首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report that the monolayer phase diagram for binary mixtures of dimyristoylphosphatidylethanolamine (DMPE) and dihydrocholesterol (DChol) is largely unchanged when each phospholipid molecule is replaced by two myristic acid (MA) molecules or various mixtures of the lysophospholipid and myristic acid. The corresponding phase diagrams all show the formation of "condensed complexes" of DChol and lipid. The condensed complex stoichiometry is thus largely determined by the C14 fatty acid acyl chains, in this case about 4-4.6 per DChol molecule.  相似文献   

2.
The interaction of four long-chain nicotinates, compounds that are of interest as potential chemopreventive agents, with dipalmitoylphosphatidylcholine (DPPC) was investigated in monolayers at the air-water interface and in fully hydrated bilayers. For the monolayer studies, the compression isotherms of mixtures of the respective nicotinate with DPPC were recorded at various compositions on a hydrochloric acid subphase (pH 1.9-2.1, 37 +/- 2 degrees C). The headgroup of the nicotinates (24-29 A2/molecule) is larger than that of the hydrophobic tail (20 A2/molecule). The pure nicotinates exhibit a temperature- and chain length-dependent transition from an expanded to a condensed phase. Analysis of the concentration dependence of the average molecular area at constant film pressure and the concentration dependence of the breakpoint of the phase transition from the expanded to the condensed state suggests that all four DPPC-nicotinate mixtures are partially miscible at the air-water interface. Although a complex phase behavior with several phase transitions was observed, differential scanning calorimetry studies of the four mixtures are also indicative of the partial miscibility of DPPC and the respective nicotinate. Overall, the complex phase behavior most likely results from the head-tail mismatch of the nicotinates and the geometric packing constraints in the two-component lipid bilayer.  相似文献   

3.
The complete solid-liquid phase diagrams for four binary mixtures of saturated fatty acids are presented, for the first time, in this work. These mixtures are formed by caprylic acid (C8:0) + lauric acid (C12:0), capric acid (C10:0) + myristic acid (C14:0), lauric acid (C12:0) + palmitic acid (C16:0) and myristic acid (C14:0) + stearic acid (C18:0). The phase diagrams were obtained by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). FT-Raman spectrometry and polarized light microscopy were used to complement the characterization for a complete understanding of the phase diagram. All of the phase diagrams here reported show the same global behavior that is far more complex than previously accepted. They present not only peritectic and eutectic reactions, but also metatectic reactions, due to solid-solid phase transitions common in fatty acids, and regions of solid solution not previously reported. This work contributes to the elucidation of the phase behavior of these important biochemical molecules with implications in various industrial applications.  相似文献   

4.
For the first time, the solid–liquid phase diagrams of five binary mixtures of saturated fatty acids are here presented. These mixtures are formed of caprylic acid (C8:0) + capric acid (C10:0), capric acid (C10:0) + lauric acid (C12:0), lauric acid (C12:0) + myristic acid (C14:0), myristic acid (C14:0) + palmitic acid (C16:0) and palmitic acid (C16:0) + stearic acid (C18:0). The information used in these phase diagrams was obtained by differential scanning calorimetry (DSC), X-ray diffraction (XRD), FT–Raman spectrometry and polarized light microscopy, aiming at a complete understanding of the phase diagrams of the fatty acid mixtures. All of the phase diagrams reported here presented the same global behavior and it was shown that this was far more complex than previously imagined. They presented not only peritectic and eutectic reactions, but also metatectic reactions, due to solid–solid phase transitions common in fatty acids and regions of solid solution not previously reported. This work contributes to the elucidation of the phase behavior of these important biochemical molecules, with implications in various industrial applications.  相似文献   

