首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied dibucaine's effects on specific locations of n-(9-anthroyloxy)palmitic acid or stearic acid (n-AS) within phospholipids of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex (SPMV) and model membranes. Giant unilamellar vesicles (GUVs) were prepared with total lipids (SPMVTL) and mixture of several phospholipids (SPMVPL) extracted from SPMV. Dibucaine.HCl increased rotational mobility (increased disordering) of hydrocarbon interior, but it decreased mobility (increased ordering) of membrane interface, in both native and model membranes. The degree of rotational mobility in accordance with the carbon atom numbers of phospholipids comprising neuronal and model membranes was in the order at the 16, 12, 9, 6 and 2 position of aliphatic chain present in phospholipids. The sensitivity of increasing or decreasing effect of rotational mobility of hydrocarbon interior or surface region by dibucaine.HCl differed depending on the neuronal and model membranes in the descending order of SPMV, SPMVPL and SPMVTL.  相似文献   

2.
The local anesthetics procaine and tetracaine were found to quench the fluorescence of the probes N-octadecyl naphthyl-2-amine 6-sulfonic acid and 12-(9-anthroyl)stearic acid in the presence of erythrocyte membranes. This quenching was shown to be due to the aromatic amine of the procaine and tetracaine molecules. Lidocaine, an active anesthetic that does not contain an aromatic amine in the same position as does procaine and tetracaine did not quench either of the fluorophores. The preferential quenching of the fluorescent probes by procaine and tetracaine indicated a greater accessibility of tetracaine than of procaine to the hydrocarbon region of the membrane and a greater accessibility of procaine than of tetracaine at the membrane's surface. The addition of calcium was found to reverse the quenching of 12-(9-anthroyl)stearic acid by tetracaine in the presence of red cell membranes.  相似文献   

3.
The effect of local anesthetics on the permeability of phospholipid liposomes of different composition for calcein has been investigated. The local anesthetics tested included amides (lidocaine, prilocaine, mepivacaine, and bupivacaine) and esters (benzocaine, procaine, and tetracaine). The permeability of large monolamellar liposomes was assessed by monitoring the fluorescence of calcein leaking from the phospholipid vesicles. All tested amide anesthetics exerted negligible effects on the permeability of dioleylphosphocholine (DOPC) liposomes for the fluorescent marker. The most efficient in this group was did bupivacaine. Amides had a more pronounced effect on membranes in which 20 mol % of DOPC was replaced by tetraoleoylcardiolipin (TOCL). Benzocaine and procaine at concentration up to 100 mM did not affect the permeability of DOPC liposomes. Membrane permeability of DOPC liposomes was not affected by the addition of tetracaine to the final concentration of 2 mM, while the increase of anesthetic concentration up to 50 mM was accompanied by an increase in the intensity of fluorescence of calcein released from the vesicles, and addition of the anesthetic to the concentration of 100 mM caused by complete release of the marker incorporated by the liposomes. The threshold concentration of tetracaine initiating calcein leakage from vesicles that contained 20 mol % TOCL was 7 mM, and the concentration corresponding to 100% calcein leakage was 20 mM. Confocal fluorescence microscopy of giant monolamellar liposomes formed from an equimolar mixture of DOPC and tetramiristoylcardiolipin demonstrated the destruction of solid ordered domains at the presence of anesthetics, and its destructive capacity increasing in the following order: procaine ≈ mepivacaine < bupivacaine ? tetracaine. Variability of the depth of anesthetic incorporation into the membrane may account for the dissimilar effects of local anesthetics on liposomes.  相似文献   

4.
Dibucaine, a local anesthetic, is known to induce flagellar excision in Chlamydomonas reinhardtii. Herein, we investigate whether other local anesthetics have similar effects. Tetracaine, bupivacaine, procaine, and lidocaine also caused flagellar excision, although their potencies were lower than that of dibucaine. Bupivacaine, procaine, and lidocaine induced a morphological change in flagella from a rod‐like shape to a disk‐like shape before flagellar excision. Except for lidocaine, these local anesthetics caused cell‐wall shedding in addition to flagellar excision. The anesthetics in order of their median effective concentration (1‐h EC50) for flagellar excision are as follows: dibucaine (1.37 × 10?5 M) < tetracaine (3.16 × 10?5 M) < bupivacaine (4.25 × 10?4 M) < procaine (2.02 × 10?3 M) < lidocaine (3.61 × 10?3 M). In all cases, Ca2+ depletion from the solution inhibited flagellar excision. However, Ca2+‐channel blockers, IP3 receptor antagonists, and inhibitors of phospholipase C did not prevent excision. We suggest that the local anesthetics induce flagellar excision by increasing the fluidity of the flagellar/cell membrane, thereby allowing extracellular Ca2+ to flow into the cell and cause flagellar excision.  相似文献   

