首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The identity of Frankia strains from nodules of Myrica gale, Alnus incana subsp. rugosa, and Shepherdia canadensis was determined for a natural stand on a lake shore sand dune in Wisconsin, where the three actinorhizal plant species were growing in close proximity, and from two additional stands with M. gale as the sole actinorhizal component. Unisolated strains were compared by their 16S ribosomal DNA (rDNA) restriction patterns using a direct PCR amplification protocol on nodules. Phylogenetic relationships among nodular Frankia strains were analyzed by comparing complete 16S rDNA sequences of study and reference strains. Where the three actinorhizal species occurred together, each host species was nodulated by a different phylogenetic group of Frankia strains. M. gale strains from all three sites belonged to an Alnus-Casuarina group, closely related to Frankia alni representative strains, and were low in diversity for a host genus considered promiscuous with respect to Frankia microsymbiont genotype. Frankia strains from A. incana nodules were also within the Alnus-Casuarina cluster, distinct from Frankia strains of M. gale nodules at the mixed actinorhizal site but not from Frankia strains from two M. gale nodules at a second site in Wisconsin. Frankia strains from nodules of S. canadensis belonged to a divergent subset of a cluster of Elaeagnaceae-infective strains and exhibited a high degree of diversity. The three closely related local Frankia populations in Myrica nodules could be distinguished from one another using our approach. In addition to geographic separation and host selectivity for Frankia microsymbionts, edaphic factors such as soil moisture and organic matter content, which varied among locales, may account for differences in Frankia populations found in Myrica nodules.  相似文献   

2.
He  X.H.  Chen  L.G.  Hu  X.Q.  Asghar  S. 《Plant and Soil》2004,262(1-2):229-239
Myrica is often considered a promiscuous actinorhizal genus. However, there are large differences in diversity among Myrica spp., and M. gale does not exhibit such promiscuity in its natural environment. In order to understand the diversity of nodular microsymbionts of M. rubra in natural environments and whether or not the M. rubra is a `promiscuous' host, we studied the natural diversity of nodular microsymbionts of different cultivars of M. rubra. 15 nodules from nine horticultural cultivars of M. rubra were collected in 7 sites of eastern, southeastern, central and northern part of Zhejiang province, China. Unisolated strains were compared by sequence analyses of their nifD-nifK intergenic spacers and PCR amplification protocol on nodules. Phylogenetic relationships among nodular Frankia strains were analyzed by comparing sequences of their nifD-nifK intergenic spacers and reference strains. There is a high degree of diversity among nodular Frankia symbionts of M. rubra. Frankia strains from cluster I and cluster III were found in nodules from many different cultivars of M. rubra. Furthermore, there were sometimes two strains which belong to different infective clusters of Frankia in the same nodule, and Frankia strains of cluster I were often dominant strains when there were two strains. M. rubra can thus be considered to be promiscuous in nature. Identical sequences in nodules from different plants at widely separated sites were commonly found, indicating that some strains are cosmopolitan. Geographic separation, host selectivity for Frankia symbionts and soil environment may account for the diversity of Frankia strains and differences in Frankia populations found in M. rubra nodules. Several very closely related local Frankia populations in M. rubra nodules could be distinguished from one another by our approach.  相似文献   

3.
In the Western Canary Islands, Myrica faya and Myrica rivas-martinezii (Myricaceae) are phylogenetically close, endemic, actinorhizal species presumed to be remnants either of the European or the African Tertiary floras. Unisolated Frankia strains from field-collected nodules on Tenerife, Gomera, and La Palma Islands were compared by their rrs gene and 16S–23S intergenic spacer (IGS) restriction patterns. To compare the genetic diversity of Frankia strains from within and outside the host’s native range, nodules of M. faya field plants were collected both in Canary Islands and in Hawaii, where this species is an exotic invasive. Myrica rivas-martinezii, endemic to the Canary Islands, was sparsely nodulated in the field. Frankia strains harbored in field-collected nodules of M. faya and M. rivas-martinezii belonged to the Elaeagnaceae strains’ genetic cluster and exhibited a high degree of diversity. Frankia genotypes were specific to each host species. In the Canary archipelago, we found no relationship between site of collection and Frankia genotype for M. faya. The only exceptions were strains from site 2 in Tenerife, a location with a geological history different from the other sites sampled. Hawaiian and Canarian M. faya strains had no genotypes in common, raising questions concerning the origin of M. faya-infective Frankia in Hawaii. Nodular strains of M. rivas-martinezii from nursery plants were genetically characterized and shown to be divergent from the strains of field-collected nodules and belong to the Alnus-Casuarina strains cluster. This suggests Myrica may have the potential to nodulate with a broader range of Frankia genotypes under artificial conditions than has been detected in field-collected nodules.  相似文献   

