beclin1、AMPK mRNA及蛋白表达显著降低(P<0.05);与模型组相比,Sal-L、Sal-M、Sal-H组肝转移瘤数目、肝脏重量、AST、ALT水平、mTORmRNA、ULK1 mRNA、p62表达显著降低(P<0.05);Beclin1、AMPK mRNA及蛋白表达显著增加(P<0.05);与Sal-H组相比,Sal-H+Compound C组肝转移瘤数目、肝脏重量、AST、ALT水平、mTORmRNA、ULK1 mRNA、p62表达显著增加(P<0.05);Beclin1、AMPK mRNA及蛋白表达显著降低(P<0.05)。结论:Sal可通过减少裸鼠肝转移瘤形成,保护裸鼠肝脏,其机制可能与激活AMPK/mTOR/ULK1信号通路,促进肝脏自噬有关。  相似文献   

7.
Phosphatidylinositol‐4‐phosphate (PI(4)P) is an important regulator of Golgi function. Metabolic regulation of Golgi PI(4)P requires the lipid phosphatase Sac1 that translocates between endoplasmic reticulum (ER) and Golgi membranes. Localization of Sac1 responds to changes in glucose levels, yet the upstream signaling pathways that regulate Sac1 traffic are unknown. Here, we report that mitogen‐activated protein kinase (MAPK) Hog1 transmits glucose signals to the Golgi and regulates localization of Sac1. We find that Hog1 is rapidly activated by both glucose starvation and glucose stimulation, which is independent of the well‐characterized response to osmotic stress but requires the upstream element Ssk1 and is controlled by Snf1, the yeast homolog of AMP‐activated kinase (AMPK). Elimination of either Hog1 or Snf1 slows glucose‐induced translocation of Sac1 lipid phosphatase from the Golgi to the ER and thus delays PI(4)P accumulation at the Golgi. We conclude that a novel cross‐talk between the HOG pathway and Snf1/AMPK is required for the metabolic control of lipid signaling at the Golgi.  相似文献   

8.
The yeast Snf1 protein kinase and its animal homologue, the AMP-activated protein kinase, play important roles in metabolic regulation, by serving as energy gauges that turn off energy-consuming processes and mobilize energy reserves during low-energy conditions. The closest homologue of these kinases in plants is Snf1-related protein kinase 1 (SnRK1). We have cloned two SnRK1-encoding genes, PpSNF1a and PpSNF1b, in the moss Physcomitrella patens, where gene function can be studied directly by gene targeting in the haploid gametophyte. A snf1a snf1b double knockout mutant is viable, but lacks all Snf1-like protein kinase activity. The mutant has a complex phenotype that includes developmental abnormalities, premature senescence and altered sensitivities to plant hormones. Remarkably, the double knockout mutant also requires continuous light, and is unable to grow in a normal day-night light cycle. This suggests that SnRK1 is needed for metabolic changes that help the plant cope with the dark hours of the night.  相似文献   

9.
Growth of the opportunistic yeast pathogen Cryptococcus neoformans in a synthetic medium containing yeast nitrogen base and 1.0–3.0% glucose is accompanied by spontaneous acidification of the medium, with its pH decreasing from the initial 5.5 to around 2.5 in the stationary phase. During the transition from the late exponential to the stationary phase of growth, many cells died as a consequence of autolytic erosion of their cell walls. Simultaneously, there was an increase in an ecto-glucanase active towards β-1,3-glucan and having a pH optimum between pH 3.0 and 3.5. As a response to cell wall degradation, some cells developed an unusual survival strategy by forming 'secondary' cell walls underneath the original ones. Electron microscopy revealed that the secondary cell walls were thicker than the primary ones, exposing bundles of polysaccharide microfibrils only partially masked by an amorphous cell wall matrix on their surfaces. The cells bearing secondary cell walls had a three to five times higher content of the alkali-insoluble cell wall polysaccharides glucan and chitin, and their chitin/glucan ratio was about twofold higher than in cells from the logarithmic phase of growth. The cell lysis and the formation of the secondary cell walls could be suppressed by buffering the growth medium between pH 4.5 and 6.5.  相似文献   

10.

