首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is empirically well known that adults of both sexes of the Japanese rhinoceros beetle Trypoxylus dichotomus septentrionalis (Kôno) copulate repeatedly under laboratory conditions. However, details of the fertilization success of respective males involved in multiple mating are unknown. To determine the degree of sperm displacement in successive mating in this beetle species, we conducted a male-swapping crossing experiment under laboratory conditions. A mutant line with white compound eyes in the adult stage, of which the white-eye state shows simple recessive Mendelian inheritance to the wild type regardless of sex, was employed in the experiment. Individual adult female mutants were consecutively mated with a mutant and a wild-type adult male in a different order. Although the sample sizes of our experiment were limited, the eye color of all adults of the next generation was inherited from the first-mated males. Therefore, our results strongly suggest that the degree of sperm displacement is very low or absent, or even that sperm transfer does not occur in secondary matings, in this beetle species.  相似文献   

2.
There is mounting evidence consistent with a general role of positive selection acting on the Drosophila melanogaster X-chromosome. However, this positive selection need not necessarily arise from forces that are adaptive to the organism. Nonadaptive meiotic drive may exist on the X-chromosome and contribute to forces of selection. Females from a reference D. melanogaster line, containing the X-linked marker white, were crossed to males from 49 isofemale lines established from seven African and five non-African natural populations to detect naturally occurring meiotic drive. Several lines exhibited a departure from expected Mendelian transmission of X-chromosomes to the third generation (F2) offspring, particularly those from hybrid African male parents. F2 viability was not correlated with skewed chromosomal inheritance. However, a significant difference in viability between cosmopolitan and tropical African crosses was observed. Recombination analysis supports the presence of a male-acting meiotic drive element near the centromeric region of the X-chromosome and putative recessive autosomal drive suppression. There is also evidence of another female-acting drive element linked to white. The possible role meiotic drive may contribute in shaping levels of genetic variation in D. melanogaster, and additional ways to test this hypothesis are discussed.  相似文献   

3.
The interactions between the effects of three plumage color mutations taken two-by-two (sex-linked recessive roux, autosomal recessive lavender, and autosomal dominant beige) were studied in Japanese quail by producing a total of 121 F(1) and 1118 F(2) quail from the three pure stocks. Three new plumage colors were obtained in F(2) quail: roux-diluted beige, cream, and lavender-diluted beige. Two of them, roux-diluted beige (from the roux and beige mutations) and cream (from the roux and lavender mutations) corresponded to double homozygotes or hemizygous birds, and could therefore be used to tag a quail line. On the other hand, an F(3) from F(2) birds with lavender-diluted beige plumage was necessary to show that quail with this plumage color were homozygous for the lavender mutation, but were either homozygous or heterozygous for the beige gene. In all three F(2)s, observed segregation of plumage colors fit simple two-locus Mendelian inheritance.  相似文献   

4.
Rajasingh H  Gjuvsland AB  Våge DI  Omholt SW 《Genetics》2008,179(2):1113-1118
The Pacific chinook salmon occurs as both white- and red-fleshed populations, with the flesh color type (red or white) seemingly under strong genetic influence. Previously published data on crosses between red- and white-fleshed individuals cannot be reconciled with a simple Mendelian two-locus, two-allele model, pointing to either a more complex inheritance pattern or the existence of gene interactions. Here we show that a standard single-locus, three-allele model can fully explain these data. Moreover, by implementing the single-locus model at the parameter level of a previously developed mathematical model describing carotenoid dynamics in salmon, we show that variation at a single gene involved in the muscle uptake of carotenoids is able to explain the available data. This illustrates how such a combined approach can generate biological understanding that would not be possible in a classical population genetic explanatory structure. An additional asset of this approach is that by allowing parameters to become phenotypes obeying a given genetic model, biological interpretations of mechanisms involved at a resolution level far beyond what is built into the original dynamic model are made possible. These insights can in turn be exploited in experimental studies as well as in construction of more detailed models.  相似文献   