5.
Pure and mixed monomolecular films of a cell membrane spin label probe, 12-nitroxide stearic acid have been studied where myristic acid was selected as the host lipid. The behavior of 12-nitroxide stearic acid at the air water interface is understood in terms of two molecular configurations: erect (with only the carboxyl group in the interface) and bent (with both the carboxyl group and the oxazolidine ring in the interface). In mixed films both of these conformations play a role at high surface pressures. At low probe concentrations, 12-nitroxide stearic acid is primarily in an erect conformation, while at high probe concentrations the reverse is true. This particular host lipid appears capable of erecting the probe molecule with only small concentrations of myristic acid. In a condensed host lipid, the probe is partially immiscible, and segregates to form a heterogeneous film from which it is readily collapsed. The probe is seen to perturb the molecular packing in this mixed system and the perturbation to be dependent on both the molecular shape and nature of the probe.  相似文献   

6.
Processes occurring in dispersions of dimyristoyl phosphatidylcholine containing myristic acid have been studied by light scattering of dilute dispersions (concn. ≤ 1 mg/ml) at temperatures above and below the phase transition temperatures of these dispersions. The transition temperatures increase with increasing mol fraction of myristic acid. Above these temperatures, vesicles with different mol fractions of myristic acid exchange lipid molecules. The exchange process leads to vesicles having phase transition temperatures and radii, which are both intermediate between the initial transitions and radii, respectively. In contrast with the observations above the phase transitions, it was found that when dimyristoyl phosphatidylcholine/myristic acid vesicles were cooled to a few degrees below the phase transition, larger particles were formed. These observations are consistent with a mechanism consisting of vesicle aggregation followed by fusion of the aggregated vesicles. The aggregation process is of second order in the vesicle concentration, and its rate increases with increasing mol fraction of myristic acid.  相似文献   

7.
Solid-liquid phase behavior was investigated for binary fatty acid mixtures composed of oleic acid (OA; cis-9-octadecenoic acid) and saturated fatty acids, lauric acid (LA; dodecanoic acid), myristic acid (MA; tetradecanoic acid), and palmitic acid (PA; hexadecanoic acid), by means of differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). When the mixture was heated immediately after the solidification from the melt, the heat effect due to the gamma-to-alpha transformation of OA varied depending on the composition of the mixture. However, the mixture subjected to an annealing at the temperature slightly below the melting temperature provided the transformation at constant temperature which corresponds to the gamma-to-alpha transformation temperature of pure OA. This suggests that a solid phase formed by cooling of the melt of the mixture is not in an equilibrium state, but it relaxes to a stable solid during the annealing process. The T-X phase diagrams of these mixtures constructed from the DSC measurements demonstrate that the two fatty acid species are completely immiscible in a solid phase regardless of the type of polymorphs of OA, alpha- or gamma-form. According to a thermodynamic analysis of liquidus line basing on the regular solution model for the melt, the non-ideality of mixing tends to increase with the decrease in the acyl chain length of the saturated fatty acid, although the mixing is rather close to ideal.  相似文献   

8.
The solid-liquid phase behaviour of stearic acid (SA) and stearonitrile (SN) in binary mixtures was investigated by differential scanning calorimetry (DSC), and the formation of SA-SN mixed monolayers at the air-water interface was followed by surface pressure-area (pi-A) measurements and by Brewster angle microscope (BAM) observation. The solid-liquid phase diagram is a eutectic type phase diagram, with the eutectic composition 0.90相似文献   

9.
The lipid bound to p60src, the transforming protein of Rous sarcoma virus, has been identified by gas and thin-layer chromatography as the 14-carbon saturated fatty acid, myristic acid. The protein can be labeled biosynthetically with either [3H]myristic acid or [3H]palmitic acid. Incorporation of [3H]myristic acid was noticeably greater than incorporation of [3H]palmitic acid. All of the [3H]myristic acid-derived label in p60src was present as myristic acid. In contrast, none of the radioactivity derived from [3H]palmitic acid was recovered as palmitic acid. Instead, all 3H incorporated into p60src from [3H]palmitic acid arose by metabolism to myristic acid. The cellular tyrosine kinase, p60c-src also contains myristic acid. By comparison of the extent of myristylation of p60v-src with that of the Moloney murine leukemia virus structural protein precursor, Pr65gag, we estimate that greater than 80% of the molecules of p60v-src contain one molecule of this fatty acid. Myristylation is a rare form of protein modification. p60v-src contains 10 to 40% of the myristic acid bound to protein in cells transformed by Rous sarcoma virus and is easily identified in total cell lysates when [3H]myristic acid-labeled proteins are separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Comparison of the amount of [3H]myristic acid-labeled p60src in total cell lysates and in immunoprecipitates suggests that immunoprecipitation with rabbit anti-Rous sarcoma virus tumor sera detects ca. 25% of the p60src present in cells.  相似文献   