4.
Actinorhizal plants invade nitrogen-poor soils because of their ability to form root nodule symbioses with N2-fixing actinomycetes known as Frankia. Frankia strains are difficult to isolate, so the diversity of strains inhabiting nodules in nature is not known. To address this problem, we have used the variability in bacterial 16S rRNA gene sequences amplified from root nodules as a means to estimate molecular diversity. Nodules were collected from 96 sites primarily in northeastern North America; each site contained one of three species of the family Myricaceae. Plants in this family are considered to be promiscuous hosts because several species are effectively nodulated by most isolated strains of Frankia in the greenhouse. We found that strain evenness varies greatly between the plant species so that estimating total strain richness of Frankia within myricaceous nodules with the sample size used was problematical. Nevertheless, Myrica pensylvanica, the common bayberry, was found to have sufficient diversity to serve as a reservoir host for Frankia strains that infect plants from other actinorhizal families. Myrica gale, sweet gale, yielded a few dominant sequences, indicating either symbiont specialization or niche selection of particular ecotypes. Strains in Comptonia peregrina nodules had an intermediate level of diversity and were all from a single major group of Frankia.  相似文献   

5.
6.
Trees of Myrica sp. grow abundantly in the forests of Meghalaya, India. These trees are actinorhizal and harbour nitrogen-fixing Frankia in their root nodules and contribute positively towards the enhancement of nitrogen status of forest areas. They can be used in rejuvenation of mine spoils and nitrogen-depleted fallow lands generated due to slash and burn agriculture practiced in the area. We have studied the association of amplicon restriction patterns (ARPs) of Myrica ribosomal RNA gene and internal transcribed spacer (ITS) region and nitrogenase activity of its root nodules. We found that ARPs thus obtained could be used as markers for early screening of seedlings that could support strains of Frankia that fix atmospheric nitrogen more efficiently.  相似文献   

7.
The genetic diversity of Frankia populations in soil and in root nodules of sympatrically grown Alnus taxa was evaluated by rep-polymerase chain reaction (PCR) and nifH gene sequence analyses. Rep-PCR analyses of uncultured Frankia populations in root nodules of 12 Alnus taxa (n?=?10 nodules each) growing sympatrically in the Morton Arboretum near Chicago revealed identical patterns for nodules from each Alnus taxon, including replicate trees of the same host taxon, and low diversity overall with only three profiles retrieved. One profile was retrieved from all nodules of nine taxa (Alnus incana subsp. incana, Alnus japonica, Alnus glutinosa, Alnus incana subsp. tenuifolia, Alnus incana subsp. rugosa, Alnus rhombifolia, Alnus mandshurica, Alnus maritima, and Alnus serrulata), the second was found in all nodules of two plant taxa (A. incana subsp. hirsuta and A. glutinosa var. pyramidalis), and the third was unique for all Frankia populations in nodules of A. incana subsp. rugosa var. americana. Comparative sequence analyses of nifH gene fragments in nodules representing these three profiles assigned these frankiae to different subgroups within the Alnus host infection group. None of these sequences, however, represented frankiae detectable in soil as determined by sequence analysis of 73 clones from a Frankia-specific nifH gene clone library. Additional analyses of nodule populations from selected alders growing on different soils demonstrated the presence of different Frankia populations in nodules for each soil, with populations showing identical sequences in nodules from the same soil, but differences between plant taxa. These results suggest that soil environmental conditions and host plant genotype both have a role in the selection of Frankia strains by a host plant for root nodule formation, and that this selection is not merely a function of the abundance of a Frankia strain in soil.  相似文献   

8.
Isolation of Frankia Strains from Alder Actinorhizal Root Nodules   总被引:9,自引:4,他引:5       下载免费PDF全文
A simple procedure, based on the rapid filtration and washing of Frankia vesicle clusters, was devised for the isolation of Frankia strains from alder actinorhizal root nodules. Of 46 Alnus incana subsp. rugosa nodules prepared, 42 yielded isolates. A simple medium containing mineral salts, Casamino Acids, and sodium pyruvate proved to be the most effective for isolation. In general, colonies appeared 6 to 20 days after inoculation. On the basis of hyphal morphology, two distinct types of Frankia strains were characterized. Randomly selected isolates were tested for infectivity, and all formed root nodules on A. glutinosa. Because of its simplicity and efficiency, the procedure is an improved method for the study of Frankia diversity in alder root nodules.  相似文献   

