共查询到20条相似文献,搜索用时 31 毫秒
1.
Both purinergic stimulation and activation of cystic fibrosis transmembrane conductance regulator (CFTR) increases Cl(-) secretion and inhibit amiloride-sensitive Na(+) transport. CFTR has been suggested to conduct adenosine 5'-triphosphate (ATP) or to control ATP release to the luminal side of epithelial tissues. Therefore, a possible mechanism on how CFTR controls the activity of epithelial Na(+) channels (ENaC) could be by release of ATP or uridine 5'-triphosphate (UTP), which would then bind to P2Y receptors and inhibit ENaC. We examined this question in native tissues from airways and colon and in Xenopus oocytes. Inhibition of amiloride-sensitive transport by both CFTR and extracellular nucleotides was observed in colon and trachea. However, nucleotides did not inhibit ENaC in Xenopus oocytes, even after coexpression of P2Y(2) receptors. Using different tools such as hexokinase, the P2Y inhibitor suramin or the Cl(-) channel blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), we did not detect any role of a putative ATP secretion in activation of Cl(-) transport or inhibition of amiloride sensitive short circuit currents by CFTR. In addition, N(2),2'-O-dibutyrylguanosine 3',5'-cyclic monophosphate (cGMP) and protein kinase G (PKG)-dependent phosphorylation or the nucleoside diphosphate kinase (NDPK) do not seem to play a role for the inhibition of ENaC by CFTR, which, however, requires the presence of extracellular Cl(-). 相似文献
2.
ClC-5 chloride channels and epithelial sodium channels (ENaC) are present in many cell types including airway and retinal epithelia. Since ENaC activity is known to be affected by chloride transport, we co-injected Xenopus oocytes with cRNAs encoding ENaC and ClC-5 to investigate whether channel currents are impacted by heterologous co-expression of these proteins. ClC-5 currents were not detectably affected by co-expression with ENaC, whereas amiloride-sensitive ENaC currents were significantly lower compared to control oocytes expressing ENaC alone. Co-expression of ENaC with cRNA sequences encoding non-conducting fragments of ClC-5 revealed that the amino acid sequence region between positions 347 and 647 was sufficient for inhibition of ENaC currents. Co-expression of ENaC and another transport protein, the sodium dicarboxylate co-transporter (NaDC-1), did not affect ENaC currents. To test whether the inhibitory effects of ClC-5 were specific for ENaC, ClC-5 was also co-expressed with CFTR. CFTR currents were also inhibited by co-expression with ClC-5, whereas ClC-5 currents were unaffected. Western blot analysis of biotinylated oocyte surface membranes revealed that the co-expression of ClC-5 with ENaC, CFTR, or NaDC-1 decreased the abundance of these proteins at the surface membrane. We conclude that overexpression of ClC-5, specifically amino acids 347–647, can alter the normal translation or trafficking of ENaC and other ion transport proteins by a mechanism that is independent of the chloride conductance of ClC-5. 相似文献
3.
Cao L Owsianik G Becq F Nilius B 《Biochemical and biophysical research communications》2005,331(2):503-511
Using the whole-cell patch-clamp technique, we identified an amiloride (AMI)-sensitive Na(+) current in cystic fibrosis cells, JME/CF15, growing in standard medium. The reversal potential of this current depended on Na(+) concentrations and the cation selectivity was much higher for Na(+) than for K(+), indicating that the current is through ENaC channels. In contrast, cells from EGF-containing medium lacked AMI-sensitive Na(+) currents. In permeabilized cells growing in EGF-containing medium, alphaENaC was mainly detected in a perinuclear region, while in cells from standard medium it was distributed over the cell body. Western-blot analysis showed that in standard medium cells expressed fast-migrating EndoH-insensitive and slow-migrating EndoH-sensitive alphaENaC fractions, while in cells growing in the presence of EGF, alphaENaC was only detected as the fast-migrating EndoH-insensitive fraction. Long-term incubation of cells with EGF resulted in an increased basal Ca(2+) level, [Ca(2+)](i). A similar increase of [Ca(2+)](i) was also observed in the presence of 2muM thapsigargin, resulting in inhibition of ENaC function. Thus, in JME/CF15 cells inhibition of the ENaC function by chronic incubation with EGF is a Ca(2+)-mediated process that affects trafficking and surface expression of ENaC channels. 相似文献
4.