10.
We used an automated Langmuir-Pockels surface balance to characterize the air-water interfacial properties of cholesterol (CH) and its derivatives with hydrophilic OH and F substitutions at isologous sites on the sterol body or side chain. We studied 6-fluorocholesterol, 25-fluorocholesterol, 25,26,26,26,27,27,27-heptafluorocholesterol, 7alpha-hydroxycholesterol, 7beta-hydroxycholesterol, 25-hydroxycholesterol and 27-hydroxycholesterol, alone and in mixtures with 1-palmitoyl-2-oleoyl-sn-3-glycero-phosphocholine (POPC). Pressure;-area isotherms of the fluorocholesterols were essentially indistinguishable from CH and all condensed POPC monomolecular layers (monolayers) to variable degrees. Both nucleus-substituted hydroxycholesterols formed expanded monolayers, with lift-offs from baseline 22-26 A(2)/molecule larger than CH, suggesting interfacial tilting; furthermore, in binary mixtures, they condensed POPC monolayers less than CH. In contrast, the side chain hydroxylated CHs were oriented horizontally in the interface at large molecular areas, and became vertical below 140 A(2)/molecule with the side chain-OH rather than 3-OH group anchored in the subphase, as evidenced by low collapse pressures and smaller molecular areas than CH. Both side chain hydroxycholesterols expanded POPC monolayers at molar ratios <30%, but induced condensation with higher ratios, suggesting that OH-acyl chain (POPC) repulsion is superceded at higher mole fractions by lateral phase separation and intersteroidal H-bonding. These studies predict that fluorocholesterols should exhibit intramembrane spatial occupancy nearly identical to CH, whereas nucleus and especially side chain hydroxycholesterols will perturb membrane lipid packing notably.  相似文献   

11.
The hemolytic activities of sodium deoxycholate (DChol) and its tauro-conjugate (TDChol) and glyco-conjugate (GDChol) were analysed. 50 % hemolysis occurred in 30 min at pH 7.3, at the concentrations of these detergents equal to 0.044, 0.042 and 0.040 % respectively. These values are below their critical micellar concentrations. Based on its kinetics, this hemolysis is classified as being of permeability type. The detergents increase the permeability of erythrocyte membranes to KCl, and colloid osmotic hemolysis occurs. The minimum of hemolytic activity of the three cholates is at about pH 7.5. A very high increase in hemolytic activity occurs at pHs below 6.8, 6.5 and 6.2 for DChol, TDChol, and GDChol, respectively. These values are close to the pK(a) for DChol (6.2), but much higher than the pK(a) for TDChol (1.9) and GDChol (4.8). It is therefore suggested that the increase in hemolytic activity is not a result of the protonation of the anionic groups of the cholates. At acidification below pH 6, the kinetics of DChol induced hemolysis change to the damage type characterised by nonselective membrane permeability. Such a transition is not observed in TDChol and GDChol induced hemolysis. It is therefore suggested that the change in the type of hemolysis depends on protonation of the anionic group of cholates.  相似文献   