5.
凡纳滨对虾微卫星位点在两个选育家系中遗传的初步研究   总被引:10,自引:1,他引:10  
张留所  相建海 《遗传》2005,27(6):919-924
利用两个选育凡纳滨对虾全同胞家系研究了10个微卫星位点的遗传特征。通过ABI310或3100测序仪检测, 在所观察到的20个基因型比例(genotypic ratios)(10个微卫星位点 X 2个家系)中,有17个基因型比例符合孟德尔遗传。微卫星位点TUMXLv8.220在两个家系中均存在无效等位基因,从而3个不符合孟德尔遗传基因型中2个可由无效等位基因来解释。TUMXLv 3.1在06家系偏离了1:1:1:1的孟德尔预期比。3个微卫星位点(TUMXLv5.66,TUMXLv7.74,TUMXLv8.224)在两个家系中均表现单态。3个微卫星位点(TUMXLv5.45,TUMXLv7.56,TUMXLv8.256)在两个家系均既表现多态又遵循孟德尔共显性遗传, 是亲子鉴定和种群遗传分析的较好选择。结果显示在应用微卫星标记进行遗传分析之前利用全同胞家系进行遗传模式研究是非常必要的。  相似文献   

6.
邢万金  莫日根 《遗传》2014,36(10):1062-1068
小鼠是最常用的哺乳动物模式生物,其毛色有白色、灰色、黄色、黑色等,是典型的孟德尔遗传性状。但在本科遗传学教学中,一般只在介绍隐性致死基因的时候才提到小鼠毛色遗传的例子。作者深入挖掘和整理了小鼠毛色遗传的分子机制,并把这个例子贯穿于讲解孟德尔遗传以及介绍分子遗传学的基因结构、基因功能、基因调控、基因互作、基因的表观遗传学修饰和数量性状遗传等,尝试用同一个案例贯穿本科遗传学教学,培养学生建立由表及里的系统分析能力,既凸显遗传学研究的前沿性和完整性,又吸引了学生的注意力,激发了学生的学习兴趣,收到了很好的教学效果。  相似文献   

7.
Identifying the genetic basis of mimetic signals is critical to understanding both the origin and dynamics of mimicry over time. For species not amenable to large laboratory breeding studies, widespread color polymorphism across natural populations offers a powerful way to assess the relative likelihood of different genetic systems given observed phenotypic frequencies. We classified color phenotype for 2175 ground snakes (Sonora semiannulata) across the continental United States to analyze morph ratios and test among competing hypotheses about the genetic architecture underlying red and black coloration in coral snake mimics. We found strong support for a two‐locus model under simple Mendelian inheritance, with red and black pigmentation being controlled by separate loci. We found no evidence of either linkage disequilibrium between loci or sex linkage. In contrast to Batesian mimicry systems such as butterflies in which all color signal components are linked into a single “supergene,” our results suggest that the mimetic signal in colubrid snakes can be disrupted through simple recombination and that color evolution is likely to involve discrete gains and losses of each signal component. Both outcomes are likely to contribute to the exponential increase in rates of color evolution seen in snake mimicry systems over insect systems.  相似文献   

8.
Amplified fragment length polymorphisms (AFLP) were used to study the inheritance of shell color in Argopecten irradians. Two scallops, one with orange and the other with white shells, were used as parents to produce four F1 families by selfing and outcrossing. Eighty-eight progeny, 37 orange and 51 white, were randomly selected from one of the families for segregation and mapping analysis with AFLP and microsatellite markers. Twenty-five AFLP primer pairs were screened, yielding 1138 fragments, among which 148 (13.0%) were polymorphic in two parents and segregated in progeny. Six AFLP markers showed significant (P < 0.05) association with shell color. All six loci were mapped to one linkage group. One of the markers, F1f335, is completely linked to the gene for orange shell, which we designated as Orange1, without any recombination in the progeny we sampled. The marker was amplified in the orange parent and all orange progeny, but absent in the white parent and all the white progeny. The close linkage between F1f335 and Orange1 was validated using bulk segregation analysis in two natural populations, and all our data indicate that F1f335 is specific for the shell color gene, Orange1. The genomic mapping of a shell color gene in bay scallop improves our understanding of shell color inheritance and may contribute to the breeding of molluscs with desired shell colors.  相似文献   