5.
The membrane location of the local anesthetics (LA) lidocaine, dibucaine, tetracaine, and procaine hydrochloride as well as their influence on phospholipid bilayers were studied by 31P and 1H magic-angle spinning (MAS) NMR spectroscopy. The 31P NMR spectra of the LA/lipid preparations confirmed that the overall bilayer structure of the membrane remained preserved. The relation between the molecular structure of the LAs and their membrane localization and orientation was investigated quantitatively using induced chemical shifts, nuclear Overhauser enhancement spectroscopy, and paramagnetic relaxation rates. All three methods revealed an average location of the aromatic rings of all LAs in the lipid-water interface of the membrane, with small differences between the individual LAs depending on their molecular properties. While lidocaine is placed in the upper chain/glycerol region of the membrane, for dibucaine and procaine the maximum of the distribution are slightly shifted into the glycerol region. Finally for tetracaine the aromatic ring is placed closest to the aqueous phase in the glycerol/headgroup region of the membrane. The hydrophobic side chains of the LA molecules dibucaine and tetracaine were located deeper in the membrane and showed an orientation towards the hydrocarbon core. In contrast the side chains of lidocaine and procaine are oriented towards the aqueous phase.  相似文献   

6.
Abstract

Local anesthetics are used clinically for peripheral nerve blocks, epidural anesthesia, spinal anesthesia and pain management; large concentrations, continuous application and long exposure time can cause neurotoxicity. The mechanism of neurotoxicity caused by local anesthetics is unclear. Neurite outgrowth and apoptosis can be used to evaluate neurotoxic effects. Mouse neuroblastoma cells were induced to differentiate and generate neurites in the presence of local anesthetics. The culture medium was removed and replaced with serum-free medium plus 20 μl combinations of epidermal growth factor and fibroblast growth factor containing tetracaine, prilocaine, lidocaine or procaine at concentrations of 1, 10, 25, or 100 μl prior to neurite measurement. Cell viability, iNOS, eNOS and apoptosis were evaluated. Local anesthetics produced toxic effects by neurite inhibition at low concentrations and by apoptosis at high concentrations. There was an inverse relation between local anesthetic concentrations and cell viability. Comparison of different local anesthetics showed toxicity, as assessed by cell viability and apoptotic potency, in the following order: tetracaine > prilocaine > lidocaine > procaine. Procaine was the least neurotoxic local anesthetic and because it is short-acting, may be preferred for pain prevention during short procedures.  相似文献   

7.
We have studied the effects of local anesthetics (dibucaine, tetracaine, lidocaine, and procaine) on calcium fluxes through the plasma membrane of synaptosomes. All these local anesthetics inhibit the ATP-dependent calcium uptake by inverted plasma membrane vesicles at concentrations close to those that promote an effective blockade of the action potential. The values obtained for the K0.5 of inhibition of calcium uptake are the following: 23 microM (dibucaine), 0.44 mM (lidocaine), 1.5 mM (procaine), and 0.8 mM (tetracaine). There is a good correlation between these K0.5 values and the concentrations of the local anesthetics that inhibit the Ca2(+)-dependent Mg2(+)-ATPase of these membranes. In addition, except for procaine, these local anesthetics stimulate severalfold the Ca2+ outflow via the Na+/Ca2+ exchange in these membranes. This effect, however, is observed at concentrations slightly higher than those that effectively inhibit the ATP-dependent Ca2+ uptake, e.g., 80-700 microM dibucaine, 2-10 mM lidocaine, and 1-3 mM tetracaine. The results suggest that the Ca2+ buffering of neuronal cytosol is altered by these anesthetics at pharmacological concentrations.  相似文献   

8.
The effects of local anesthetics (tetracaine, procaine and lidocaine) on self-sustained electrical oscillations were studied for a lipid membrane comprising dioleyl phosphate (DOPH). This model membrane exhibits oscillation of the membrane potential in a manner similar to that of nerve membranes, i.e., repetitive firing, in the presence of an ion-concentration gradient, on the application of d.c. electric current. Relatively weak anesthetics such as procaine and lidocaine increased the frequency of self-sustained oscillation, and finally induced aperiodic, rapid oscillation. The strong anesthetic tetracaine inhibited oscillation.  相似文献   