12.
Because of their structures, phleic acids (general formula: CH3-(CH2)m-(CH=CH-CH2-CH2)n-CO2H; main component: m = 14, n = 5) cannot be synthesized by the same kinds of enzymatic systems as other natural polyunsaturated fatty acids. By using specifically labelled 14C compounds, we have tested the ability of different molecules to be incorporated in the phleate skeletons by Mycobacterium phlei. The localisation of radioactive carbon atoms has been studied by chemical degradation of labelled phleates, isolation and purification of the degradation products, and determination of their specific radioactivity. When M. phlei cells are incubated with labelled acetate, the unsaturated and saturated parts of the molecules of phleic acids are unequally labelled. The radioactivity of succinate monoester on the one hand and fatty acids (mixture of myristic and palmitic acids) on the other hand, measured after oxidative degradation of phleate esters, shows a constant ratio under definite conditions. Whether [1-14C]acetate or [2-14C]acetate is used for incubation, the same ratio is observed. Therefore acetate is the precursor of the unsaturated part as well as of the saturated part of the phleate molecules. By using labelled fatty acid esters, it has been found that palmitic acid is the precursor of phleates with m = 14, while myristic acid is the precursor of phleates with m = 12. Stearic and eicosanoic acids are not incorporated without degradation. The hypothesis of a condensation of a saturated fatty acid with a preformed polyunsaturated molecule was examined. Search for such a molecule in the lipids of M. phlei gives negative results. Pentaunsaturated phleate arising from palmitate is more abundant than pentaunsaturated phleate arising from myristate, while the reverse is true for hexaunsaturated phleates. These observations make very unlikely such an hypothesis. An elongation process fits well with the observed facts provided that this process involves elongation by two acetate units simultaneously, making elongation by four carbon atoms at a time. Such a requirement would be easily satisfied if two molecules of acetate are condensed together before their utilization in the elongation process. In such a hypothetical process, crotonate would be the most probable substrate of the elongation reaction.  相似文献   

13.
Myristic acid, the 14-carbon saturated fatty acid (C14:0), usually accounts for small amounts (0.5%-1% weight of total fatty acids) in animal tissues. Since it is a relatively rare molecule in the cells, the specific properties and functional roles of myristic acid have not been fully studied and described. Like other dietary saturated fatty acids (palmitic acid, lauric acid), this fatty acid is usually associated with negative consequences for human health. Indeed, in industrialized countries, its excessive consumption correlates with an increase in plasma cholesterol and mortality due to cardiovascular diseases. Nevertheless, one feature of myristoyl-CoA is its ability to be covalently linked to the N-terminal glycine residue of eukaryotic and viral proteins. This reaction is called N-terminal myristoylation. Through the myristoylation of hundreds of substrate proteins, myristic acid can activate many physiological pathways. This review deals with these potentially activated pathways. It focuses on the following emerging findings on the biological ability of myristic acid to regulate the activity of mammalian desaturases: (i) recent findings have described it as a regulator of the Δ4-desaturation of dihydroceramide to ceramide; (ii) studies have demonstrated that it is an activator of the Δ6-desaturation of polyunsaturated fatty acids; and (iii) myristic acid itself is a substrate of some fatty acid desaturases. This article discusses several topics, such as the myristoylation of the dihydroceramide Δ4-desaturase, the myristoylation of the NADH-cytochrome b5 reductase which is part of the whole desaturase complex, and other putative mechanisms.  相似文献   

14.
Fatty acid acylation is a functionally important modification of proteins. In the liver, however, acylated proteins remain largely unknown. This work was aimed at investigating fatty acid acylation of proteins in cultured rat hepatocytes. Incubation of these cells with [9,10-3H] myristic acid followed by two-dimensional electrophoresis separation of the delipidated cellular proteins and autoradiography evidenced the reproducible and selective incorporation of radioactivity from the precursor into 18 well-resolved proteins in the 10--120 kDa range and the 4--7 pH range. Radiolabeling of these proteins resulted from covalent linkage to the precursor [9,10-3H] myristic acid or to its elongation product, palmitic acid. The majority of the covalent linkages between the proteins and the fatty acids were broken by base hydrolysis, which indicated that the linkage was of thioester or ester-type. Only one of the studied proteins was attached to myristic acid via an amide linkage which resisted the basic treatment but was broken by acid hydrolysis. After incubation with [9,10-3H] palmitic acid, only two proteins previously detected with myristic acid were radiolabeled. Finally, the identified acylated proteins may be grouped into two classes: proteins involved in signal transduction (the alpha subunit of a heterotrimeric G protein and several small G proteins) and cytoskeletal proteins (cytokeratins, actin).  相似文献   