9.
Previously we found that the organic components in scallop shell promote lipolysis in differentiated 3T3-L1 and C3H10T1/2 adipocyte cells, and that incorporating scallop shell powder into the diet of rats reduced the amount of white adipose tissue. In this study, we used RT-PCR to investigate the effect of ingesting scallop shell powder on the gene expression profile of uncoupling proteins (UCPs) regulating energy metabolism in rats.Feeding of scallop shell powder increased mRNA levels of UCP1 and UCP2 in white adipose tissue. By contrast, scallop shell powder had no effect on the expression of UCP1 in brown adipose tissue, although the expression level of UCP2 mRNA decreased significantly. These results suggest that feeding scallop shell powder increases gene expression of UCP1 that may regulate energy metabolism in white adipose tissue, resulting in the observed reduction in weight of white adipose tissue.  相似文献   

10.
The beta3-adrenergic receptors (ADRB3s) are predominantly found on the surface of adipocytes and are the major mediators of the lipolytic and thermogenic effects of high catecholamine concentrations. Polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) analysis of part of the ovine beta3-adrenergic receptor gene (ADRB3) intron was used to screen 12 large Merino half-sib families for sequence variation. Six different alleles that segregated in a Mendelian fashion were observed. The genetic basis for the allelic differences were identified by sequencing the ADRB3 (coding and non-coding regions) from animals that were homozygous for each of the alleles. Five sire lines (two Merino x Merino, two Merino x Coopworth, one Dorset Down x Coopworth) provided phenotypic and genotypic data used to ascertain the effects of allelic variation at the ADRB3 locus on birth weight, weaning weight, growth rate (up until weaning), carcass composition at 63 days post-weaning and cold survival. Statistical analyses within each half-sib family showed that in some sire lines (S13, S15, and S17) the inheritance of a particular allele was associated with increased birth weights and/or increased growth rates up until weaning. The inheritance of a particular sire allele was associated with fatter carcasses in sire line S16. Chi-squared analysis revealed the association of the E allele with cold survival and the D allele with cold-related mortality in sire line S14. Such associations support the hypothesis that ADRB3s are involved in energy homeostasis. With more research, the variation detected at the ADRB3 locus may assist in the genetic selection for desirable animal production traits.  相似文献   

11.
Condensed tannins are major flavonoid end products that affect the nutritional quality of many legume seeds. They chelate minerals and interact with proteins, thus reducing their bioavailability. Tannins also contribute to seed coat color and pigment distribution or intensity. The objective of this study was to analyze the relationship between quantitative trait loci (QTL) for seed tannin concentration in common bean and Mendelian genes for seed coat color and pattern. Three populations of recombinant inbred lines, derived from crosses between the Andean and Mesoamerican genepools were used for QTL identification and for mapping STS markers associated with seed color loci. Seed coat condensed tannins were determined with a butanol–HCl method and a total of 12 QTL were identified on separate linkage groups (LGs) in each of the populations with individual QTL explaining from 10 to 64% of the phenotypic variation for this trait. Loci on linkage groups B3 and B10 were associated with the Mendelian genes Z and Bip for partly colored seed coat pattern, while a QTL on linkage group B7 was associated with the P gene which is the primary locus for the control of color expression in beans. In conclusion, this study found that the inheritance of tannin concentration fits an oligogenic model and identifies novel putative alleles at seed coat color and pattern genes that control tannin accumulation. The results will be important for the genetic improvement of nutritionally enhanced or biofortified beans that have health promoting effects from higher polyphenolics or better iron bioavailability.  相似文献   

