首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The stability of cellular membranes during dehydration can be strongly influenced by the partitioning of amphiphilic solutes from the aqueous phase into the membranes. The effects of partitioning on membrane stability depend in a complex manner on the structural properties of the amphiphiles and on membrane lipid composition. Here, we have investigated the effects of the amphiphilic aromatic amino acids Trp and Phe on membrane stability during freezing. Both amino acids were cryotoxic to isolated chloroplast thylakoid membranes and to large unilamellar liposomes, but Trp had a much stronger effect than Phe. In liposomes, both amino acids induced solute leakage and membrane fusion during freezing. The presence of the chloroplast galactolipids monogalactosyldiacylglycerol or digalactosyldiacylglycerol in egg phosphatidylcholine (EPC) membranes reduced leakage from liposomes during freezing in the presence of up to 5 mM Trp, as compared to membranes composed of pure EPC. The presence of the nonbilayer-forming lipid phosphatidylethanolamine increased leakage. Membrane fusion followed a similar trend, but was dramatically reduced when the anthracycline antibiotic daunomycin was incorporated into the membranes. Daunomycin has been shown to stabilize the bilayer phase of membranes in the presence of nonbilayer lipids and was therefore expected to reduce fusion. Surprisingly, this had only a small influence on leakage. Collectively, these data indicate that Trp and Phe induce solute leakage from liposomes during freezing by a mechanism that is largely independent of fusion events.  相似文献   

2.
The molecular mechanism of ethylenediaminetetraacetic acid (EDTA)-induced membrane destabilization has been studied using a combination of four biophysical techniques on artificial lipid membranes. Data from Langmuir film balance and epifluorescence microscopy revealed the fluidization and expansion effect of EDTA on phase behavior of monolayers of either 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or mixtures of DPPC and metal-chelating lipids, such as N^a,N^a-Bis[carboxymethyl]-N^ε [(dioctadecylamino)succinyl]-L-lysine or 1,2-dioleoyl-sn-glycero-3-[N-(5-amino- 1 -carboxypentyl iminodiacetic acid) succinyl]. A plausible explanation could be drawn from the electrostatic interaction between negatively charged groups of EDTA and the positively charged choline head group of DPPC. Intercalation of EDTA into the lipid membrane induced membrane curvature as elucidated by atomic force microscopy. Growth in size and shape of the membrane protrusion was found to be time-dependent upon exposure to EDTA. Further loss of material from the lipid membrane surface was monitored in real time using a quartz crystal microbalance. This indicates membrane restabilization by exclusion of the protrusions from the surface. Loss of lipid components facilitates membrane instability, leading to membrane permeabilization and lysis.  相似文献   

3.
4.
5.
Abstract

The high antioxidant capacity of chlorogenic acid (CGA) in respect to biological systems is commonly known, though the molecular mechanism underlying that activity is not known. The aim of the study was to determine that mechanism at the molecular and cell level, in particular with regard to the erythrocyte and the lipid phase of its membrane. The effect of CGA on erythrocytes and lipid membranes was studied using microscopic, spectrophotometric and electric methods. The biological activity of the acid was determined on the basis of changes in the physical parameters of the membrane, in particular its osmotic resistance and shapes of erythrocytes, polar head packing order and fluidity of erythrocyte membrane as well as capacity and resistivity of black lipid membrane (BLM). The study showed that CGA becomes localized mainly in the outer part of membrane, does not induce hemolysis or change the osmotic resistance of erythrocytes, and induces formation of echinocytes. The values of generalized polarization and fluorescence anisotropy indicate that CGA alters the hydrophilic region of the membrane, practically without changing the fluidity in the hydrophobic region. The assay of electric parameters showed that CGA causes decreased capacity and resistivity of black lipid membranes. The overall result is that CGA takes position mainly in the hydrophilic region of the membrane, modifying its properties. Such localization allows the acid to reduce free radicals in the immediate vicinity of the cell and hinders their diffusion into the membrane interior.  相似文献   