9.
The occurrence of uncultivated Frankia was evaluated in Tunisian soils by a plant-trapping assay using Coriaria myrtifolia seedlings. Despite the lack of this compatible host plant for more than two centuries, soil-borne Frankia cells were detected in one sampled soil as shown by the development of root nodules on 2-year-old seedlings. Based on glnA sequences, Tunisian trapped Frankia strains belong to the uncultivated cluster 2 strains that associate with other Coriaria species and also with Ceanothus, Datisca and Rosaceae actinorhizal species. This is the first report on the occurrence of Frankia cluster 2 strains in soils from areas lacking compatible host plant groups.  相似文献   

10.
Partial 16S ribosomal DNAs (rDNAs) were PCR amplified and sequenced from Frankia strains living in root nodules of plants belonging to the families Elaeagnaceae and Rhamnaceae, including Colletia hystrix, Elaeagnus angustifolia, an unidentified Elaeagnus sp., Talguenea quinquenervia, and Trevoa trinervis. Nearly full-length 16S rDNAs were sequenced from strains of Frankia living in nodules of Ceanothus americanus, C. hystrix, Coriaria arborea, and Trevoa trinervis. Partial sequences also were obtained from Frankia strains isolated and cultured from the nodules of C. hystrix, Discaria serratifolia, D. trinervis, Retanilla ephedra, T. quinquenervia, and T. trinervis (Rhamnaceae). Comparison of these sequences and other published sequences of Frankia 16S rDNA reveals that the microsymbionts and isolated strains from the two plant families form a distinct phylogenetic clade, except for those from C. americanus. All sequences in the clade have a common 2-base deletion compared with other Frankia strains. Sequences from C. americanus nodules lack the deletion and cluster with Frankia strains infecting plants of the family Rosaceae. Published plant phylogenies (based on chloroplast rbcL sequences) group the members of the families Elaeagnaceae and Rhamnaceae together in the same clade. Thus, with the exception of C. americanus, actinorhizal plants of these families and their Frankia microsymbionts share a common symbiotic origin.  相似文献   

11.
Actinorhizal plants have been found in eight genera belonging to three orders (Fagales, Rosales and Cucurbitales). These all bear root nodules inhabited by bacteria identified as the nitrogen-fixing actinobacterium Frankia. These nodules all have a peripheral cortex with enlarged cells filled with Frankia hyphae and vesicles. Isolation in pure culture has been notoriously difficult, due in a large part to the growth of fast-growing contaminants where, it was later found, Frankia was slow-growing. Many of these contaminants, which were later found to be Micromonospora, were obtained from Casuarina and Coriaria. Our study was aimed at determining if Micromonospora were also present in other actinorhizal plants. Nodules from Alnus glutinosa, Alnus viridis, Coriaria myrtifolia, Elaeagnus x ebbingei, Hippophae rhamnoides, Myrica gale and Morella pensylvanica were tested and were all found to contain Micromonospora isolates. These were found to belong to mainly three species: Micromonospora lupini, Micromonospora coriariae and Micromonospora saelicesensis. Micromonospora isolates were found to inhibit some Frankia strains and to be innocuous to other strains.  相似文献   

12.
Summary A morphological analysis of the initiation and development of root nodules ofElaeagnus angustifolia andMyrica cerifera inoculated with pure-culturedFrankia strains DDB 011610 or DDB 020110 was undertaken. From ultrastructural observations it was determined that both of theseFrankia strains can infectElaeagnus by an intercellular penetration mechanism andMyrica by the root hair infection mechanism. This indicates that both of these strains have the ability to infect host plant roots by either of two mechanisms. The reverse, thatElaeagnus orMyrica could be infected by both mechanisms, was not observed. The infection and nodule development processes of these two plants in combination with these strains were similar to observations made in previous studies (Miller andBaker 1985,Torrey andCallaham 1979). However, one exception was identified in the development of the prenodule ofMyrica when infected with strain 011610, in that endophytic hyphae developed vesicles within the cells of the prenodule. This event has not been described before for any of the actinorhizal genera and may be an indication of less than optimal compatibility between the host plant and the symbiont.Contribution no. 876 of the Battelle-Kettering Laboratory.  相似文献   