12.
The domestic dog exhibits a variety of coat colors that encompass a wide range of variation among different breeds. Very little is known about the molecular biology of dog pigmentation; current understanding is based mostly on traditional breeding experiments, which in some cases have suggested genetic interactions that are different from those reported in other mammals. We have examined the molecular genetics of dominant black, a uniform coat color characteristic of black Labrador retrievers or Newfoundlands that has been proposed to be caused by either variation in the melanocortin-1 receptor gene (Mc1r) or by variation in the Agouti gene (A). We identified several coding polymorphisms within Mc1r and several simple sequence repeat polymorphisms closely linked to A, and examined their inheritance in a Labrador retriever x greyhound cross that segregates dominant black. No single Mc1r allele was found consistently in animals carrying dominant black, and neither Mc1r nor A cosegregated with dominant black. These results refine our understanding of mammalian coat color inheritance and suggest that dominant black coat color in dogs is caused by a gene not previously implicated in pigment type switching.  相似文献   

13.
We develop quantitative-genetic models for the evolution of multiple traits under maternal inheritance, in which traits are transmitted through non-Mendelian as well as Mendelian mechanisms, and maternal selection, in which the fitness of offspring depends on their mother's phenotype as well as their own. Maternal inheritance results in time lags in the evolutionary response to selection. These cause a population to evolve for an indefinite number of generations after selection ceases and make the rate and direction of evolution change even when the strength of selection and parameters of inheritance remain constant. The rate and direction of evolution depend on the inheritance of traits that are not under selection, unlike under classical Mendelian inheritance. The models confirm earlier findings that the response to selection can be larger or smaller than what is possible with simple Mendelian inheritance, and even in a direction opposite to what selection favors. Maternal selection, in which a mother's phenotype influences her offspring's fitness, is frequency-dependent and can cause a population to evolve maladaptively away from a fitness peak, regardless of whether traits are transmitted by Mendelian or maternal inheritance. Maternal selection differs from other forms of selection in that its force depends not only on the fitness function but also on the phenotypic resemblance of parents and offspring.  相似文献   

14.
We examined genetically determined polymorphisms in testosterone-binding beta-globulin (TeBG) by polyacrylamide gel electrophoresis (PAGE). Four electrophoretic variants were identified, which we suggest are the result of combinations of three alleles. Gene frequencies were calculated for the three alleles in white American, black American, and Japanese-American populations. There was good agreement between observed and expected phenotype numbers. Distribution of phenotypes among offspring of several crosses was consistent with simple Mendelian inheritance of an autosomal gene.  相似文献   

15.
Inheritance-the influence of ancestors on the phenotypes of their descendants-translates natural selection into evolutionary change. For the past century, inheritance has been conceptualized almost exclusively as the transmission of DNA sequence variation from parents to offspring in accordance with Mendelian rules, but advances in cell and developmental biology have now revealed a rich array of inheritance mechanisms. This empirical evidence calls for a unified conception of inheritance that combines genetic and nongenetic mechanisms and encompasses the known range of transgenerational effects, including the transmission of genetic and epigenetic variation, the transmission of plastic phenotypes (acquired traits), and the effects of parental environment and genotype on offspring phenotype. We propose a unified theoretical framework based on the Price equation that can be used to model evolution under an expanded inheritance concept that combines the effects of genetic and nongenetic inheritance. To illustrate the utility and generality of this framework, we show how it can be applied to a variety of scenarios, including nontransmissible environmental noise, maternal effects, indirect genetic effects, transgenerational epigenetic inheritance, RNA-mediated inheritance, and cultural inheritance.  相似文献   

16.
Progeny from single pair crosses of Atlantic herring were examined to determine the heritability of genetic variation at seven polymorphic allozyme loci. Mendelian inheritance of codominant autosomal alleles was established for IDH-2, LDH-1, LDH-2, ME-2, PGM-1, and PGI-2. This demonstration of Mendelian inheritance is essential for accurate interpretation of allozymic variation among natural populations of this pelagic species.  相似文献   