9.
For the determination of the logarithmic partition coefficients between n-octanol and water (log Po/w) of local anesthetics, the pH of the aqueous phase needs to be adjusted to high values to ensure that the local anesthetics are in the unionized form. Using the shake-flask or the stir-flask method, this high pH may catalyze hydrolysis, leading to increasing amounts of impurities in time. These impurities exclude non-selective quantification methods like UV spectrometry and require repetitive quantitative analysis of both liquid phases resulting in a tedious and time-consuming method. A rapid reversed-phase HPLC method was developed to measure log Po/w of the local anesthetics N-butyl-p-aminobenzoate, methyl-p-aminobenzoate, benzocaine, procaine, mepivacaine, prilocaine, lidocaine, bupivacaine, etidocaine, tetracaine and oxubuprocaine.  相似文献   

10.
The membrane location of the local anesthetics (LA) lidocaine, dibucaine, tetracaine, and procaine hydrochloride as well as their influence on phospholipid bilayers were studied by (31)P and (1)H magic-angle spinning (MAS) NMR spectroscopy. The (31)P NMR spectra of the LA/lipid preparations confirmed that the overall bilayer structure of the membrane remained preserved. The relation between the molecular structure of the LAs and their membrane localization and orientation was investigated quantitatively using induced chemical shifts, nuclear Overhauser enhancement spectroscopy, and paramagnetic relaxation rates. All three methods revealed an average location of the aromatic rings of all LAs in the lipid-water interface of the membrane, with small differences between the individual LAs depending on their molecular properties. While lidocaine is placed in the upper chain/glycerol region of the membrane, for dibucaine and procaine the maximum of the distribution are slightly shifted into the glycerol region. Finally for tetracaine the aromatic ring is placed closest to the aqueous phase in the glycerol/headgroup region of the membrane. The hydrophobic side chains of the LA molecules dibucaine and tetracaine were located deeper in the membrane and showed an orientation towards the hydrocarbon core. In contrast the side chains of lidocaine and procaine are oriented towards the aqueous phase.  相似文献   

11.
Using quantitative data previously reported for the penetration of local anesthetics into lecithin monolayers, the effects of surface and subphase concentrations of anesthetics on the inhibition of pancreatic phospholipase A2 action on didecanoyl phosphatidylcholine monolayers was investigated. Inhibition as a function of subphase concentration of anesthetic was in the order: dibucaine greater than tetracaine greater than butacaine greater than lidocaine = procaine. Inhibition as a function of surface concentration showed no obvious correlation; procaine inhibited at a very low surface concentration, followed by lidocaine at a somewhat higher concentration, and tetracaine, butacaine and dibucaine only at rather high concentrations. Ultraviolet difference spectroscopy indicated an interaction between lidocaine and enzyme in the subphase. Fluorescence studies showed that lidocaine is a competitive inhibitor of enzyme-lipid interface interaction. It is proposed that the more surface-active anesthetics inhibit by surface effects while the less surface-active anesthetics (lidocaine and procaine) inhibit by interaction with the enzyme in the subphase, which prevents enzyme penetration at the monolayer interface.  相似文献   

12.
The selectivity of lipid-protein interaction for spin-labeled phospholipids and gangliosides in nicotinic acetylcholine receptor-rich membranes from Torpedo marmorata has been studied by ESR spectroscopy. The association constants of the spin-labeled lipids (relative to phosphatidylcholine) at pH 8.0 are in the order cardiolipin (5.1) approximately equal to stearic acid (4.9) approximately equal to phosphatidylinositol (4.7) > phosphatidylserine (2.7) > phosphatidylglycerol (1.7) > G(D1b) approximately equal to G(M1) approximately equal to G(M2) approximately equal to G(M3) approximately equal to phosphatidylcholine (1.0) > phosphatidylethanolamine (0.5). No selectivity for mono- or disialogangliosides is found over that for phosphatidylcholine. Aminated local anesthetics were found to compete with spin-labeled phosphatidylinositol, but to a much lesser extent with spin-labeled stearic acid, for sites on the intramembranous surface of the protein. The relative association constant of phosphatidylinositol was reduced in the presence of the different local anesthetics to the following extents: tetracaine (55%) > procaine (35%) approximately benzocaine (30%). For stearic acid, only tetracaine gave an appreciable reduction (30%) in association constant. These displacements represent an intrinsic difference in affinity of the local anesthetics for the lipid-protein interface because the membrane partition coefficients are in the order benzocaine > tetracaine approximately procaine.  相似文献   