Increase in the intracellular inositol triphosphate (IP3) levels in Xenopus oocytes in response to expression and activation of rat angiotensin II (Ang II) receptor AT1 was inhibited by co-expression of rat AT2 receptor. To identify which region of the AT2 was involved in this inhibition, ability of three AT2 mutants to abolish this inhibition was analyzed. Deletion of the C-terminus of the AT2 did not abolish this inhibition. Replacing Ile249 in the third intracellular loop (3rd ICL) of the AT2 with proline, corresponding amino acid in the AT1, in the mutant M6, resulted in slightly reduced affinity to [125I]Ang II (K(d)=0.259 nM), however, did not abolish the inhibition. In contrast, replacing eight more amino acids in the 3rd ICL of the AT2 (at positions 241-244, 250-251 and 255-256) with that of the AT1 in the mutant M8, not only increased the affinity of the AT2 receptor to [125I]Ang II (K(d)=0.038 nM) but also abolished AT2-mediated inhibition. Interestingly, activation of the M8 by Ang II binding also resulted in increase in the intracellular IP(3) levels in oocytes. These results imply that the region of the 3rd ICL of AT2 spanning amino acids 241-256 is sufficient for the AT2-mediated inhibition of AT1-stimulated IP3 generation. Moreover, these nine mutations are also sufficient to render the AT2 with the ability to activate phospholipase C. 相似文献
5.
Andersson C Gaston B Roomans GM 《Biochemical and biophysical research communications》2002,297(3):552-557
S-Nitrosoglutathione (GSNO) is an endogenous bronchodilator levels of which are reduced in the airways of cystic fibrosis (CF) patients. GSNO has recently been shown to increase maturation of CFTR in CF cell lines at physiological concentrations. The ability of S-nitrosoglutathione to direct the DeltaF508-CFTR to the plasma membrane and restore the function of the cAMP-dependent chloride transport in cultured human airway epithelial cells has been studied. Immunocytochemistry showed a time- and dose-dependent increase of apically located CFTR after GSNO treatment. Chloride transport studies with the fluorescent dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) showed that GSNO was able to induce a fourfold increase of cAMP-dependent chloride transport. Our data and the fact that endogenous GSNO levels are lower in the airways of CF patients make GSNO an interesting candidate for pharmacological treatment of cystic fibrosis. 相似文献
6.
Carol Asher 《生物化学与生物物理学报:生物膜》2003,1612(1):59-64
Previous studies have characterized interactions between the ubiquitin ligase Nedd4-1 and the epithelial Na+ channel (ENaC). Such interactions control the channel cell surface expression and activity. Recently, evidence has been provided that a related protein, termed Nedd4-2, is likely to be the true physiological regulator of the channel. Unlike Nedd4-1, Nedd4-2 also interacts with the aldosterone-induced channel activating kinase sgk-1. The current study uses surface plasmon resonance to quantify the binding of the four WW domains of Nedd4-2 to synthetic peptides corresponding to the PY motifs of ENaC and sgk-1. The measurements demonstrate that WW3 and WW4 are the only Nedd4-2 domains interacting with both ENaC and sgk-1 and that their binding constants are in the 1-6 μM range. 相似文献
7.