17.
As lipid microconstituents mainly of plant origin, carotenoids are essential nutrients for humans and animals, and carotenoid coloration represents an important meat quality parameter for many farmed animals. Currently, the mechanism of carotenoid bioavailability in animals is largely unknown mainly due to the limited approaches applied, the shortage of suitable model systems and the restricted taxonomic focus. The mollusk Yesso scallop (Patinopecten yessoensis) possessing orange adductor muscle with carotenoid deposition, provides a unique opportunity to research the mechanism underlying carotenoid utilization in animals. Herein, through family construction and analysis, we found that carotenoid coloration in scallop muscle is inherited as a recessive Mendelian trait. Using a combination of genomic approaches, we mapped this trait onto chromosome 8, where PyBCO-like 1 encoding carotenoid oxygenase was the only differentially expressed gene between the white and orange muscles (FDR = 2.75E-21), with 11.28-fold downregulation in the orange muscle. Further functional assays showed that PyBCO-like 1 is capable of degrading β-carotene, and inhibiting PyBCO-like 1 expression in the white muscle resulted in muscle coloration and carotenoid deposition. In the hepatopancreas, which is the organ for digestion and absorption, neither the scallop carotenoid concentration nor PyBCO-like 1 expression were significantly different between the two scallops. These results indicate that carotenoids could be taken up in both white- and orange-muscle scallops and then degraded by PyBCO-like 1 in the white muscle. Our data suggest that PyBCO-like 1 is the essential gene for carotenoid metabolism in scallop muscle, and its downregulation leads to carotenoid deposition and muscle coloration.  相似文献   

18.
Genetic variation at the melanocortin-1 receptor (MC1R) gene is correlated with melanin color variation in a few reported vertebrates. In Gyrfalcon (Falco rusticolus), plumage color variation exists throughout their arctic and subarctic circumpolar distribution, from white to gray and almost black. Multiple color variants do exist within the majority of populations; however, a few areas (e.g., northern Greenland and Iceland) possess a single color variant. Here, we show that the white/melanic color pattern observed in Gyrfalcons is explained by allelic variation at MC1R. Six nucleotide substitutions in MC1R resulted in 9 alleles that differed in geographic frequency with at least 2 MC1R alleles observed in almost all sampled populations in Greenland, Iceland, Canada, and Alaska. In north Greenland, where white Gyrfalcons predominate, a single MC1R allele was observed at high frequency (>98%), whereas in Iceland, where only gray Gyrfalcons are known to breed, 7 alleles were observed. Of the 6 nucleotide substitutions, 3 resulted in amino acid substitutions, one of which (Val(128)Ile) was perfectly associated with the white/melanic polymorphism. Furthermore, the degree of melanism was correlated with number of MC1R variant alleles, with silver Gyrfalcons all heterozygous and the majority of dark gray individuals homozygous (Ile(128)). These results provide strong support that MC1R is associated with plumage color in this species.  相似文献   

19.
Abstract

Non‐Mendelian inheritance and heterozygote deficiency were observed within the International Bovine Reference Panel (IBRP) when genotyped for AGC trinucleotide microsatellite ARO23. Chi square analysis showed a significant difference between the observed and predicted heterozygosity among 37 unrelated individuals. PCR reactions using an alternative primer designed to avoid a putative mismatch resulted in the appearance of an additional allele with a frequency of 0.30 and the restoration of Mendelian inheritance. Sequence analysis of this allele showed a cytosine insertion 2 bp from the 3’ end of the original priming site causing the failure of allele amplification. The presence of a segregating null allele may be suspected when heterozygote deficiency is observed.  相似文献   

20.
D C Rao  R Lew 《Human heredity》1978,28(4):317-320
Complex segregation analysis of tongue pigmentation in 493 nuclear families fails to indicate significant evidence for incomplete recessivity, polygenic variation, or an effect of sibship environment, thus establishing simple Mendelian inheritance for the trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号