首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organotin compounds are important contaminants in the environment. They are membrane active molecules with broad biological toxicity. We have studied the interaction of tri-n-butyltin chloride and tri-n-phenyltin chloride with model membranes composed of different phosphatidylethanolamines using differential scanning calorimetry, X-ray diffraction, 31P-nuclear magnetic resonance and infrared spectroscopy. Organotin compounds laterally segregate in phosphatidylethanolamine membranes without affecting the shape and position of the lamellar gel to lamellar liquid-crystalline phase transition thermogram of the phospholipid. This is in contrast with their reported effect on phosphatidylcholine membranes [Chicano et al. (2001) Biochim. Biophys. Acta 1510, 330-341] and emphasises the importance of the nature of the lipid headgroup in determining how the behaviour of lipid molecules is affected by these toxicants. Interestingly, we have found that organotin compounds disrupt the pattern of hydrogen-bonding in the interfacial region of dielaidoylphosphatidylethanolamine membranes and have the ability to promote the formation of hexagonal H(II) structures in this system. These results open the possibility that some of the specific toxic effects of organotin compounds might be exerted through the alteration of membrane function produced by their interaction with the lipidic component of the membrane.  相似文献   

2.
Organotin compounds examined in this study exhibited a relative order of potency for induction of in vitro hemolysis in human erythrocytes as follows: tri-n-butyltin > tri-n propyltin > tetra-n-butyltin > triphenyltin chloride > tri-n-ethyltin bromide > dibutyltin dichloride > stannous chloride > tri-n-methyltin chloride = butyltin chloride dihydroxide. All of the organotin compounds induced erythrocyte shape transformation from the normal discocyte to an echinocyte and, in addition, triphenyltin chloride, tetra-n-butyltin and tri-n-ethyltin bromide also elicited stomatocyte formation at higher concentrations. Select organotin compounds also formed tin-containing aggregates within the plasma membrane. The relative order of effectiveness for organotin induction of intramembranous aggregates was tri-n-butyltin > tri-npropyltin > tetra-n-butyltin > tri-n-ethyltin bromide, which was based upon the lowest concentration at which they were observed. These results support the previously suggested theory that organotins are membrane effectors because of their comparatively high hydrophobic, lipid partitioning properties. The relatively lipophilic compound, triphenyltin chloride, appeared to be anomalous because it did not readily promote hemolysis or induce the formation of intramembranous aggregates in human erythrocytes. A log-linear statistical model demonstrated an association of hemolysis with both tri-n-butyltin aggregate formation and shape transformation. Select organotin compounds should be useful probes in membrane studies because of their numerous effects.Abbreviations DBT dibutylin dichloride - MBT butyltinchloride dihydroxide - SnCl2 stannous chloride - TBT tri-n-butyltin - TET tri-n-ethyltin bromide - TMT tri-n-methyltin chloride - TPhT triphenyltin chloride - TPT tri-n-propyltin - TTBT tetra-n-butyltin  相似文献   

3.
Organotin compounds have a broad range of biological activities and are ubiquitous contaminants in the environment. Their toxicity mainly lies in their action on the membrane. In this contribution we study the interaction of tributyltin and triphenyltin with model membranes composed of phosphatidylcholines of different acyl chain lengths using differential scanning calorimetry, (31)P-nuclear magnetic resonance, X-ray diffraction and infrared spectroscopy. Organotin compounds broaden the main gel to liquid-crystalline phase transition, shift the transition temperature to lower values and induce the appearance of a new peak below the main transition peak. These effects are more pronounced in the case of tributyltin and are quantitatively larger as the phosphatidylcholine acyl chain length decreases. Both tributyltin and triphenyltin increase the enthalpy change of the transition in all the phosphatidylcholine systems studied except in dilauroylphosphatidylcholine. Organotin compounds do not affect the macroscopic bilayer organization of the phospholipid but do affect the degree of hydration of its carbonyl moiety. The above evidence supports the idea that organotin compounds are located in the upper part of the phospholipid palisade near the lipid/water interface.  相似文献   

4.
《Inorganica chimica acta》2007,360(9):2973-2982
Syntheses and crystal structures of two molecular, heteroleptic cadmium complexes with CdS2NO2 and CdS2N2 kernels are described. Bis(tri-tert-butoxysilanethiolate)(1-methylimidazole)cadmium(II) and bis(tri-tert-butoxysilanethiolate)bis(1-methylimidazole)cadmium(II) coexist at equilibrium in chloroform solutions with varying concentrations of bis[bis(tri-tert-butoxysilanethiolate)cadmium(II)] and 1-methylimidazole. The equilibrium is characterized by solution 113Cd NMR spectra. Solid state CP MAS 13C, 29Si, 113Cd NMR data for the complexes are also reported, analyzed and compared with the results obtained for cadmium-substituted proteins. The similarities and differences between the structures of cadmium complexes and their zinc analogues are discussed.  相似文献   