Cystic fibrosis is characterized by an impaired cyclic adenosine 3,5-monophosphate (cAMP) activated Cl− conductance in parallel with an enhanced amiloride sensitive Na+ conductance (ENaC) of the respiratory epithelium. Very recently, acute downregulation of ENaC by the cystic fibrosis transmembrane conductance regulator (CFTR) was demonstrated in several studies. The mechanism, however, by which CFTR exerts its inhibitory effect on ENaC remains obscure. We demonstrate that cytosolic domains of human CFTR are sufficient to induce inhibition of rat epithelial Na+ currents (rENaC) when coexpressed in Xenopus oocytes and stimulated with 3-isobutyl-1-methylxanthine (IBMX). Moreover, mutations of CFTR, which occur in cystic fibrosis, abolish CFTR-dependent downregulation of rENaC. Yeast two hybrid analysis of CFTR domains and rENaC subunits suggest direct interaction between the proteins. Enhanced Na+ transport as found in the airways of cystic fibrosis patients is probably due to a lack of CFTR dependent downregulation of ENaC. 相似文献
8.
Smith SS Liu X Zhang ZR Sun F Kriewall TE McCarty NA Dawson DC 《The Journal of general physiology》2001,118(4):407-431
The goal of the experiments described here was to explore the possible role of fixed charges in determining the conduction properties of CFTR. We focused on transmembrane segment 6 (TM6) which contains four basic residues (R334, K335, R347, and R352) that would be predicted, on the basis of their positions in the primary structure, to span TM6 from near the extracellular (R334, K335) to near the intracellular (R347, R352) end. Cysteines substituted at positions 334 and 335 were readily accessible to thiol reagents, whereas those at positions 347 and 352 were either not accessible or lacked significant functional consequences when modified. The charge at positions 334 and 335 was an important determinant of CFTR channel function. Charge changes at position 334--brought about by covalent modification of engineered cysteine residues, pH titration of cysteine and histidine residues, and amino acid substitution--produced similar effects on macroscopic conductance and the shape of the I-V plot. The effect of charge changes at position 334 on conduction properties could be described by electrodiffusion or rate-theory models in which the charge on this residue lies in an external vestibule of the pore where it functions to increase the concentration of Cl adjacent to the rate-limiting portion of the conduction path. Covalent modification of R334C CFTR increased single-channel conductance determined in detached patches, but did not alter open probability. The results are consistent with the hypothesis that in wild-type CFTR, R334 occupies a position where its charge can influence the distribution of anions near the mouth of the pore. 相似文献
9.
Wang MH 《Biochemical and biophysical research communications》2004,324(3):971-972
We have developed an efficient method for removing the vitelline membrane of Xenopus oocytes for patch clamp recording. Functional studies using oocytes as models provide insights into the biological profiles and physiological properties of ion channels. A methodological modification is described in this paper. The important feature of this modification is that protease treatment is used to remove the oocyte's vitelline membrane. This method is simple and the oocytes produced remain in a healthy state during the recording process. 相似文献
10.
Li H Chen H Steinbronn C Wu B Beitz E Zeuthen T Voth GA 《Journal of molecular biology》2011,407(4):607-1325
Prevention of cation permeation in wild-type aquaporin-1 (AQP1) is believed to be associated with the Asn-Pro-Ala (NPA) region and the aromatic/arginine selectivity filter (SF) domain. Previous work has suggested that the NPA region helps to impede proton permeation due to the protein backbone collective macrodipoles that create an environment favoring a directionally discontinuous channel hydrogen-bonded water chain and a large electrostatic barrier. The SF domain contributes to the proton permeation barrier by a spatial restriction mechanism and direct electrostatic interactions. To further explore these various effects, the free-energy barriers and the maximum cation conductance for the permeation of various cations through the AQP1-R195V and AQP1-R195S mutants are predicted computationally. The cations studied included the hydrated excess proton that utilizes the Grotthuss shuttling mechanism, a model “classical” charge localized hydronium cation that exhibits no Grotthuss shuttling, and a sodium cation. The hydrated excess proton was simulated using a specialized multi-state molecular dynamics method including a proper physical treatment of the proton shuttling and charge defect delocalization. Both AQP1 mutants exhibit a surprising cooperative effect leading to a reduction in the free-energy barrier for proton permeation around the NPA region due to altered water configurations in the SF region, with AQP1-R195S having a higher conductance than AQP1-R195V. The theoretical predictions are experimentally confirmed in wild-type AQP1 and the mutants expressed in Xenopus oocytes. The combined results suggest that the SF domain is a specialized structure that has evolved to impede proton permeation in aquaporins. 相似文献
11.