15.
Gentamicin possesses strong adverse actions like oto and nephrotoxicity. The latter is a result of strong gentamicin–acid phospholipid interactions, resulting in cell fusion, fission, etc., ions as calcium interact with gentamicin and effectively deter its toxicity. In this work, the interactions of gentamicin and Ca2+ with phosphatidylserine/phosphatidylcholine (PS/PC) mixtures of different ratio are experimentally characterized. Special attention is paid to bridge thermodynamic and morphological properties of adsorption monolayers and thin liquid films (TLFs) composed of these lipid mixtures. Our results show that gentamicin decreases the stability of common black TLFs formed of pure PS coupled with suppression of lipid surface adsorption to the monolayers at the air–water interface; also, gentamicin reveals effects of lowering of lipid spreading on the interface and significant loss of material during monolayer cycling, increase of condensed phase, and organization of dense net-like domain monolayer texture. Gentamicin addition results in opposite effects for films formed of DPPC/PS (95:5) mixture. It increases the stability of Newton black TLFs formed by DPPC/PS correlated with faster and stronger surface adsorption and better surface spreading; also, gentamicin lowers the amount of condensed phase and organization of domains of smaller size. We also showed that Ca2+ itself decreases the stability of common black TLFs formed of PS accompanied with weaker surface adsorption, formation of higher amounts of condensed phase and organization of domains. In our experiments, Ca2+ softens, even deters, the effects of gentamicin on both PS and DPPC/PS films.  相似文献   

16.
The origin of myristic acid in mammalian cells and the regulation of its endogenous cellular low concentration are not known. Another intriguing question is the potential metabolic properties of endogenous myristic acid as compared with exogenous myristic acid. In the present paper, we hypothesised and demonstrated that, in liver cells, in addition to the usual fatty acid synthase (FAS) pathway that produces predominantly palmitic acid and minor amounts of myristic acid, part of endogenous cellular myristic acid also comes from a shortening of palmitic acid, likely by peroxisomal β-oxidation and from lauric acid by elongation. From a nutritional point of view, C16:0 is universally found in natural fats and its shortening to myristic acid could contribute to a non-negligible source of this fatty acid (FA) in the organism. Then, we measured the distribution of endogenously synthesised myristic acid in lipid species and compared it with that of exogenous myristic acid. Our results do not support the hypothesis of different metabolic fates of endogenous and exogenous myristic acid and suggest that whatever the origin of myristic acid, its cellular concentration and lipid distribution are highly regulated.  相似文献   

17.
Monolayers of mixtures of 1,2-dipalmitoylphosphatidylcholine (DPPC) as the substrate and 1,2-dipalmitoylphosphatidic acid (DPPA) as the product of the hydrolysis reaction catalyzed by phospholipase D (PLD) were investigated in the presence of Ca2+. The miscibility behavior and the microstructure of mixed domains have been studied by grazing incidence X-ray diffraction (GIXD), Brewster angle microscopy and film balance measurements. The phase diagram reveals partial miscibility on both sides and a wide miscibility gap, which becomes narrower at high pressure. At low pressure, the segregation of condensed DPPA-rich domains in a fluid-like DPPC matrix was detected already at small DPPA concentrations and their structure was determined. A small amount of DPPC mixed into the segregated DPPA domains induces the transformation from rectangular to an oblique unit cell and increases the tilt angle in the condensed domains. At high pressure, two types of condensed phase domains were found: DPPC-rich and DPPA-rich. A drastic reduction of the tilt angle in the DPPC-rich domains with increasing amount of DPPA was observed. The decrease of the tilt angle must be connected with a change of the head group conformation of DPPC in such mixed domains.  相似文献   