5.
Organotin compounds are the active components of some fungicides, which are potential inhibitors of the F1F0-ATP synthase. The studies about the reaction mechanism might indicate a pathway to understand how these compounds work in biological systems, however, has not been clarified so far. In this line, molecular modeling studies and density functional theory calculations were performed in order to understand the molecular behavior of those compounds when they interact with the active site of the enzyme. Our findings indicate that a strong interaction with His132 can favor a chemical reaction with organotin compounds due to π–π stacking interactions with aromatic rings of organotin compounds. Furthermore, dependence on molecule size is related to possibility of reaction with the amino acid residue His132. Thus, it can also be noticed, for organotin compounds, that substituents with four carbons work by blocking the subunit a, in view of the high energy transition found characterized by steric hindrance.  相似文献   

6.
Dynamic structures of supramolecular lipid assemblies, such as toroidal pores and thinned bilayers induced in oriented lipid membranes, which are interacting with membrane-acting antimicrobial peptides (AMPs), magainin-2 and aurein-3.3, were explored by 31P and 2H solid-state NMR (ssNMR) spectroscopy. Various types of phospholipid systems, such as POPC-d31, POPC-d31/POPG, and POPC-d31/cholesterol, were investigated to understand the membrane disruption mechanisms of magainin-2 and aurein-3.3 peptides at various peptide-to-lipid (P:L) ratios. The experimental lineshapes of anisotropic 31P and 2H ssNMR spectra measured on these peptide-lipid systems were simulated reasonably well by assuming the presence of supramolecular lipid assemblies, such as toroidal pores and thinned bilayers, in membranes. Furthermore, the observed decrease in the anisotropic frequency span of either 31P or 2H ssNMR spectra of oriented lipid bilayers, particularly when anionic POPG lipids are interacting with AMPs at high P:L ratios, can directly be explained by a thinned membrane surface model with fast lateral diffusive motions of lipids. The spectral analysis protocol we developed enables extraction of the lateral diffusion coefficients of lipids distributed on the curved surfaces of pores and thinned bilayers on a few nanometers scale.  相似文献   

7.
Organellar and cytosolic pH homeostasis is central to most cellular processes, including vesicular trafficking, post-translational modification/processing of proteins, and receptor-ligand interactions. SLC9A7 (NHE7) was identified as a unique (Na+, K+)/H+ exchanger that dynamically cycles between the trans-Golgi network (TGN), endosomes and the plasma membrane. Here we have used mass spectrometry to explore the affinity-captured interactome of NHE7, leading to the identification of cytoskeletal proteins, cell adhesion molecules, membrane transporters, and signaling molecules. Among these binding proteins, calcium-calmodulin, but not apo-calmodulin, binds to NHE7 and regulates the organellar transporter activity. Vimentin was co-immunoprecipitated with endogenous NHE7 protein in human breast cancer MDA-MB-231 cells. A sizable population of NHE7 relocalized to focal complexes in migrating cells and showed colocalization with vimentin and actin in focal complexes. Among the NHE7-binding proteins identified, CD44, a cell surface glycoprotein receptor for hyaluronate and other ligands, showed regulated interaction with NHE7. Pretreatment of the cells with phorbol ester facilitated the NHE7-CD44 interaction and the lipid raft association of CD44. When lipid rafts were chemically disrupted, the NHE7-CD44 interaction was markedly reduced. These results suggest potential dual roles of NHE7 in intracellular compartments and subdomains of cell-surface membranes.  相似文献   

8.
Non-bilayer lipids account for about half of the total lipid content in chloroplast thylakoid membranes. This lends high propensity of the thylakoid lipid mixture to participate in different phases which might be functionally required. It is for instance known that the chloroplast enzyme violaxanthin de-epoxidase (VDE) requires a non-bilayer phase for proper functioning in vitro but direct evidence for the presence of non-bilayer lipid structures in thylakoid membranes under physiological conditions is still missing.In this work, we used phosphatidylglycerol (PG) as an intrinsic bulk lipid label for 31P-NMR studies to monitor lipid phases of thylakoid membranes. We show that in intact thylakoid membranes the characteristic lamellar signal is observed only below 20 °C. But at the same time an isotropic phase is present, which becomes even dominant between 14 and 28 °C despite the presence of fully functional large membrane sheets that are capable of generating and maintaining a transmembrane electric field. Tris-washed membranes show a similar behavior but the lamellar phase is present up to higher temperatures. Thus, our data show that the location of the phospholipids is not restricted to the bilayer phase and that the lamellar phase co-exists with a non-bilayer isotropic phase.  相似文献   