13.
The interaction of local anesthetics (LA) with biological and phospholipid bilayers was investigated regarding the contribution of their structure and physicochemical properties to membrane partition and to erythrocyte solubilization. We measured the partition into phospholipid vesicles—at pH 5.0 and 10.5—and the biphasic hemolytic effect on rat erythrocytes of: benzocaine, chloroprocaine, procaine, tetracaine, bupivacaine, mepivacaine, lidocaine, prilocaine, and dibucaine. At pH 7.4, the binding of uncharged and charged LA to the membranes was considered, since it results in an ionization constant (pKapp) different from that observed for the anesthetic in the aqueous phase (pKw). Even though it occurred at a pH at which there is a predominance of the charged species, hemolysis was greatly influenced by the uncharged species, revealing that the disrupting effect of LA on these membranes is mainly a consequence of hydrophobic interactions. The correlation between the hemolytic activity and the LA potency shows that hemolytic experiments could be used for the prediction of activity in the development of new LA molecules.  相似文献   

14.
We have measured the inhibitory potencies of local anesthetics (procaine, lidocaine, tetracaine and dibucaine) on ATP-mediated H+-translocation, Ca2+-transport and ATPase activity in membrane vesicles from Mycobacterium phlei. Procaine and lidocaine up to 1 mM concentration did not inhibit ATP-dependent H+-translocation, Ca2+-transport and ATPase activity. However, tetracaine and dibucaine at 0.2 mM concentration caused dissipation of the proton gradient, measured by the reversal of the quenching of fluorescence of quinacrine, and inhibition of active Ca2+-transport. Tetracaine (1 mM) inhibited membrane-bound ATPase activity without affecting solubilized F1-ATPase activity. Studies show that these local anesthetics do not prevent the inactivation of F0-F1 ATPase by dicyclohexylcarbodiimide (DCCD). Binding of [14C]DCCD to F0-proteolipid component remained unchanged in the presence of tetracaine indicating that DCCD and tetracaine do not share common binding sites on the F0-proteolipid sector. The inhibition of H+-translocation and membrane-bound ATPase activity by tetracaine was substantially additive in the presence of vanadate.  相似文献   

15.
The local anesthetics, tetracaine, procaine and lidocaine, interacted with a negatively charged lipid membrane composed of dioleyl phosphate (DOPH), which exhibited a self-sustained oscillation of the membrane potential. The anesthetics depolarized the membrane potential when present in increasing concentrations, whereas they increased the membrane resistance at low concentrations and decreased it at high concentrations. The above results were analyzed on the basis of electrochemical theory taking into account ion flux across the membrane. The electrical characteristics are affected by both the hydrophobicity and the diffusion constant of local anesthetics within the membrane.  相似文献   

16.
The present study describes the simultaneous determination of seven different kinds of local anesthetics and one metabolite by GC–MS with solid-state extraction: Mepivacaine, propitocaine, lidocaine, procaine (an ester-type local anesthetics), cocaine, tetracaine (an ester-type local anesthetics), dibucaine (Dib) and monoethylglycinexylidide (a metabolite of lidocaine) were clearly separated from each other and simultaneously determined by GC–MS using a DB-1 open tubular column. Their recoveries ranged from 73–95% at the target concentrations of 1.00, 10.0 and 100 μg/ml in plasma, urine and water. Coefficients of variation of the recoveries ranged from 2.3–13.1% at these concentrations. The quantitation limits of the method were approximately 100 ng/ml for monoethylglycinexylidide, propitocaine, procaine, cocaine, tetracaine and dibucaine, and 50 ng/ml for lidocaine and mepivacaine. This method was applied to specimens of patients who had been treated with drip infusion of lidocaine, and revealed that simultaneous determination of lidocaine and monoethylglycinexylidide in the blood and urine was possible.  相似文献   

17.
Summary

We have examined the ability of fertilized eggs of Ilyanassa obsoleta to form polar lobe constrictions and undergo cytokinesis in the presence of several local anesthetics and compared these effects with those of drugs known to affect microtubules. Procaine, lidocaine (Xylocaine), mepivacaine, tetracaine, and dibucaine all delay the beginning of polar lobe constrictions at low concentrations and in the order of their lipid solubilities. All of the anesthetics are effective at lower concentrations in the absence of extracellular Ca2+. Procaine and tetracaine ‘lock’ cells for several hours halfway through the constriction of the polar lobe neck and prevent subsequent cytokinesis, effects similar to those of the microtubule agents, colchicine and nocodazole. Procaine has no effect on membrane potential, ψm, or on intracellular chloride activity, (Cl)c, as determined with ion-selective microelectrodes. This suggests that procaine does not inhibit cellular shape changes by affecting the ionic activities of the predominant intracellular cation (K+) or anion (Cl?).  相似文献   

