首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This survey is a compendium of genotoxicity and carcinogenicity information of antihypertensive drugs. Data from 164 marketed drugs were collected. Of the 164 drugs, 65 (39.6%) had no retrievable genotoxicity or carcinogenicity data; this group was comprised largely of drugs marketed in a limited number of countries. The remaining 99 (60.4%) had at least one genotoxicity or carcinogenicity test result. Of these 99, 48 (48.5%) had at least one positive finding: 32 tested positive in at least one genotoxicity assay, 26 in at least one carcinogenicity assay, and 10 gave a positive result in both at least one genotoxicity assay and at least one carcinogenicity assay. In terms of correlation between results of the various genotoxicity assays and absence of carcinogenic activity in both mice and rats 2 of 44 non-carcinogenic drugs tested positive in the in vitro bacterial mutagenesis assay, 2 of 9 tested positive in the mouse lymphoma assay, none of 14 tested positive for gene mutation at the hprt locus, 5 of 25 tested positive in in vitro cytogenetic assays, none of 31 in in vivo cytogenetic assays, and none of 14 in inducing DNA damage and/or repair in in vitro and/or in vivo assays. Concerning the predictivity of genetic toxicology findings for long-term carcinogenesis assays, 75 drugs had both genotoxicity and carcinogenicity data; of these 37 (49.3%) were neither genotoxic nor carcinogenic, 14 (18.7%) were non-carcinogens which tested positive in at least one genotoxicity assay, 14 (18.7%) were carcinogenic in at least one sex of mice or rats but tested negative in genotoxicity assays, and 10 (13.3%) were both genotoxic and carcinogenic. Only 42 of the 164 marketed antihypertensives (25.6%) had all data required by the guidelines for testing of pharmaceuticals.  相似文献   

2.
The GreenScreen GADD45alpha indicator assay has been assessed for its concordance with in vitro genotoxicity and rodent carcinogenicity bioassay data. To test robustness, sensitivity, and specificity of the assay, 91 compounds with known genotoxicity results were screened in a blinded manner. Fifty seven of the compounds were classified as in vitro genotoxic whereas 34 were non-genotoxic. Out of the 91 compounds, 50 had been tested in 2-year carcinogenicity assays, with 33 identified to be rodent carcinogens and 17 non-carcinogens. Gadd45alpha assay sensitivity and specificity for genotoxicity was 30% and 97%, respectively (17/57 and 33/34), whereas its sensitivity and specificity for rodent carcinogenicity was 30% and 88%, respectively (10/33 and 15/17). Gadd45alpha assay genotoxicity results from this validation study exhibited a high concordance with previously published results as well as for compound test results generated at two different sites (91%, 19/21), indicating that the assay is both robust and reproducible. In conclusion, results from this blinded and independent validation study indicate that the GreenScreen GADD45 indicator assay is reproducible and reliable with low sensitivity and high specificity for identifying genotoxic and carcinogenic compounds.  相似文献   

3.
The genotoxicity of 30 aromatic amines selected from IARC (International Agency for Research on Cancer) groups 1, 2A, 2B and 3 and from the U.S. NTP (National Toxicology Program) carcinogenicity database were evaluated using the alkaline single cell gel electrophoresis (SCG) (Comet) assay in mouse organs. We treated groups of four mice once orally at the maximum tolerated dose (MTD) and sampled stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow 3, 8 and 24 h after treatment. For the 20 aromatic amines that are rodent carcinogens, the assay was positive in at least one organ, suggesting a high predictive ability for the assay. For most of the SCG-positive aromatic amines, the organs exhibiting increased levels of DNA damage were not necessarily the target organs for carcinogenicity. It was rare, in contrast, for the target organs not to show DNA damage. Organ-specific genotoxicity, therefore, is necessary but not sufficient for the prediction of organ-specific carcinogenicity. For the 10 non-carcinogenic aromatic amines (eight were Ames test-positive and two were Ames test-negative), the assay was negative in all organs studied. In the safety evaluation of chemicals, it is important to demonstrate that Ames test-positive agents are not genotoxic in vivo. Chemical carcinogens can be classified as genotoxic (Ames test-positive) and putative non-genotoxic (Ames test-negative) carcinogens. The alkaline SCG assay, which detects DNA lesions, is not suitable for identifying non-genotoxic carcinogens. The present SCG study revealed a high positive response ratio for rodent genotoxic carcinogens and a high negative response ratio for rodent genotoxic non-carcinogens. These results suggest that the alkaline SCG assay can be usefully used to evaluate the in vivo genotoxicity of chemicals in multiple organs, providing for a good assessment of potential carcinogenicity.  相似文献   