9.
Organotin compounds or alkyltins are ubiquitous environmental toxins that have been implicated in cellular death. Unlike other xenobiotic compounds, such as organomercurials and organoleads, alkyltins activate apoptotic cascades at low concentrations. Trimethyltin (TMT) chloride is amongst the most toxic organotin compounds, and is known to selectively inflict injury to specific regions of the brain. Stannin (SNN), an 88-residue mitochondrial membrane protein, has been identified as the specific marker for neuronal cell apoptosis induced by TMT intoxication. This high specificity of TMT makes SNN an ideal model system for understanding the mechanism of organotin neurotoxicity at a molecular level. Here, we report the three-dimensional structure and dynamics of SNN in detergent micelles, and its topological orientation in lipid bilayers as determined by solution and solid-state NMR spectroscopy. We found that SNN is a monotopic membrane protein composed of three domains: a single transmembrane helix (residues 10-33) that transverses the lipid bilayer at approximately a 20 degrees angle with respect to the membrane normal; a 28 residue unstructured linker, which includes a conserved CXC metal-binding motif and a putative 14-3-3zeta binding domain; and a distorted cytoplasmic helix (residues 61-79) that is partially absorbed into the plane of the lipid bilayer with a tilt angle of approximately 80 degrees from the membrane normal. The structure and architecture of SNN within the lipid environment provides insight about how this protein transmits toxic insults caused by TMT across the membrane.  相似文献   

10.
The affinity of ionized fatty acids for the Na,K-ATPase is used to determine the transmembrane profile of water penetration at the protein-lipid interface. The standardized intensity of the electron spin echo envelope modulation (ESEEM) from 2H-hyperfine interaction with D2O is determined for stearic acid, n-SASL, spin-labeled systematically at the C-n atoms throughout the chain. In both native Na,K-ATPase membranes from shark salt gland and bilayers of the extracted membrane lipids, the D2O-ESEEM intensities of fully charged n-SASL decrease progressively with position down the fatty acid chain toward the terminal methyl group. Whereas the D2O intensities decrease sharply at the n = 9 position in the lipid bilayers, a much broader transition region in the range n = 6 to 10 is found with Na,K-ATPase membranes. Correction for the bilayer population in the membranes yields the intrinsic D2O-intensity profile at the protein-lipid interface. For positions at either end of the chains, the D2O concentrations at the protein interface are greater than in the lipid bilayer, and the positional profile is much broader. This reveals the higher polarity, and consequently higher intramembrane water concentration, at the protein-lipid interface. In particular, there is a significant water concentration adjacent to the protein at the membrane midplane, unlike the situation in the bilayer regions of this cholesterol-rich membrane. Experiments with protonated fatty acid and phosphatidylcholine spin labels, both of which have a considerably lower affinity for the Na,K-ATPase, confirm these results.  相似文献   

11.
The affinity of ionized fatty acids for the Na,K-ATPase is used to determine the transmembrane profile of water penetration at the protein-lipid interface. The standardized intensity of the electron spin echo envelope modulation (ESEEM) from 2H-hyperfine interaction with D2O is determined for stearic acid, n-SASL, spin-labeled systematically at the C-n atoms throughout the chain. In both native Na,K-ATPase membranes from shark salt gland and bilayers of the extracted membrane lipids, the D2O-ESEEM intensities of fully charged n-SASL decrease progressively with position down the fatty acid chain toward the terminal methyl group. Whereas the D2O intensities decrease sharply at the n = 9 position in the lipid bilayers, a much broader transition region in the range n = 6 to 10 is found with Na,K-ATPase membranes. Correction for the bilayer population in the membranes yields the intrinsic D2O-intensity profile at the protein-lipid interface. For positions at either end of the chains, the D2O concentrations at the protein interface are greater than in the lipid bilayer, and the positional profile is much broader. This reveals the higher polarity, and consequently higher intramembrane water concentration, at the protein-lipid interface. In particular, there is a significant water concentration adjacent to the protein at the membrane midplane, unlike the situation in the bilayer regions of this cholesterol-rich membrane. Experiments with protonated fatty acid and phosphatidylcholine spin labels, both of which have a considerably lower affinity for the Na,K-ATPase, confirm these results.  相似文献   