18.
The solid-liquid phase behaviour of stearic acid (SA) and stearonitrile (SN) in binary mixtures was investigated by differential scanning calorimetry (DSC), and the formation of SA-SN mixed monolayers at the air-water interface was followed by surface pressure-area (π-A) measurements and by Brewster angle microscope (BAM) observation. The solid-liquid phase diagram is a eutectic type phase diagram, with the eutectic composition 0.90 < XSN < 0.95 and Teut = 40.9 °C. The DSC results also suggest that the two components are immiscible in the solid phase but form a liquid mixture with positive deviations to the ideal behaviour. At the air-water interface, the two components form liquid condensed monolayers in the entire range of compositions, at low surface pressures, while solid mixed monolayers only form at high surface pressures for XSN < 0.8. Thermodynamic analysis indicates that SA and SN are miscible in the liquid condensed phase, with negative deviations from the ideal behaviour. The variation of the collapse surface pressure of mixed monolayers also indicates miscibility at the air-water interface.  相似文献   

19.
The interaction of the human immunodeficiency virus (HIV) Gag protein with the plasma membrane of a cell is a critical event in the assembly of HIV particles. The matrix protein region (MA) of HIV type 1 (HIV-1) Pr55Gag has previously been demonstrated to confer membrane-binding properties on the precursor polyprotein. Both the myristic acid moiety and additional determinants within MA are essential for plasma membrane binding and subsequent particle formation. In this study, we demonstrated the myristylation-dependent membrane interaction of MA in an in vivo membrane-binding assay. When expressed within mammalian cells, MA was found both in association with cellular membranes and in a membrane-free form. In contrast, the intact precursor Pr55Gag molecule analyzed in an identical manner was found almost exclusively bound to membranes. Both membrane-bound and membrane-free forms of MA were myristylated and phosphorylated. Differential membrane binding was not due to the formation of multimers, as dimeric and trimeric forms of MA were also found in both membrane-bound and membrane-free fractions. To define the requirements for membrane binding of MA, we analyzed the membrane binding of a series of MA deletion mutants. Surprisingly, deletions within alpha-helical regions forming the globular head of MA led to a dramatic increase in overall membrane binding. The stability of the MA-membrane interaction was not affected by these deletions, and no deletion eliminated membrane binding of the molecule. These results establish that myristic acid is a primary determinant of the stability of the Gag protein-membrane interaction and provide support for the hypothesis that a significant proportion of HIV-1 MA molecules may adopt a conformation in which myristic acid is hidden and unavailable for membrane interaction.  相似文献   

20.
Cells of Acer pseudoplatanus were grown in batch suspension culture for 22 days. The cultures were initiated at high cell density of 2 × 105 cells per ml of culture. Growth was characterised by a short lag phase, an exponential phase of rapid cell division and growth, and finally a stationary phase. Quantitative but not qualitative changes were observed in total lipid content, fatty acids and phospholipids at different stages of growth. Total lipids, phospholipids and fatty acids showed maximum concentrations in 12 day old cells. The major phospholipids isolated were phosphatidylcholine and phosphatidylethanolamine with minor amounts of phosphatidic acid and lysophosphatides. Other lipid components present were mono- and digalactosyl diglycerides, cerebrosides, sterol glucosides, free fatty acids and esterified sterol glucosides. The major constituent fatty acids were myristic acid (14:0), palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and linolenic acid (18:3). During exponential cell growth the proportion of 16:0, 18:2 and 18:3 constituted nearly 90% of the total fatty acids. Triglycerides were the major repository of myristic acid (14:0) with substantial amounts of palmitic acid (16:0), whereas phospholipids contained 16:0, 18:2 and 18:3 in high amounts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号