Molecular cloning and characterization of an adaptor protein Shc isoform from Xenopus laevis oocytes
Chesnel F Heligon C Richard-Parpaillon L Boujard D 《Biology of the cell / under the auspices of the European Cell Biology Organization》2003,95(5):311-320
In order to gain further insight into IGF-1 receptor signaling in Xenopus laevis oocytes and embryos, we have undertaken the characterization of the adapter protein Shc and studied its implication in oocyte maturation induced after IGF-1 receptor activation, especially since expression of this molecule has been indirectly evidenced in Xenopus oocytes, eggs and embryos. We report herein the cloning from Xenopus postvitellogenic oocytes of a complementary DNA encoding a protein of 470 amino acids which shows the higher identity with the mammalian adaptor protein p52(ShcA). Western blot analysis using homologous antibodies evidenced a 60-kDa protein, p60(Xl)(Shc), that is predominantly expressed in oocytes and in early embryos. We also demonstrate that, like p60(Xl)(Shc), Grb2 and the guanine nucleotide exchange factor Sos are expressed in oocytes throughout vitellogenesis and in early embryos and that overexpression of a dominant-negative form of Grb2 specifically inhibits insulin-induced resumption of meiosis. We finally show that Grb2 binds to p60(Shc) in oocytes specifically upon insulin treatment. Altogether, these results suggest that Shc and Grb2-Sos are implicated in ras-dependent Xenopus oocyte maturation induced by insulin/IGF-1; they also indicate that inability of insulin/IGF-1 to activate the Ras-MAPK cascade in vitellogenic oocytes does not result from an insufficient expression level of Shc, Grb2 and Sos. 相似文献
12.
Katsuragi T Sato C Guangyuan L Honda K 《Biochemical and biophysical research communications》2002,293(2):686-690
Intracellular signal transduction pathways involved in ATP release evoked by angiotensin II (Ang II) were investigated in cultured guinea pig Taenia coli smooth muscle cells. Ang II (0.3-1 microM) elicited substantial release of ATP from the cells, but not from a human fibroblast cell line. However, Ang II even at 10 microM failed to cause a leakage of lactate dehydrogenase (LDH) from the smooth muscle cells. The release of ATP by Ang II was suppressed by 10 microM SC52458, an AT1 receptor antagonist, not by 10 microM PD123319, an AT2 receptor antagonist. The evoked release of ATP was almost completely inhibited in the presence of 10 microM U73122, a phospholipase C inhibitor, and 0.5 microM thapsigargin, a Ca2+-ATPase inhibitor. Furthermore, the release was hampered by 50 microM BAPTA/AM, an intracellular Ca2+ chelator, but not by 0.1 microM nifedipine, a voltage gated Ca2+ channel inhibitor. The basal release of ATP was increased by BAPTA/AM, but was reduced by U-73122. Ang II enhanced instantaneously inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) accumulation in the cells. The enhancing effect was perfectly antagonized by SC52458. These findings suggest that intracellular Ca2+ signals activated via stimulation of Ins(1,4,5)P3 receptor are involved in the release of ATP evoked by Ang II. 相似文献
13.