12.
The discovery of the antitumor activity of cisplatin led several research groups to investigate the possible therapeutic applications of other metal-based compounds. Organotin(IV) complexes have been developed from organotin compounds that were employed in industry and agriculture as stabilizers and pesticides, respectively. A careful choice of the ligand coordinated to an organotin(IV) fragment can modulate the activity of the organotin(IV) complex and minimize its drawbacks. With this aim, the tributyltin(IV) complex [Bu(3)Sn(LSM)] (LSM=bis(1-methyl-1H-imidazol-2-ylthio)acetate) was synthesized and its in vitro effects on rat blood cells were compared with those of the analogous tributyltin(IV) compound without the anionic ligand. Comet-assay results show that both the tributyltin(IV) chloride (TBTC) and the complex [Bu(3)Sn(LSM)] can induce DNA damage in leukocytes, but a stronger effect was observed in the presence of the organotin(IV) complex. Moreover, lipid-hydroperoxide formation in leukocyte plasma membranes increases more in the presence of [Bu(3)Sn(LSM)] compared with TBTC, while TBTC can change the lipid order and packing of leukocytes and, partially, erythrocyte plasma membranes. The treatment of whole blood with these two compounds shows a preferential oxidative effect of TBTC on erythrocyte plasma membranes and erythrocyte oxidative processes, which influence the induction of DNA damage in leukocytes. The different hydrophobic characters and the different extents of steric hindrance of TBTC and [Bu(3)Sn(LSM)] influence the capacity of the two compounds to cross the plasma membrane and affect the pathways that lead to DNA damage.  相似文献   

13.
Ultrathin (black) lipid membranes were made from sheep red cell lipids dissolved in n-decane. The presence of aliphatic alcohols in the aqueous solutions bathing these membranes produced reversible changes in the ionic permeability, but not the osomotic permeability. Heptanol (8 mM), for example, caused the membrane resistance (Rm) to decrease from >108 to about 105 ohm-cm2 and caused a marked increase in the permeability to cations, especially potassium. In terms of ionic transference numbers, deduced from measurements of the membrane potential at zero current, T cat/T Cl increased from about 6 to 21 and T K/T Na increased from about 3 to 21. The addition of long-chain (C8ndash;C10) alcohols to the lipid solutions from which membranes were made produced similar effects on the ionic permeability. A plot of log Rm vs. log alcohol concentration was linear over the range of maximum change in Rm, and the slope was -3 to -5 for C2 through C7 alcohols, suggesting that a complex of several alcohol molecules is responsible for the increase in ionic permeability. Membrane permselectivity changed from cationic to anionic when thorium or ferric iron (10-4 M) was present in the aqueous phase or when a secondary amine (Amberlite LA-2) was added to the lipid solutions from which membranes were made. When membranes containing the secondary amine were exposed to heptanol, Rm became very low (103–104 ohm-cm2) and the membranes became perfectly anion-selective, developing chloride diffusion potentials up to 150 mv.  相似文献   

14.
Hydrolyzable tannin (3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-β-d-glucose) has a dual effect on the cell membrane: (1) it binds to a plasmalemmal protein of the Chara corallina cell (C50 = 2.7 ± 0.3 μM) and (2) it forms ionic channels in the lipid membrane. Based on these facts, a molecular model for the interaction of tannins with the cell membrane is proposed. The model suggests that the molecules of hydrolyzable tannin bind electrostatically to the outer groups of the membrane protein responsible for the Ca2+-dependent chloride current and blocks it. Some tannin molecules penetrate into the hydrophobic region of the membrane, and when a particular concentration is reached, they form ion-conducting structures selective toward Cl?.  相似文献   