6.
Degranulation involves the regulated fusion of granule membrane with plasma membrane. To study the role of lipid composition in degranulation, large unilamellar vesicles (LUVs) of increasing complexity in lipid compositions were constructed and tested for Ca2+-mediated lipid and contents mixing. Lipid-mixing rates of LUVs composed of phosphatidylethanolamine (PE) and phosphatidylserine (PS) were strongly decreased by the addition of either phosphatidylcholine (PC) or sphingomyelin (SM), while phosphatidylinositol (PI) had little effect. Complex LUVs of PCPESMPIPS (2427201613, designed to emulate neutrophil plasma membranes) also showed very low rates of both lipid mixing and contents mixing. The addition of cholesterol significantly lowered the Ca2+ threshold for contents mixing and increased the maximum rates of both lipid and contents mixing in a dose-dependent manner. Membrane remodeling, which occurs in neutrophil plasma membranes upon stimulation, was simulated by incorporating low levels of phosphatidic acid (PA) or a diacylglycerol (DAG) into complex LUVs containing 50% cholesterol. The addition of PA both lowered the Ca2+ threshold and increased the rate of contents mixing in a dose-dependent manner, while the DAG had no significant effect. The interaction of dissimilar LUVs was also examined. Contents-mixing rates of LUVs of two different cholesterol contents were intermediate between the rates observed for the LUVs of identical composition. Thus, cholesterol needed to be present in only one fusing partner to enhance fusion. However, for PA to stimulate fusion, it had to be present in both sets of LUVs. These results suggest that the rate of degranulation may be increased by a rise in the cholesterol level of either the inner face of the plasma membrane or the outer face of the granule membrane. Further, the production of PA can promote fusion, and hence degranulation, whereas the subsequent conversion of PA to DAG may reverse this promotional effect.Abbreviations ANTS 8-aminonaphthalene-1,3,6-trisulfonic acid - DiC8 1,2-dioctanoyl-sn-glycerol - DPX p-xylene-bis-pyridinium bromide - LUV large unilamellar vesicle - PA phosphatidic acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - R18 octadecyl rhodamine - SM sphingomyelin  相似文献   

7.
Summary The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10–12–10–13 cm · s–1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 102 more permeable than the hydrophilic forms, reflecting their increased partition coefficient values.External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10–2 cm · s–1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.Abbreviations DCP dicetylphosphate - DMPC dimyristoyl phosphatidylcholine - EPC egg phosphatidylcholine - LUV large unilamellar vesicle - MLV multilamellar vesicle - PLM planar lipid membrane - SUV small unilamellar vesicle - pH transmembrane pH gradient  相似文献   

8.
The growth of cationic lipid dioctadecyldimethylammonium bromide (DODAB) toward bilayer lipid membrane (BLM) by solution spreading on cleaved mica surface was studied by atomic force microscopy (AFM). Bilayer of DODAB was formed by exposing mica to a solution of DODAB in chloroform and subsequently immersing into potassium chloride solution for film developing. AFM studies showed that at the initial stage of the growth, the adsorbed molecules exhibited the small fractal-like aggregates. These aggregates grew up and expanded laterally into larger patches with time and experienced from monolayer to bilayer, finally a close-packed bilayer film (5.4+/-0.2 nm) was approached. AFM results of the film growth process indicated a growth mechanism of nucleation, growth and coalescence of dense submonolayer, it revealed the direct information about the film morphology and confirmed that solution spreading was an effective technique to prepare a cationic bilayer in a short time.  相似文献   

9.
Summary Mouse leukemic lymphoblasts (L5178Y) brought into close contact by dielectrophoresis underwent cell fusion following the application of electrical pulses in the presence of electrolytes. The electrically fused cells became spherical after switching off the dielectrophoretic field. Fusion between a cell vitally stained with Janus Green and that with Neutral Red resulted in the homokaryon with a mixed color. Intracellular potentials simultaneously recorded from the two cells located on both sides of the homokaryon were identical. The fusion efficiency was remarkably dependent upon temperature, displaying a discontinuity at about 11°C in the Arrhenius plot. The extracellular application of phospholipase-A2 or-C suppressed the fusion yield. Thus, it appears that the phospholipid domains play a crucial role in the electric pulse-induced cell fusion. Treatment of the cells with proteolytic enzymes markedly enhanced the fusion yield, presumably due to removing the glycocalix and/or giving rise to fusion-potent, protein-free lipid domains. The presence of millimolar concentrations of divalent cations (irrespective of Mg2+ or Ca2+) as well as of micromolar concentrations of Ca2+ (but not Mg2+) was prerequisite to the resealing of membranes suffered from electrical breakdown upon exposure to electric pulses. In addition, extracellular Ca2+ (but not Mg2+) ions at more than micromolar concentrations were indispensable for the cell fusion.  相似文献   

10.
Exocytosis is considered as four separate steps: adhesion, fusion/pore formation, pore widening, and content discharge. Experiments on both synthetic and natural membranes are presented to show each of these steps. Major differences are seen in the two fusing systems. These differences are discussed in terms of molecular mechanisms of fusion.  相似文献   