4.
Differences between the results of numerical validation studies comparing in vitro and in vivo genotoxicity tests with the rodent cancer bioassay are leading to the perception that short-term tests predict carcinogenicity only with uncertainty. Consideration of factors such as the pharmacokinetic distribution of chemicals, the systems available for metabolic activation and detoxification, the ability of the active metabolite to move from the site of production to the target DNA, and the potential for expression of the induced lesions, strongly suggests that the disparate sensitivity of the different test systems is a major reason why numerical validation is not more successful. Furthermore, genotoxicity tests should be expected to detect only a subset of carcinogens, namely genotoxic carcinogens, rather than those carcinogens that appear to act by non-genetic mechanisms. Instead of relying primarily on short-term in vitro genotoxicity tests to predict carcinogenic activity, these tests should be used in a manner that emphasizes the accurate determination of mutagenicity or clastogenicity. It must then be determined whether the mutagenic activity is further expressed as carcinogenicity in the appropriate studies using test animals. The prospects for quantitative extrapolation of in vitro or in vivo genotoxicity test results to carcinogenicity requires a much more precise understanding of the critical molecular events in both processes.  相似文献   

5.
To determine whether genotoxic and non-genotoxic carcinogens contribute similarly to the cancer burden in humans, an analysis was performed on agents that were evaluated in Supplements 6 and 7 to the IARC Monographs for their carcinogenic effects in humans and animals and for the activity in short-term genotoxicity tests. The prevalence of genotoxic carcinogens on four groups of agents, consisting of established human carcinogens (group 1, n = 30), probable human carcinogens (group 2A, n = 37), possible human carcinogens (group 2B, n = 113) and on agents with limited evidence of carcinogenicity in animals (a subset of group 3, n = 149) was determined. A high prevalence in the order of 80 to 90% of genotoxic carcinogens was found in each of the groups 1, 2A and 2B, which were also shown to be multi-species/multi-tissues carcinogens. The distribution of carcinogenic potency in rodents did not reveal any specific characteristic of the human carcinogens in group 1 that would differentiate them from agents in groups 2A, 2B and 3. The results of this analysis indicate that (a) an agent with unknown carcinogenic potential showing sufficient evidence of activity in in vitro/in vivo genotoxicity assays (involving as endpoints DNA damage and chromosomal/mutational damage) may represent a hazard to humans; and b) an agent showing lack of activity in this spectrum of genotoxicity assays should undergo evaluation for carcinogenicity by rodent bioassay, in view of the present lack of validated short-term tests for non-genotoxic carcinogens. Overall, this analysis implies that genotoxic carcinogens add more to the cancer burden in man than non-genotoxic carcinogens. Thus, identification of such genotoxic carcinogens and subsequent lowering of exposure will remain the main goal for primary cancer prevention in man.  相似文献   

6.
In vivo genotoxicity tests play a pivotal role in genotoxicity testing batteries. They are used both to determine if potential genotoxicity observed in vitro is realised in vivo and to detect any genotoxic carcinogens that are poorly detected in vitro. It is recognised that individual in vivo genotoxicity tests have limited sensitivity but good specificity. Thus, a positive result from the established in vivo assays is taken as strong evidence for genotoxic carcinogenicity of the compound tested. However, there is a growing body of evidence that compound-related disturbances in the physiology of the rodents used in these assays can result in increases in micronucleated cells in the bone marrow that are not related to the intrinsic genotoxicity of the compound under test. For rodent bone marrow or peripheral blood micronucleus tests, these disturbances include changes in core body temperature (hypothermia and hyperthermia) and increases in erythropoiesis following prior toxicity to erythroblasts or by direct stimulation of cell division in these cells. This paper reviews relevant data from the literature and also previously unpublished data obtained from a questionnaire devised by the IWGT working group. Regulatory implications of these findings are discussed and flow diagrams have been provided to aid in interpretation and decision-making when such changes in physiology are suspected.  相似文献   