15.
This research examines the in vitro interaction of phthalate diesters and monoesters with the G protein-coupled cannabinoid 1 (CB1) receptor, a presynaptic complex involved in the regulation of synaptic activity in mammalian brain. The diesters, n-butylbenzylphthalate (nBBP), di-n-hexylphthalate (DnHP), di-n-butylphthalate (DnBP), di-2-ethylhexylphthalate (DEHP), di-isooctylphthalate (DiOP) and di-n-octylphthalate (DnOP) inhibited the specific binding of the CB1 receptor agonist [3H]CP-55940 to mouse whole brain membranes at micromolar concentrations (IC50s: nBBP 27.4 μM; DnHP 33.9 μM; DnBP 45.9 μM; DEHP 47.4 μM; DiOP 55.4 μM; DnOP 75.2 μM). DnHP, DnBP and nBBP achieved full (or close to full) blockade of [3H]CP-55940 binding, whereas DEHP, DiOP and DnOP produced partial (55-70%) inhibition. Binding experiments with phenylmethane-sulfonylfluoride (PMSF) indicated that the ester linkages of nBBP and DnBP remain intact during assay. The monoesters mono-2-ethylhexylphthalate (M2EHP) and mono-isohexylphthalate (MiHP) failed to reach IC50 at 150 μM and mono-n-butylphthalate (MnBP) was inactive. Inhibitory potencies in the [3H]CP-55940 binding assay were positively correlated with inhibition of CB1 receptor agonist-stimulated binding of [35S]GTPγS to the G protein, demonstrating that phthalates cause functional impairment of this complex. DnBP, nBBP and DEHP also inhibited binding of [3H]SR141716A, whereas inhibition with MiHP was comparatively weak and MnBP had no effect. Equilibrium binding experiments with [3H]SR141716A showed that phthalates reduce the Bmax of radioligand without changing its Kd. DnBP and nBBP also rapidly enhanced the dissociation of [3H]SR141716A. Our data are consistent with an allosteric mechanism for inhibition, with phthalates acting as relatively low affinity antagonists of CB1 receptors and cannabinoid agonist-dependent activation of the G-protein. Further studies are warranted, since some phthalate esters may have potential to modify CB1 receptor-dependent behavioral and physiological outcomes in the whole animal.  相似文献   

16.
The pulsed field gradient (pfg)-NMR method for measurements of translational diffusion of molecules in macroscopically aligned lipid bilayers is described. This technique is proposed to have an appreciable potential for investigations in the field of lipid and membrane biology. Transport of molecules in the plane of the bilayer can be successfully studied, as well as lateral phase separation of lipids and their dynamics within the bilayer organizations. Lateral diffusion coefficients depend on lipid packing and acyl chain ordering and investigations of order parameters of perdeuterated acyl chains, using 2H NMR quadrupole splittings, are useful complements. In this review we summarize some of our recent achievements obtained on lipid membranes. In particular, bilayers exhibiting two-phase coexistence of liquid disordered (ld) and liquid ordered (lo) phases are considered in detail. Methods for obtaining good oriented lipid bilayers, necessary for the pfg-NMR method to be efficiently used, are also briefly described. Among our major results, besides determinations of ld and lo phases, belongs the finding that the lateral diffusion is the same for all components, independent of the molecular structure (including cholesterol (CHOL)), if they reside in the same domain or phase in the membrane. Furthermore, quite unexpectedly CHOL seems to partition into the ldand lo phases to roughly the same extent, indicating that CHOL has no strong preference for any of these phases, i.e. CHOL seems to have similar interactions with all of the lipids. We propose that the lateral phase separation in bilayers containing one high-Tm and one low-Tm lipid together with CHOL is driven by the increasing difficulty of incorporating an unsaturated or prenyl lipid into the highly ordered bilayer formed by a saturated lipid and CHOL, i.e. the phase transition is entropy driven to keep the disorder of the hydrocarbon chains of the unsaturated lipid.  相似文献   

17.
The structure of aggregates formed due to DNA interaction with dioleoylphosphatidylcholine (DOPC) vesicles in presence of Ca2+ and Mg2+ cations was investigated using synchrotron small-angle X-ray diffraction. For DOPC/DNA = 1:1 mol/base and in the range of concentration of the cation2+ 0-76.5 mM, the diffractograms show the coexistence of two lamellar phases: Lx phase with repeat distance dLx ∼ 8.26-7.39 nm identified as a phase where the DNA strands are intercalated in water layers between adjacent lipid bilayers, and LDOPC phase with repeat distance dDOPC ∼ 6.45-5.65 nm identified as a phase of partially dehydrated DOPC bilayers without any divalent cations and DNA strands. The coexistence of these phases was investigated as a function of DOPC/DNA molar ratio, length of DNA fragments and temperature. If the amount of lipid increases, the fraction of partially dehydrated LDOPC phase is limited, depends on the portion of DNA in the sample and also on the length of DNA fragments. Thermal behaviour of DOPC + DNA + Ca2+ aggregates was investigated in the range 20-80 °C. The transversal thermal expansivities of both phases were evaluated.  相似文献   