11.
The assembly of FtsZ plays an important role in bacterial cell division. Lipids in the bacterial cell membrane have been suggested to play a role in directing the site of FtsZ assembly. Using lipid monolayer and bilayer (liposome) systems, we directly examined the effects of cationic lipids on FtsZ assembly. We found that cationic lipids enhanced the assembly of FtsZ in association with an increase in the GTPase activity of FtsZ. The system consisting of lipid monolayer and bilayer (liposome) may mimic the bacterial membrane and therefore, the data might indicate the influence of bacterial membrane on the assembly of FtsZ protofilaments.  相似文献   

12.
CaCl2 or MgCl2 but not NaCl enhances the soyabean lectin-induced agglutination of liposomes prepared from total lipids of erythrocyte membranes. The addition of purified phosphatidylserine to the total lipids of erythrocyte membranes before the formation of liposomes inhibits lectin-induced agglutinability of the preparation in the absence of CaCl2, but not in its presence. When preformed phosphatidylserine liposomes are added to liposomes of total lipids of erythrocyte ghosts, they do not inhibit agglutination, indicating that phosphatidylserine does not inhibit the lectin directly. CaCl2 or MgCl2 but not NaCl also stimulates the soyabean lectin-induced agglutination of human erythrocyte membranes.Electron micrographs indicate that the liposome preparations are multilamellar and separate even in the presence of CaCl2. When such liposomes are treated with lectin with or without CaCl2, the electron micrographs show significant agglutination without apparent fusion. The reversal of the agglutination of liposomes by specific sugars followed by turbidimetric and electron microscopic techniques supports the conclusion that CaCl2 stimulated lectin-induced agglutination is unaccompanied by fusion.The stimulation by divalent cations of lectin-induced agglutination of erythrocyte ghosts or of our liposomes may be due to a decrease in apparent surface charge of these membrane systems.  相似文献   

13.
月季切花衰老过程中多胺与膜脂过氧化的关系   总被引:7,自引:0,他引:7  
以月季切花为材料,研究了月季切花瓶插过程中多胺含量的变化,外源多胺处理对月季药花体内多胺含量的影响以及多胺与膜脂过氧化的关系。结果表明,月季切花瓶插衰老过程中腐胺在前2d略有增加,亚精胺和精胺均呈下降趋势;外源亚精胺和精胺处理均能增加切花体内多胺含量,并能延缓切花衰老和改善切花品质;且亚精胺和精胺处理降低了MDA含量的积累和膜相对透性的上升趋势。  相似文献   

14.
A technique has been developed for monitoring the interaction of charged phospholipid vesicles with planar bilayer lipid membranes (BLM) by use of the antibiotics Valinomycin, Nonactin, and Monazomycin as surface-charge probes. Anionic phosphatidylserine vesicles, when added to one aqueous compartment of a BLM, are shown to impart negative surface charge to zwitterionic phosphatidylocholine and phosphatidylethanolamine bilayers. The surface charge is distributed asymmertically, mainly on the vesicular side of the BLM, and is not removed by exchange of the vesicular aqueous solution. Possible mechanisms for the vesicle-BLM interactions are discussed.  相似文献   

15.
Summary Single-channel analysis of electrical fluctuations induced in planar bilayer membranes by the purified human complement proteins C5b6, C7, C8, and C9 have been analyzed. Reconstitution experiments with lipid bilayer membranes showed that the C5b-9 proteins formed pores only if all proteins were present at one side of the membrane. The complement pores had an average single-channel conductance of 3.1 nS at 0.15m KCl. The histogram of the complement pores suggested a substantial variation of the size of the single channel. The linear relationship between single-channel conductance at fixed ionic strength and the aqueous mobility of the ions in the bulk aqueous phase indicated that the ions move inside the complement pore in a manner similar to the way they move in the aqueous phase. The minimum diameter of the pores as judged from the conductance data is approximately 3 nm. The complement channels showed no apparent voltage control or regulation up to transmembrane potentials of 100 mV. At neutral pH the pore is three to four times more permeable for alkali ions than for chloride, which may be explained by the existence of fixed negatively charged groups in or near the pore. The significance of these observations to current molecular models of the membrane lesion formed by these cytolytic serum proteins is considered.  相似文献   