The importance of Aspergillus as a lung pathogen in cystic fibrosis (CF) is becoming increasingly recognised. However, fungal culture of CF sputum is unreliable and there is no consensus for identifying phenotypes beyond ABPA that may benefit from antifungal therapy. There are no published studies using real-time PCR to detect Aspergillus in CF sputum. The major barrier to sensitive detection of Aspergillus using PCR is sputum homogenisation. This study aimed to optimise sputum homogenisation utilising sonication to improve Aspergillus DNA extraction. Sonication amplitude and duration that enabled sputum homogenisation but ensured preservation of DNA integrity were first determined. 160 sputum samples were collected from CF patients. 49 of the sputum samples were split, one half was used for standard culture and the other half was homogenised with NALC-NaOH before undergoing DNA extraction. The subsequent 111 samples were homogenised with dithiothreitol plus sonication prior to culture and DNA extraction. Real-time PCR targeting a portion of the 18S rDNA of Aspergillus was performed on all DNA extractions. In the 49 samples with no sonication 8 (16%) were culture positive but only 4 of these were PCR positive. However, PCR was positive in 11 culture negative samples. PCR after sonication showed a significant improvement in sensitivity: 33 (30%) were culture and PCR positive, 48 (43%) were culture negative, but PCR positive (p < 0.0001) and 30 (27%) were culture and PCR negative. The combination of dithiothreitol and sonication to homogenise sputum increases PCR yield, with PCR being substantially more sensitive than culture. 相似文献
14.
ATP phosphoribosyltransferase (ATP-PRT) catalyzes the condensation of ATP and PRPP at the first step of histidine biosynthesis and is regulated by a feedback inhibition from product histidine. Here, we report the genetic and biochemical characterization of such an enzyme, HisGCg, from Corynebacterium glutamicum, including site-directed mutagenesis of the histidine-binding site for the first time. Gene disruption and complementation experiments showed that HisGCg is essential for histidine biosynthesis. HisGCg activity was noncompetitively inhibited by histidine and the α-amino group of histidine were found to play an important role for its binding to HisGCg. Homology-based modeling predicted that four residues (N215, L231, T235 and A270) in the C-terminal domain of HisGCg may affect the histidine inhibition. Mutating these residues in HisGCg did not cause significant change in the specific activities of the enzyme but resulted in the generation of mutant ones resistant to histidine inhibition. Our data identified that the mutant N215K/L231F/T235A resists to histidine inhibition the most with 37-fold increase in Ki value. As expected, overexpressing a hisGCg gene containing N215K/L231F/T235A mutations in vivo promoted histidine accumulation to a final concentration of 0.15 ± 0.01 mM. Our results demonstrated that the polarity change of electrostatic potential of mutant protein surface prevents histidine from binding to the C-terminal domain of HisGCg, resulting in the release of allosteric inhibition. Considering that these residues were highly conserved in ATP-PRTs from different genera of Gram-positive bacteria the mechanism by histidine inhibition as exhibited in Corynebacterium glutamicum probably represents a ubiquitously inhibitory mechanism of ATP-PRTs by histidine. 相似文献
15.
F1F0 ATP synthases generate ATP by a rotary catalytic mechanism in which H+ transport is coupled to rotation of an oligomeric ring of c subunits extending through the membrane. Protons bind to and then are released from the aspartyl-61 residue of subunit c at the center of the membrane. Subunit a of the F0 sector is thought to provide proton access channels to and from aspartyl-61. Here, we summarize new information on the structural organization of Escherichia coli subunit a and the mapping of aqueous-accessible residues in the second, fourth and fifth transmembrane helices (TMHs). Aqueous-accessible regions of these helices extend to both the cytoplasmic and periplasmic surface. We propose that aTMH4 rotates to alternately expose the periplasmic or cytoplasmic half-channels to aspartyl-61 of subunit c during the proton transport cycle. The concerted rotation of interacting helices in subunit a and subunit c is proposed to be the mechanical force driving rotation of the c-rotor, using a mechanism akin to meshed gears. 相似文献
16.