18.
The effects of the two local anesthetics tetracaine and procaine and a quaternary amine derivative of lidocaine, QX314, on sarcoplasmic reticulum (SR) Ca2+ release have been examined by incorporating the purified rabbit skeletal muscle Ca2+ release channel complex into planar lipid bilayers. Recordings of potassium ion currents through single channels showed that Ca(2+)- and ATP-gated channel activity was reduced by the addition of the tertiary amines tetracaine and procaine to the cis (cytoplasmic side of SR membrane) or trans (SR lumenal) side of the bilayer. Channel open probability was lowered twofold at tetracaine and procaine concentrations of approximately 150 microM and 4 mM, respectively. Hill coefficients of 2.0 and greater indicated that the two drugs inhibited channel activity by binding to two or more cooperatively interacting sites. Unitary conductance of the K(+)- conducting channel was not changed by 1 mM tetracaine in the cis and trans chambers. In contrast, cis millimolar concentrations of the quaternary amine QX314 induced a fast blocking effect at positive holding potentials without an apparent change in channel open probability. A voltage-dependent block was observed at high concentrations (millimolar) of tetracaine, procaine, and QX314 in the presence of 2 microM ryanodine which induced the formation of a long open subconductance. Vesicle-45Ca2+ ion flux measurements also indicated an inhibition of the SR Ca2+ release channel by tetracaine and procaine. These results indicate that local anesthetics bind to two or more cooperatively interacting high-affinity regulatory sites of the Ca2+ release channel in or close to the SR membrane. Voltage-dependent blockade of the channel by QX314 in the absence of ryanodine, and by QX314, procaine and tetracaine in the presence of ryanodine, indicated one low-affinity site within the conduction pathway of the channel. Our results further suggest that tetracaine and procaine may primarily inhibit excitation-contraction coupling in skeletal muscle by binding to the high-affinity, regulatory sites of the SR Ca2+ release channel.  相似文献   

19.
The effect of local anesthetics on the stearoyl-CoA desaturase activity was studied using Tetrahymena microsomal preparation. Dibucaine, tetracaine, and propranolol, a beta-blocking agent, nonspecifically inhibited the activities of NADPH-ferrihemoprotein reductase as well as of stearoyl-CoA desaturase and the terminal component, but lidocaine and procaine had no effect on these activities. The inhibitory potency was decreased in the order of dibucaine greater than propranolol greater than tetracaine much greater than lidocaine = procaine. According to the double-reciprocal plots of stearoyl-CoA desaturase, the inhibition by dibucaine appeared to be noncompetitive with respect to stearoyl-CoA as substrate. However, the activity of NADH-ferricyanide reductase was not significantly affected by concentrations of propranolol and tetracaine lower than 10mM, but by dibucaine. The terminal component, cyanide-sensitive factor, was most sensitive to local anesthetics among the microsomal electron transport components, suggesting a rate-limiting enzyme.  相似文献   

20.
The effects of local anesthetics (LAs), including aminoamides and aminoesters, on the characteristics of single gramicidin A (GA) channels in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers were studied. Aminoamides, namely lidocaine (LDC), prilocaine (PLC), mepivacaine (MPV), and bupivacaine (BPV), reduced the conductance of GA channels. Aminoesters influenced the current fluctuations induced by GA differently; procaine (PC) did not affect the fluctuations, whereas tetracaine (TTC) distinctly reduced the conductance of single GA channels. Using electrophysiological technique, we estimated the changes in the membrane boundary potential at the adsorption of LAs; LDC, PLC, MPV, BPV, and TTC substantially increased, while PC did not affect it. To elucidate which component of the membrane boundary potential, the surface or dipole potential, is responsible for the observed effects of LAs, we employed a fluorescence assay. We found that TTC led to a significant increase in the membrane dipole potential, whereas the adsorption of LDC, PLC, MPV, BPV, and PC did not produce any changes in the membrane dipole potential. We concluded that aminoamides affected the surface potential of lipid bilayers. Together, these data suggest that the effects of LAs on the conductance of single GA channels are caused by their influence on membrane electrostatic potentials; the regulation of GA pores by aminoamides is associated with the surface potential of membranes, whereas TTC modulation of channel properties is predominantly due to changes in dipole potential of lipid bilayers. These data might provide some significant implications for voltage-gated ion channels of cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号