7.
D Clive 《Mutation research》1988,205(1-4):313-330
The present analysis examines the assumptions in, the perceptions and predictivity of and the need for short-term tests (STTs) for genotoxicity in light of recent findings that most noncarcinogens from the National Toxicology Program are genotoxic (i.e., positive in one or more in vitro STTs). Reasonable assumptions about the prevalence for carcinogens (1-10% of all chemicals), the sensitivity of these STTs (ca. 90% of all carcinogens are genotoxic) and their estimated "false positive" incidence (60-75%) imply that the majority of chemicals elicit genotoxic responses and, consequently, that most in vitro genotoxins are likely to be noncarcinogenic. Thus, either the usual treatment conditions used in these in vitro STTS are producing a large proportion of artifactual and meaningless positive results or else in vitro mutagenicity is too common a property of chemicals to serve as a useful predictor of carcinogenicity or other human risk. In contrast, the limited data base on in vivo STTs suggests that the current versions of these assays may have low sensitivity which appears unlikely to improve without dropping either their 'short-term' aspect or the rodent carcinogenicity benchmark. It is suggested that in vivo genotoxicity protocols be modified to take into consideration both the fundamentals of toxicology as well as the lessons learned from in vitro genetic toxicology. In the meantime, while in vivo assays are undergoing rigorous validation, genetic toxicology, as currently practiced, should not be a formal aspect of chemical or drug development on the grounds that it is incapable of providing realistic and reliable information on human risk. It is urged that data generated in new, unvalidated in vivo genotoxicity assays be exempted from the normal regulatory reporting requirements in order to encourage industry to participate in the laborious and expensive development of this next phase of genetic toxicology.  相似文献   

8.
A review of the genotoxicity of ethylbenzene   总被引:2,自引:0,他引:2  
Ethylbenzene is an important industrial chemical that has recently been classified as a possible human carcinogen (IARC class 2B). It induces tumours in rats and mice, but neither the relevance of these tumours to humans nor their mechanism of induction is clear. Considering the carcinogenic potential of ethylbenzene, it is of interest to determine whether there is sufficient data to characterize its mode of action as either genotoxic or non-genotoxic. A review of the currently available genotoxicity data is assessed. Ethylbenzene is not a bacterial mutagen, does not induce gene conversion or mutations in yeast and does not induce sister chromatid exchanges in CHO cells. Ethylbenzene is not clastogenic in CHO or rat liver cell lines but was reported to induce micronuclei in SHE cells in vitro. No evidence for genotoxicity has been seen in humans exposed to relatively high levels of ethylbenzene. Mouse lymphoma gene mutation studies produced a mixed series of responses that have proved difficult to interpret. An increase in morphological transformation of SHE cells was also found. Results from a more relevant series of in vivo genotoxicity studies, including acute and sub-chronic micronucleus tests and the mouse liver UDS assay, indicate a lack of in vivo genotoxic activity. The composite set of results from both in vitro and in vivo tests known to assess direct damage to DNA have been predominantly negative in the absence of excessive toxicity. The available data from the standard battery of genotoxicity assays do not support a genotoxic mechanism for ethylbenzene-induced kidney, liver or lung tumors in rats and mice.  相似文献   

9.
Information in the 1999 Physician's Desk Reference as well as from the peer-reviewed published literature was used to evaluate the genotoxicity of marketed pharmaceuticals. This survey is a compendium of genotoxicity information and a means to gain perspective on the inherent genotoxicity of structurally diverse pharmaceuticals. Data from 467 marketed drugs were collected. Excluded from analysis were anti-cancer drugs and nucleosides, which are expected to be genotoxic, steroids, biologicals and peptide-based drugs. Of the 467 drugs, 115 had no published gene-tox data. This group was comprised largely of acutely administered drugs such as antibiotics, antifungals, antihistamines decongestants and anesthetics. The remaining 352 had at least one standard gene-tox assay result. Of these, 101 compounds (28.7%) had at least one positive assay result in the pre-ICH/OECD standard four-test battery (bacterial mutagenesis, in vitro cytogenetics, mouse lymphoma assay (MLA), in vivo cytogenetics). Per assay type, the percentage of positive compounds was: bacterial mutagenesis test, 27/323 (8.3%); in vitro cytogenetics 55/222 (24.8%); MLA 24/96 (25%); in vivo cytogenetics 29/252 (11.5%). Of the supplemental genetic toxicology test findings reported, the sister chromatid exchange (SCE) assay had the largest percentage of positives 17/39 (43.5%) and mammalian mutagenesis assays (excluding MLA) had the lowest percentage of positives 2/91 (2.2%). The predictive value of genetic toxicology findings for 2-year bioassay outcomes is difficult to assess since carcinogenicity can occur via non-genotoxic mechanisms. Nevertheless, the following survey findings were made: 201 drugs had both gene-tox data and rodent carcinogenicity data. Of these, 124 were negative and 77 were equivocal or positive for carcinogenicity in at least 1 gender/1 species. Of the 124 non-carcinogens, 100 had no positive gene-tox findings. Of the remaining 24, 19 were positive in in vitro cytogenetics assays. Among the 77 compounds that exhibited equivocal or positive effects in carcinogenesis studies, 26 were positive in gene-tox assays and 51 were negative. Of the 51 negatives, 47 had multiple negative gene-tox assay results suggesting that these are probably non-genotoxic carcinogens. Statistical analyses suggested that no combination of gene-tox assays provided a higher predictivity of rodent carcinogenesis than the bacterial mutagenicity test itself.  相似文献   