13.
I. M. Miller  D. D. Baker 《Protoplasma》1985,128(2-3):107-119
Summary A correlated light and electron microscopic study was undertaken of the initiation and development of root nodules of the actinorhizal tree species,Elaeagnus angustifolia L. (Elaeagnaceae).Two pure culturedFrankia strains were used for inoculation of plants in either standing water culture or axenic tube cultures. Unlike the well known root hair infection of other actinorhizal genera such asAlnus orMyrica the mode of infection ofElaeagnus in all cases was by direct intercellular penetration of the epidermis and apoplastic colonization of the root cortex. Root hairs were not involved in this process and were not observed to be deformed or curled in the presence of the actinomyceteFrankia. In response to the invasion of the root, host cells secreted a darkly staining material into the intercellular spaces. The colonizingFrankia grew through this material probably by enzymatic digestion as suggested by clear dissolution zones around the hyphal strands. A nodule primordium was initiated from the root pericycle, well in advance of the colonizingFrankia. No random division of root cortical cells, indicative of prenodule formation was observed inElaeagnus. As the nodule primordium grew in size it was surrounded by tanninised cells of a protoperiderm. The endophyte easily traversed this protoperiderm, and once inside the nodule primordium cortex ramified within the intercellular spaces at multiple cell junctions. Invasion of the nodule cortical cells occurred when a hyphal branch of the endophyte was initiated and grew through the plant cell wall, again by apparent enzymatic digestion. The plant cell plasmalemma of invaded cells always remained intact and numerous secretory vesicles fused with it to encapsulate the advancingFrankia within a fibrous cell wall-like material. Once within the host cell some endophyte cells began to differentiate into characteristic vesicles which are the presumed site of nitrogen fixation. This study clearly demonstrates that alternative developmental pathways exist for the development of actinorhizal nitrogen-fixing root symbioses.  相似文献   

14.
Molecular analysis of actinorhizal symbiotic systems: Progress to date   总被引:1,自引:0,他引:1  
The application of molecular tools to questions related to the genetics, ecology and evolution of actinorhizal symbiotic systems has been especially fruitful during the past two years. Host plant phylogenies based on molecular data have revealed markedly different relationships among host plants than have previously been suspected and have contributed to the development of new hypotheses on the origin and evolution of actinorhizal symbiotic systems. Molecular analyses of host plant gene expression in developing nodules have confirmed the occurrence of nodulin proteins and in situ hybridization techniques have been successfully adapted to permit the study of the spatial and temporal patterns of gene expression within actinorhizal nodules. The use of heterologous probes in combination with nucleotide sequence analysis have allowed a number of nif genes to be mapped on the Frankia chromosome which will ultimately contribute to the development of hypotheses related to nif gene regulation in Frankia. The use of both 16S and 23S rDNA nucleotide sequences has allowed the construction of phylogenetic trees that can be tested for congruence with symbiotic characters. In addition the development of Frankia-specific gene probes and amplification primers have contributed to studies on the genetic diversity and distribution of Frankia in the soil.  相似文献   

15.
Frankia sp., the actinomycetous endophyte in nitrogen-fixing actinorhizal nodules, may differentiate two forms from its hyphae: vesicles and sporangia. In root nodules of Comptonia peregrina (L.) Coult. and Myrica gale L., sporangia may be either absent or present. Nitrogenase activity and symbiotic efficiency were contrasted in spore(+) and spore(−) nodules of these two host genera. Seedlings of C. peregrina nodulated with the spore(+) inoculum showed only 60% of the nitrogenase activity and 50% of the net size of their spore(−) counterparts after 12 weeks of culture. Measurements of acetylene reduction (i.e., nitrogenase activity) were coordinated with samplings of nodules for structural studies. Significant differences in acetylene reduction rates were discernible between spore(+) and spore(−) nodules commencing 4 weeks after nodulation, concomitant with the maturation of sporangia in the nodule. Spore(+) nodules ultimately reached less than half of the rate of nitrogenase activity of spore(−) nodules. Both types of nodules evolved only small amounts of molecular hydrogen, suggesting that both were equally efficient in recycling electrons lost to the reduction of hydrogen ions by nitrogenase. Respiratory cost of nitrogen fixation, expressed as the quotient of micromole CO2 to micromole ethylene evolved by excised nodules, was significantly greater in spore(+) than in spore(−) nodules. M. gale spore(−) nodules showed variable effectivity, though all had low CO2 to ethylene evolution ratios. M. gale spore(+) nodules resembled C. peregrina spore(+), with low effectivity and high respiratory cost for nitrogen fixation.  相似文献   

16.
Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of D. glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in D. glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both α- and β-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors.  相似文献   