18.
Lipopeptide MSI-843 consisting of the nonstandard amino acid ornithine (Oct-OOLLOOLOOL-NH2) was designed with an objective towards generating non-lytic short antimicrobial peptides, which can have significant pharmaceutical applications. Octanoic acid was coupled to the N-terminus of the peptide to increase the overall hydrophobicity of the peptide. MSI-843 shows activity against bacteria and fungi at micromolar concentrations. It permeabilizes the outer membrane of Gram-negative bacterium and a model membrane mimicking bacterial inner membrane. Circular dichroism investigations demonstrate that the peptide adopts α-helical conformation upon binding to lipid membranes. Isothermal titration calorimetry studies suggest that the peptide binding to membranes results in exothermic heat of reaction, which arises from helix formation and membrane insertion of the peptide. 2H NMR of deuterated-POPC multilamellar vesicles shows the peptide-induced disorder in the hydrophobic core of bilayers. 31P NMR data indicate changes in the lipid head group orientation of POPC, POPG and Escherichia colitotal lipid bilayers upon peptide binding. Results from 31P NMR and dye leakage experiments suggest that the peptide selectively interacts with anionic bilayers at low concentrations (up to 5 mol%). Differential scanning calorimetry experiments on DiPOPE bilayers and 31P NMR data from E.coli total lipid multilamellar vesicles indicate that MSI-843 increases the fluid lamellar to inverted hexagonal phase transition temperature of bilayers by inducing positive curvature strain. Combination of all these data suggests the formation of a lipid-peptide complex resulting in a transient pore as a plausible mechanism for the membrane permeabilization and antimicrobial activity of the lipopeptide MSI-843.  相似文献   

19.
Solid-state nuclear magnetic resonance (NMR) is a useful tool to probe the organization and dynamics of phospholipids in bilayers. The interactions of molecules with membranes are usually studied with model systems; however, the complex composition of biological membranes motivates such investigations on intact cells. We have thus developed a protocol to deuterate membrane phospholipids in Escherichia coli without mutating to facilitate 2H solid-state NMR studies on intact bacteria. By exploiting the natural lipid biosynthesis pathway and using perdeuterated palmitic acid, our results show that 76% deuteration of the phospholipid fatty acid chains was attained. To verify the responsiveness of these membrane-deuterated E. coli, the effect of known antimicrobial agents was studied. 2H solid-state NMR spectra combined to spectral moment analysis support the insertion of the antibiotic polymyxin B lipid tail in the bacterial membrane. The use of membrane-deuterated bacteria was shown to be important in cases where antibiotic action of molecules relies on the interaction with lipopolysaccharides. This is the case of fullerenol nanoparticles which showed a different effect on intact cells when compared to dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol membranes. Our results also suggest that membrane rigidification could play a role in the biocide activity of the detergent cetyltrimethyammonium chloride. Finally, the deuterated E. coli were used to verify the potential antibacterial effect of a marennine-like pigment produced by marine microalgae. We were able to detect a different perturbation of the bacteria membranes by intra- and extracellular forms of the pigment, thus providing valuable information on their action mechanism and suggesting structural differences.  相似文献   

20.
We have previously demonstrated that Na+, K+-ATPase activity is present in both differentiated plasma membranes from Electrophorus electricus (L.) electrocyte. Considering that the α subunit is responsible for the catalytic properties of the enzyme, the aim of this work was to study the presence and localization of α isoforms (α1 and α2) in the electrocyte. Dose-response curves showed that non-innervated membranes present a Na+, K+-ATPase activity 2.6-fold more sensitive to ouabain (I50=1.0±0.1 μM) than the activity of innervated membranes (I50=2.6±0.2 μM). As depicted in [3H]ouabain binding experiments, when the [3H]ouabain-enzyme complex was incubated in a medium containing unlabeled ouabain, reversal of binding occurred differently: the bound inhibitor dissociated 32% from Na+, K+-ATPase in non-innervated membrane fractions within 1 h, while about 50% of the ouabain bound to the enzyme in innervated membrane fractions was released in the same time. These data are consistent with the distribution of α1 and α2 isoforms, restricted to the innervated and non-innervated membrane faces, respectively, as demonstrated by Western blotting from membrane fractions and immunohistochemical analysis of the main electric organ. The results provide direct evidence for a distinct distribution of Na+, K+-ATPase α-subunit isoforms in the differentiated membrane faces of the electrocyte, a characteristic not yet described for any polarized cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号