10.
Chromium(VI) is genotoxic when tested in vitro or injected parenterally in such a way to escape detoxification mechanisms. However, its genotoxicity and potential carcinogenicity are lost, depending on dose and administration route, due to efficient reduction in body fluids and nontarget cells. Chromium(VI) is a Group 1 IARC carcinogen, but only in the respiratory tract and in well-defined occupational settings that involved heavy exposures. Recently, concern has been expressed that oral chromium(VI) may be a gastric carcinogen. We demonstrated that administration of very high doses of chromium(VI) with the drinking water does not induce any clastogenic effect in hematopoietic cells of adult mice and their fetuses. Thereafter, we investigated whether administration of chromium(VI) with the drinking water may induce local genotoxic effects in the gastrointestinal tract. Sodium dichromate dihydrate was administered to mice for 9 consecutive months, at doses corresponding to 5 and 20 mg chromium(VI)/l, which exceed drinking water standards by 100 and 400 times, respectively. Under these conditions, chromium(VI) failed to enhance the frequency of DNA-protein crosslinks and did not cause oxidative DNA damage, measured in terms of 8-oxo-2'-deoxyguanosine, in the forestomach, glandular stomach and duodenum. When cells from the same organs were isolated and challenged in vitro with chromium(VI), as positive controls, the same genotoxicity biomarkers were evidently affected. Thus, consistently with the knowledge accumulated in 50 years of research on chromium(VI) kinetics and metabolism, oral chromium(VI) appears to be devoid of genotoxicity in the gastrointestinal tract. After 9 months, we did not observe any variation of tumor yield in skin, lung, forestomach, glandular stomach, and duodenum of chromium(VI)-treated mice. These results are discussed in the light of literature data, also including a recent 2-year carcinogenicity study performed by the National Toxicology Program.  相似文献   

11.
In the present study an automated image analysis assisted in vitro micronucleus assay was developed with the rodent cell line CHO-k1 and the human hepatoma cell line HepG2, which are both commonly used in regulatory genotoxicity assays. The HepG2 cell line was chosen because of the presence in these cells of a functionally active p53 protein, a functionally competent DNA-repair system, active enzymes for phase-I and -II metabolism, and an active Nrf2 electrophile responsive system. These properties may result in an assay with a high predictivity for in vivo genotoxicity. The assays with CHO-k1 and HepG2 cells were both evaluated by testing a set of compounds recommended by the European Centre for the Validation of Alternative Methods (ECVAM), among which are in vivo genotoxins and non-genotoxins. The CHO-k1 cell line showed a high sensitivity (percentage of genotoxic compounds that gave a positive result: 80%; 16/20) and specificity (percentage of non-genotoxic compounds that came out negative: 88%; 37/42). Although the sensitivity of the HepG2 cell line was lower (60%; 12/20), the specificity was high (88%; 37/42). These results were confirmed by testing an additional series of 16 genotoxic compounds. For both the CHO-k1 and the HepG2 cell line it was possible to size-classify micronuclei, enabling distinguishing aneugens from clastogens. It is concluded that two high-throughput micronucleus assays were developed that can detect genotoxic potential and allow differentiation between clastogens and aneugens. The performance scores of the CHO-k1 and HepG2 cell lines for in vivo genotoxicity were high. Application of these assays in the early discovery phase of drug development may prove to be a useful strategy to assess genotoxic potential at an early stage.  相似文献   