17.
With the genomes of three Frankia strains available, high-throughput proteomics methods can be used to reveal the set of proteins expressed by these bacteria in symbiosis with plants. A question we address is the degree to which the known genomes can be used to study proteomes of uncharacterized frankiae growing in field-collected root nodules. To this end, we have characterized the symbiotic proteomes of Frankia from three plant species, Alnus incana subsp. rugosa, Ceanothus americanus, and Elaeagnus angustifolia. Root nodule proteins were identified using two-dimensional liquid chromatography coupled to tandem mass spectrometry (LC MS/MS) of trypsin-digested protein samples. We identified 1300 Frankia proteins in A. incana nodules using the Frankia alni ACN14a genome and 1100 proteins from E. angustifolia nodules using the EAN1pec genome. In addition, over 100 proteins were identified from C. americanus nodules using a more limited one dimensional LC MS/MS analysis. Many of the most abundant proteins identified are involved in energy and nitrogen metabolism. The enzyme nitrogenase and the nitrogenase iron protein were among the most abundant proteins, reflecting the major process occurring in symbiosis. Several hundred plant proteins were also identified. We highlight the power of proteomics to uncover the physiology of symbiotic Frankia in the environment using heterologous genome information.  相似文献   

18.
Frankia BCU110601 (Da) and Frankia BCU110345 (Dc) were isolated from root nodules of Discaria articulata and Discaria chacaye, respectively; Frankia BCU110501 (Dt) was previously isolated from Discaria trinervis. The strains were identical at the 16S sequence and after analysis of RFLP of 16S and 23S rDNA intergenic region. Diversity was revealed at the molecular level after fingerprint analysis by BOX–polymerase chain reaction. The strains were infective and effective on the original host plants. A cross-inoculation assay intra Discaria genus, including D. trinervis, D. articulata, and D. chacaye, with each of these isolated Frankia strains caused effective symbioses with a similar dry weight in each plant species regardless of the inoculated strain. Nevertheless, a differential degree of recognition was revealed: Homologous symbiotic pairs in the case of D. chacayeFrankia BCU110345 (Dc), D. articulataFrankia BCU110601 (Da), and D. trinervisFrankia BCU110501 (Dt) had faster nodulation rates than heterologous pairs. The differences in nodulation rate would suggest the existence of a subspecific level of recognition within a certain cross-inoculation group, pointing to subspecific adaptation occurring in this actinorhizal symbiosis.  相似文献   

19.
The potential role of host plant species in the selection of symbiotic, nitrogen-fixing Frankia strains belonging to the Elaeagnus host infection group was assessed in bioassays with two Morella, three Elaeagnus, and one Shepherdia species as capture plants, inoculated with soil slurries made with soil collected from a mixed pine/grassland area in central Wisconsin, USA. Comparative sequence analysis of nifH gene fragments amplified from homogenates of at least 20 individual lobes of root nodules harvested from capture plants of each species confirmed the more promiscuous character of Morella cerifera and Morella pensylvanica that formed nodules with frankiae of the Alnus and the Elaeagnus host infection groups, while frankiae in nodules formed on Elaeagnus umbellata, Elaeagnus angustifolia, Elaeagnus commutata, and Shepherdia argentea generally belonged to the Elaeagnus host infection group. Diversity of frankiae of the Elaeagnus host infection groups was larger in nodules on both Morella species than in nodules formed on the other plant species. None of the plants, however, captured the entire diversity of nodule-forming frankiae. The distribution of clusters of Frankia populations and their abundance in nodules was unique for each of the plant species, with only one cluster being ubiquitous and most abundant while the remaining clusters were only present in nodules of one (six clusters) or two (two clusters) host plant species. These results demonstrate large effects of the host plant species in the selection of Frankia strains from soil for potential nodule formation and thus the significant effect of the choice of capture plant species in bioassays on diversity estimates in soil.  相似文献   

20.
Little is known about Ceanothus-infective Frankia strains because no Frankia strains that can reinfect the host plants have been isolated from Ceonothus spp. Therefore, we studied the diversity of the Ceonothus-infective Frankia strains by using molecular techniques. Frankia strains inhabiting root nodules of nine Ceanothus species were characterized. The Ceanothus species used represent the taxonomic diversity and geographic range of the genus; therefore, the breadth of the diversity of Frankia strains that infect Ceanothus spp. was studied. DNA was amplified directly from nodular material by using the PCR. The amplified region included the 3′ end of the 16S rRNA gene, the intergenic spacer, and a large portion of the 23S rRNA gene. A series of restriction enzyme digestions of the PCR product allowed us to identify PCR-restriction fragment length polymorphism (RFLP) groups among the Ceanothus-infective Frankia strains tested. Twelve different enzymes were used, which resulted in four different PCR-RFLP groups. The groups did not follow the taxonomic lines of the Ceanothus host species. Instead, the Frankia strains present were related to the sample collection locales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号