16.
In order to gain direct evidence for lipid-dependent protein conformation in membrane, effects of modification of lipid composition on mobility of spin-labeled cysteine residues were investigated in the plasma membrane of the yeast Saccharomyces cerevisiae. Conversion of the bulk of phospholipids to diglycerides by treatment of the membrane with phospholipase C substantially enhanced spectral anisotropy. However, alteration of the viscosity of the lipid-bilayer by enriching the membrane with palmitelaidic or oleic acid had no effect on mobility of spin-labeled cysteine residues. These observations indicate that while the spin-labeled residues are not in direct contact with the lipid core of the membrane, there are lipid-protein interactions to the extent that removal of polar portion of the bulk of phospholipids induces conformational changes in proteins, which in turn restrict mobility of these residues. It is concluded that conformation of membrane proteins depends on lipid structure and that phospholipids have a role in preserving the native conformation of proteins.  相似文献   

17.
When ethanol is added to the growth medium of Clostridium thermocellum ATCC 27405 and C9, a different membrane composition is observed after the period of growth arrest. Changes in fatty acid composition and some unsaturated, branched hydrocarbons have been monitored by GLC-MS. There is a marked increase in normal and anteiso-branched fatty acids at the expense of isobranched fatty acids and an increase in short and unsaturated fatty acids. Thus, an adaptive response to growth in the presence of ethanol induces a membrane containing fatty acids with lower melting points and produces a more ‘fluid’ membrane. The suggestion is made that these membrane changes may be maladaptive to the performance of C. thermocellum.  相似文献   

18.
Bao X  Tian X  Zhao Z  Qu Y  Wang B  Zhang J  Liu T  Yang L  Lv J  Song C 《Cell and tissue research》2008,332(3):555-563
Immediately following the discovery of tryptophan hydroxylase in Drosophila, we demonstrated the presence of tryptophan hydroxylase in the brain of the beetle Harmonia axyridis (Coleoptera: Coccinellidae). However, whether tryptophan hydroxylase is present in the brains of other insects is still a matter of discussion. In the current study, sheep anti-tryptophan hydroxylase polyclonal antibody has been applied to test for tryptophan hydroxylase immunoreactivity in a broader taxonomic range of insect brains, including holometabolous and hemimetabolous insects: one species each of Coleoptera, Hymenoptera, Diptera, and Blattaria, and two species of Lepidoptera. All species show consistent tryptophan hydroxylase immunoreactivity with distribution patterns matching that of serotonin. The immuno-positive results of such an antibody in brains from diverse orders of insects suggest that specific tryptophan hydroxylase responsible for central serotonin synthesis is probably present in the brains of all insects. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by grants from the National Natural Science Foundation of China (grant no. 30470546) and the Natural Science Foundation of Jilin Province (grant no. 20030550–7).  相似文献   

19.
Imbibitional chilling injury during germination causes agricultural losses, but this can be overcome by osmopriming. It remains unknown how membranes reorganize during germination. Herein, we comparatively profiled changes of membrane lipids during imbibition under normal and chilling temperatures in chilling‐tolerant and ‐sensitive soybean seeds. We found three patterns of dynamic lipid remodelling during the three phases of germination. Pattern 1 involved a gradual increase in plastidic lipids during phases I and II, with an abrupt increase during phase III. This abrupt increase was associated with initiation of photosynthesis. Pattern 3 involved phosphatidic acid (PA) first decreasing, then increasing, and finally decreasing to a low level. Patterns 1 and 3 were interrupted in chilling‐sensitive seeds under low temperature, which lead a block in plastid biogenesis and accumulation of harmful PA, respectively. However, they were rescued and returned to their status under normal temperature after polyethylene glycol osmopriming. We specifically inhibited phospholipase D (PLD)‐mediated PA formation in chilling‐sensitive seeds of soybean, cucumber, and pea, and found their germination under low temperature was significantly improved. These results indicate that membranes undergo specific and functional reorganization of lipid composition during germination and demonstrate that PLD‐mediated PA causes imibibitional chilling injury.  相似文献   

20.
The phase transitional behaviour of bilayers of the phospholipid l--ditridecanoylphos-phatidylcholine is studied as a function of protein content for the reaction center (RC) and an antenna protein (LHCP) of the bacterial photosynthetic apparatus. As membrane and protein are structurally well characterized the experimental results can be quantitatively compared with those of calculations based upon elastic models within the Landaude Gennes-theory. Agreement between theory and experiment demonstrates that dominant elastic forces result from a mismatch of hydrophobic regions of membrane and protein. The data also indicate that RC are present in a monomeric form and LHCP in a highly aggregated form. In addition, the latter protein responds to changes in the lipid environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号