12.
Issues of biological relevance and thresholds for genotoxicity are discussed here based upon the background of experience with the submissions for the approval of new pharmaceuticals to the German regulatory authority over the period between 1990 and 1997. This experience shows that out of the genotoxicity test systems which are required according to existing guidelines in the European Union (EU), the in vitro tests for chromosomal aberrations (CA) and the mouse lymphoma tk assays (MLA) yield a rate of positives that is about four-fold higher than that of other genotoxicity tests. A detailed analysis of chemical and pharmacological classes of compounds and their effects in these systems reveals that in addition to direct DNA reactivity several mechanisms of indirect genotoxicity such as nucleoside analogue incorporation into DNA, interaction with microtubule assembly, topoisomerase inhibition and high levels of cytotoxicity are relevant. New pharmaceuticals, for which the latter mechanisms apply, often display threshold-like characteristics in their genotoxic effects in vitro or even in vivo in experimental animals. This casts doubt upon the relevance of positive in vitro test results for such compounds. However, the discussion of examples shows that it may not be easy to demonstrate the exact thresholded mechanism of genotoxicity in a given case. In particular, the demonstration of a coincidence of genotoxicity and high levels of cytotoxicity, which seems to be a major factor for biologically non-relevant in vitro positive new pharmaceuticals, usually requires quite extensive testing. Hence, for new pharmaceuticals it is practice to provide in addition to in vitro results that may be thresholded a wealth of information from in vivo studies on genotoxicity, carcinogenicity, metabolism, pharmacokinetics, etc. the results of which help in assessing the biological relevance of in vitro positives. The regulatory acknowledgement of biologically non-relevant, thresholded mechanisms of (in vitro) genotoxicity in addition to those that are considered relevant for human risk ensures a better understanding of test results and is needed for the credibility of genotoxicity testing practice in general.  相似文献   

13.
Genotoxicity of heat-processed foods   总被引:7,自引:0,他引:7  
Jägerstad M  Skog K 《Mutation research》2005,574(1-2):156-172
Gene-environment interactions include exposure to genotoxic compounds from our diet and it is no doubt, that humans are regularly exposed to e.g. food toxicants, not least from cooked foods. This paper reviews briefly four classes of cooked food toxicants, e.g. acrylamide, heterocyclic amines, nitrosamines and polyaromatic hydrocarbons. Many of these compounds have been recognised for decades also as environmental pollutants. In addition cigarette smokers and some occupational workers are exposed to them. Their occurrence, formation, metabolic activation, genotoxicity and human cancer risk are briefly presented along with figures on estimated exposure. Several lines of evidence indicate that cooking conditions and dietary habits can contribute to human cancer risk through the ingestion of genotoxic compounds from heat-processed foods. Such compounds cause different types of DNA damage: nucleotide alterations and gross chromosomal aberrations. Most genotoxic compounds begin their action at the DNA level by forming carcinogen-DNA adducts, which result from the covalent binding of a carcinogen or part of a carcinogen to a nucleotide. The genotoxic and carcinogenic potential of these cooked food toxicants have been evaluated regularly by the International Agency for Research on Cancer (IARC), which has come to the conclusion that several of these food-borne toxicants present in cooked foods are possibly (2A) or probably (2B) carcinogenic to humans, based on both high-dose, long-term animal studies and in vitro and in vivo genotoxicity tests. Yet, there is insufficient scientific evidence that these genotoxic compounds really cause human cancer, and no limits have been set for their presence in cooked foods. However, the competent authorities in most Western countries recommend minimising their occurrence, therefore this aspect is also included in this review.  相似文献   

14.
The anamorphic basidomycetous yeast Cryptococcus humicolus was shown by hydride generation-gas chromatography-atomic absorption spectrometry to methylate inorganic antimony compounds to mono-, di-, and trimethylantimony species under oxic growth conditions. Methylantimony levels were positively correlated with initial substrate concentrations up to 300 mg Sb l–1 as potassium antimony tartrate (K-Sb-tartrate). Increasing concentrations of K-Sb-tartrate increased the ratio of di- to trimethylantimony species, indicating that methylation of dimethylantimony was rate limiting. Antimony methylation capability in C. humicolus was developed after the exponential growth phase and was dependent upon protein synthesis in the early stationary phase. Inclusion of inorganic arsenic (III) or (V) species alongside antimony in culture incubations enhanced antimony methylation. Pre-incubation of cells with inorganic arsenic (III) further induced antimony methylation capability, whereas pre-incubation with inorganic antimony (III) did not. Exposure of cells to inorganic arsenic—either through pre-incubation or provision during cultivation—influenced the antimony speciation; involatile trimethylantimony species was the sole methylated antimony species detected, i.e. mono- and dimethylantimony species were not detected. Competitive inhibition of antimony methylation was observed at high arsenic loadings. These data indicate that antimony methylation is a fortuitous process, catalysed at least in part by enzymes responsible for arsenic methylation.  相似文献   