Background

Plant cell walls form the interface between the cells and their environment. They perform different functions, such as protecting cells from biotic and abiotic stress and providing structural support during development. Maintenance of the functional integrity of cell walls during these different processes is a prerequisite that enables the walls to perform their particular functions. The available evidence suggests that an integrity maintenance mechanism exists in plants that is capable of both detecting wall integrity impairment caused by cell wall damage and initiating compensatory responses to maintain functional integrity. The responses involve 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonic acid, reactive oxygen species and calcium-based signal transduction cascades as well as the production of lignin and other cell wall components. Experimental evidence implicates clearly different signalling molecules, but knowledge regarding contributions of receptor-like kinases to this process is less clear. Different receptor-like kinase families have been considered as possible sensors for perception of cell wall damage; however, strong experimental evidence that provides insights into functioning exists for very few kinases.

Scope and Conclusions

This review examines the involvement of cell wall integrity maintenance in different biological processes, defines what constitutes plant cell wall damage that impairs functional integrity, clarifies which stimulus perception and signal transduction mechanisms are required for integrity maintenance and assesses the available evidence regarding the functions of receptor-like kinases during cell wall integrity maintenance. The review concludes by discussing how the plant cell wall integrity maintenance mechanism could form an essential component of biotic stress responses and of plant development, functions that have not been fully recognized to date.  相似文献   

11.
12.
Straede A  Heinisch JJ 《FEBS letters》2007,581(23):4495-4500
Cell wall integrity signalling in Saccharomyces cerevisiae provides a model for the regulation of fungal wall biosynthesis. Chimers of the major plasma membrane sensors Wsc1 and Mid2 fused to GFP have been employed to show that intracellular and membrane distribution is only dependent on a membrane-anchored cytoplasmic tail. Phenotypic analyses of chimeric sensors in an isogenic Deltamid2 Deltawsc1 double deletion strain indicate that this tail, provided that it is linked to an extracellular domain, also determines the cellular response to different surface stresses to a large extent.  相似文献   

13.
14.
Native polyacrylamide gels have been used to resolve protein kinase isoenzymes from cultured cells and the protein kinases have been identified by carrying out phosphorylation reactions in the gel. Following electrophoresis, the gels were incubated with histome and [γ-32P]ATP. The gels were then thoroughly washed and dried down, and the protein kinases were located by autoradiography. Protein kinase activity as measured in the gel system was a linear function of cytosol protein concentration up to about 100 μg per channel and incorporation of 32P into histone was time dependent. Three bands of protein kinase activity were resolved in cytosol samples from baby hamster kidney (BHK) fibroblasts. The band with the lowest relative mobility utilized histone IIA or casein equally well as substrate protein whereas bands 2 and 3 demonstrated a clear preference for histone. Bands 2 and 3 displayed a relative mobility in electrophoresis that was identical to that observed for cyclic AMP-dependent protein kinases I and II from rat liver. Treatment of cyctosol samples with cyclic AMP prior to electrophoresis resulted in the disappearance of cyclic AMP-dependent protein kinases from the gel profile. This method was employed to identify bands 2 and 3 as cyclic AMP-dependent protein kinases. The protein kinases in growth-arrested cells were compared with proliferating cells. We have observed a 3.5-fold increase in the activity of Type II protein kinase as the cells arrest growth in G1 phase of the cell cycle. This increase in Type II is correlated with the increase in cells blocked in G1 and a decrease in II Type activity appears to be an early event in permitting cells to leave G1 and resume growth.  相似文献   

15.
16.
Toole GA  Gunning PA  Parker ML  Smith AC  Waldron KW 《Planta》2001,212(4):606-611
Previous mechanical studies using algae have concentrated on cell extension and growth using creep-type experiments, but there appears to be no published study of their failure properties. The mechanical strength of single large internode cell walls (up to 2 mm diameter and 100 mm in length) of the charophyte (giant alga) Chara corallina was determined by dissecting cells to give sheets of cell wall, which were then notched and fractured under tension. Tensile tests, using a range of notch sizes, were conducted on cell walls of varying age and maturity to establish their notch sensitivity and to investigate the propagation of cracks in plant cell walls. The thickness and stiffness of the walls increased with age whereas their strength was little affected. The strength of unnotched walls was estimated as 47 ± 13 MPa, comparable to that of some grasses but an order of magnitude higher than that published for model bacterial cellulose composite walls. The strength was notch-sensitive and the critical stress intensity factor K 1c was estimated to be 0.63 ± 0.19 MNm−3/2, comparable to published values for grasses. Received: 4 April 2000 / Accepted: 21 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号