Chen J Myerburg MM Passero CJ Winarski KL Sheng S 《The Journal of biological chemistry》2011,286(31):27436-27446
Epithelial Na(+) channels (ENaCs) play an essential role in the regulation of body fluid homeostasis. Certain transition metals activate or inhibit the activity of ENaCs. In this study, we examined the effect of extracellular Cu(2+) on human ENaC expressed in Xenopus oocytes and investigated the structural basis for its effects. External Cu(2+) inhibited human αβγ ENaC with an estimated IC(50) of 0.3 μM. The slow time course and a lack of change in the current-voltage relationship were consistent with an allosteric (non pore-plugging) inhibition of human ENaC by Cu(2+). Experiments with mixed human and mouse ENaC subunits suggested that both the α and β subunits were primarily responsible for the inhibitory effect of Cu(2+) on human ENaC. Lowering bath solution pH diminished the inhibition by Cu(2+). Mutations of two α, two β, and two γ His residues within extracellular domains significantly reduced the inhibition of human ENaC by Cu(2+). We identified a pair of residues as potential Cu(2+)-binding sites at the subunit interface between thumb subdomain of αhENaC and palm subdomain of βhENaC, suggesting a counterclockwise arrangement of α, β, and γ ENaC subunits in a trimeric channel complex when viewed from above. We conclude that extracellular Cu(2+) is a potent inhibitor of human ENaC and binds to multiple sites within the extracellular domains including a subunit interface. 相似文献
17.
Direct noncompetitive inhibition of 5-HT(3) receptor-mediated responses by forskolin and steroids 总被引:3,自引:0,他引:3
5-HT(3) receptors cloned from NCB-20 cells were expressed in Xenopus oocytes, and the effects of forskolin and steroids on the function of the receptors were investigated using the two-electrode voltage-clamp technique. Forskolin, 17-beta-estradiol, and progesterone inhibited the currents activated by 1 microM 5-HT in a reversible and concentration-dependent manner, with IC(50) values of 12, 33, and 89 microM, respectively. The inhibitory effects of forskolin and 17-beta-estradiol were independent of the membrane potential. Forskolin and 17-beta-estradiol significantly reduced the maximal amplitude of the 5-HT concentration-response curve (E(max)) without significantly affecting the EC(50), indicating that these compounds act as noncompetitive inhibitors of the 5-HT(3) receptor. The cAMP analogue, 8-Br-cAMP (0.2 mM), and the protein kinase A activator, Sp-cAMP (0.1 mM), did not affect the amplitude of 5-HT(3) receptor-mediated currents. The membrane-permeable protein kinase A inhibitor Rp-cAMP (0.1 mM) and the estrogen-receptor antagonist tamoxifen (1 microM) did not affect the inhibition of 5-HT-activated current. In addition, 5-HT(3) receptor-mediated currents were inhibited by both 1,9-dideoxy forskolin (30 microM), which does not activate adenylyl cyclase, and wForskolin (30 microM), a charged hydrophilic analogue of forskolin that is membrane impermeable. These results indicate that both forskolin and 17-beta-estradiol inhibit the function of the 5-HT(3) receptor in a noncompetitive manner and that this inhibition is independent of cAMP levels. 相似文献
18.
Hahn MW White BJ Muir CD Besansky NJ 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1587):374-384
Genome-scale scans have revealed highly heterogeneous levels of divergence between closely related taxa in many systems. Generally, a small number of regions show high differentiation, with the rest of the genome showing no or only low levels of divergence. These patterns have been interpreted as evidence for ongoing speciation-with-gene-flow, with introgression homogenizing the whole genome except loci involved in reproductive isolation. However, as the number of selected loci increases, the probability of introgression at unselected loci decreases unless there is a transmission ratio distortion causing an over-representation of specific combinations of alleles. Here we examine the transmission of three 'speciation islands' that contain fixed differences between the M and S forms of the mosquito, Anopheles gambiae. We made reciprocal crosses between M and S parents and genotyped over 2000 F(2) individuals, developing a hierarchical likelihood model to identify specific genotypes that are under- or over-represented among the recombinant offspring. Though our overall results did not match the expected number of F(2) genotypes, we found no biased co-transmission among M or S alleles in the three islands. Our likelihood model did identify transmission ratio distortion at two of the three islands, but this distortion was small (approx. 3%) and in opposite directions for the two islands. We discuss how our results impinge on hypotheses of current gene flow between M and S and ongoing speciation-with-gene-flow in this system. 相似文献
19.