15.
This survey is a compendium of genotoxicity and carcinogenicity information of 838 marketed drugs, whose expected clinical use is continuous for at least 6 months or intermittent over an extended period of time. Of these 838 drugs, 366 (43.7%) do not have retrievable genotoxicity or carcinogenicity data. The remaining 472 (56.3%) have at least one genotoxicity or carcinogenicity test result. Of the 449 drugs with at least one genotoxicity test result, 183 (40.8%) have at least one positive finding. Of the 338 drugs with at least one carcinogenicity test result, 160 (47.3%) have at least one positive result. Concerning the predictivity of genetic toxicology findings for long-term carcinogenesis assays, of the 315 drugs which have both genotoxicity and carcinogenicity data 116 (36.8%) are neither genotoxic nor carcinogenic, 50 (15.9%) are non-carcinogens which test positive in at least one genotoxicity assay, 75 (23.8%) are carcinogenic in at least one sex of mice or rats but test negative in genotoxicity assays, and 74 (23.5%) are both genotoxic and carcinogenic. Only 208 (24.8%) of the 838 drugs considered have all data required by current guidelines for testing of pharmaceuticals. However, it should be noted that a large fraction of the drugs considered were developed and marketed prior to the present regulatory climate. Although the laws do not require re-testing based on revised standards, in the absence of epidemiological studies excluding a carcinogenic risk to humans, a re-evalutation would be appropriate.  相似文献   

16.
Antimony trioxide (Sb2O3, CAS 1309-64-4) is widely used as a flame retardant synergist in a number of household products, as a fining agent in glass manufacture, and as a catalyst in the manufacture of various types of polyester plastics. It does not induce point mutations in bacteria or mammalian cells, but is able to induce chromosomal aberrations (CA) in cultured cells in vitro. Although no CA or micronuclei (MN) have been induced after acute oral dosing of mice, repeated oral dosing for 14 or 21 days resulted in increased CA in one report, but did not result in increased MN in another. In order to further investigate its in vivo genotoxicity, Sb2O3 was dosed orally to groups of rats for 21 days at 250, 500 and 1000 mg/kg day. There were no clinical signs of toxicity in the Sb2O3-exposed animals except for some reductions in body-weight gain in the top dose group. Toxicokinetic measurements in a separate study confirmed bone-marrow exposure, and at higher levels than would have been achieved by single oral dosing. Large numbers of cells were scored for CA (600 metaphases/sex group) and MN (12,000 PCE/sex group) but frequencies of CA or MN in Sb2O3-treated rats were very similar to controls, and not biologically or statistically different, at all doses. These results provide further indication that Sb2O3 is not genotoxic to the bone marrow of rodents after 21 days of oral administration at high doses close to the maximum tolerated dose.  相似文献   

17.
312 chemicals/mixtures were tested for genotoxicity in the rat hepatocyte/DNA-repair test. A variety of structure-activity relationships was evident. Of the 309 pure chemicals, 142 were positive. Of these, 43 were judged by IARC to have sufficient or limited evidence of carcinogenicity and none of the remainder was a proven noncarcinogen. Among the 167 negative chemicals, 44 were carcinogens. Some of these are known to be genotoxic in other systems, but based on several lines of evidence, many are considered to be epigenetic carcinogens that lack the ability to react with DNA and rather lead to neoplasia by nongenotoxic mechanisms.  相似文献   

18.
Bertin G  Averbeck D 《Biochimie》2006,88(11):1549-1559
Cadmium is an important toxic environmental heavy metal. Occupational and environmental pollution with cadmium results mainly from mining, metallurgy industry and manufactures of nickel-cadmium batteries, pigments and plastic stabilizers. Important sources of human intoxication are cigarette smoke as well as food, water and air contaminations. In humans, cadmium exposures have been associated with cancers of the prostate, lungs and testes. Acute exposures are responsible for damage to these organs. Chronic intoxication is associated with obstructive airway disease, emphysema, irreversible renal failure, bone disorders and immuno-suppression. At the cellular level, cadmium affects proliferation, differentiation and causes apoptosis. It has been classified as a carcinogen by the International Agency for Research on Cancer (IARC). However, it is weakly genotoxic. Indirect effects of cadmium provoke generation of reactive oxygen species (ROS) and DNA damage. Cadmium modulates also gene expression and signal transduction, reduces activities of proteins involved in antioxidant defenses. Several studies have shown that it interferes with DNA repair. The present review focuses on the effects of cadmium in mammalian cells with special emphasis on the induction of damage to DNA, membranes and proteins, the inhibition of different types of DNA repair and the induction of apoptosis. Current data and hypotheses on the mechanisms involved in cadmium genotoxicity and carcinogenesis are outlined.  相似文献   

19.
John Ashby  Brita Beije   《Mutation research》1985,150(1-2):383-392
Oral dosing of between 5–30 mg/kg of cyclophosphamide (CP) to Alderley Park rats induced micronuclei in the bone marrow between 12 and 36 h after dosing, but failed to induce unscheduled DNA synthesis (UDS) in the liver at similar dose levels and treatment periods. Dose levels of > 30 mg/kg were toxic to the liver. In contrast, 2-acetylaminofluorene (2AAF) induced UDS in the rat liver between 4–36 h after dosing, but gave only a weak response in the bone marrow assay at dose levels between 0.5 and 2 g/kg. Selected observations were made for each chemical using both tissues of the same test animal.

It is concluded that an assessment of the genotoxicity in vivo of chemicals defined as genotoxic in vitro will contribute to an assessment of their possible mammalian carcinogenicity, and that these should involve assays conducted using both the bone marrow and the liver of rodents. Due to its relative ease of commission, the bone marrow micronucleus assay will usually be conducted first; in the case of negative results it is recommended that a liver genotoxicity assay should also be conducted. The case for employing in vivo short-term genotoxicity tests to predict the possible organotropic carcinogenicity or germ cell mutagenicity of a new in vitro genotoxin is discussed.  相似文献   


20.
A survey has been conducted of 222 chemicals evaluated for carcinogenicity in mice and rats by the United States NCI/NTP. The structure of each chemical has been assessed for potential electrophilic (DNA-reactive) sites, its mutagenicity to Salmonella recorded, and the level of its carcinogenicity to rodents tabulated. Correlations among these 3 parameters were then sought. A strong association exists among chemical structure (S/A), mutagenicity to Salmonella (Salm.) and the extent and sites of rodent tumorigenicity among the 222 compounds. Thus, a approximately 90% correlation exists between S/A and Salm. across the 115 carcinogens, the 24 equivocal carcinogens and the 83 non-carcinogens. This indicates the Salmonella assay to be a sensitive method of detecting intrinsic genotoxicity in a chemical. Concordance between S/A and Salm. have therefore been employed as an index of genotoxicity, and use of this index reveals two groups of carcinogens within the database, genotoxic and putatively non-genotoxic. These two broad groups are characterized by different overall carcinogenicity profiles. Thus, 16 tissues were subject to carcinogenesis only by genotoxins, chief among which were the stomach, Zymbal's glands, lung, subcutaneous tissue and circulatory system. Conclusions of carcinogenicity in these 16 tissues comprised 31% of the individual chemical/tissue reports of carcinogenicity. In contrast, both genotoxins and non-genotoxins were active in the remaining 13 tissues, chief among which was the mouse liver which accounted for 24% of all chemical/tissue reports of carcinogenicity. Further, the group of 70 carcinogens reported to be active in both species and/or in 2 or more tissues contained a higher proportion of Salmonella mutagens (70%) than observed for the group of 45 single-species/single-tissue carcinogens (39%). 30% of the 83 non-carcinogens were mutagenic to Salmonella. This confirms earlier observations that a significant proportion of in vitro genotoxins are non-carcinogenic, probably due to their non-absorption or preferential detoxification in vivo. Also, only 30% of the mouse liver-specific carcinogens were mutagenic to Salmonella. This is consistent with tumors being induced in this tissue (and to a lesser extent in other tissues of the mouse and rat) by mechanisms not dependent upon direct interaction of the test chemical with DNA. Detection of 103 of the 115 carcinogens could be achieved by use of only male rats and female mice.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号