首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant transmembrane adenylate cyclase (AC) was incorporated into membranes of giant liposomes using membrane fusion between liposomes and baculovirus-budded virus (BV). AC genes were constructed into transfer vectors in a form fused with fluorescent protein or polyhistidine at the C-terminus. The recombinant BVs were collected by ultracentrifugation and AC expression was verified using western blotting. The BVs and giant liposomes generated using gentle hydration were fused under acidic conditions; the incorporation of AC into giant liposomes was demonstrated by confocal laser scanning microscopy through the emission of fluorescence from their membranes. The AC-expressing BVs were also fused with liposomes containing the substrate (ATP) with/without a specific inhibitor (SQ 22536). An enzyme immunoassay on extracts of the sample demonstrated that cAMP was produced inside the liposomes. This procedure facilitates direct introduction of large transmembrane proteins into artificial membranes without solubilization.  相似文献   

2.
The inverted emulsion method is used to prepare giant liposomes by pushing water-in-oil droplets through the oil/water interface into an aqueous medium. Due to the high encapsulation efficiency of proteins under physiological conditions and the simplicity of the protocol, it has been widely used to prepare various cell models. However, the lamellarity of liposomes prepared by this method has not been evaluated quantitatively. Here, we prepared liposomes that were partially stained with a fluorescent dye, and analyzed their fluorescence intensity under an epifluorescence microscope. The fluorescence intensities of the membranes of individual liposomes were plotted against their diameter. The plots showed discrete distributions, which were classified into several groups. The group with the lowest fluorescence intensity was determined to be unilamellar by monitoring the exchangeability of the inner and the outer solutions of the liposomes in the presence of the pore-forming toxin α-hemolysin. Increasing the lipid concentration dissolved in oil increased the number of liposomes ∼100 times. However, almost all the liposomes were unilamellar even at saturating lipid concentrations. We also investigated the effects of lipid composition and liposome content, such as highly concentrated actin filaments and Xenopus egg extracts, on the lamellarity of the liposomes. Remarkably, over 90% of the liposomes were unilamellar under all conditions examined. We conclude that the inverted emulsion method can be used to efficiently prepare giant unilamellar liposomes and is useful for designing cell models.  相似文献   

3.
We describe a method to obtain giant liposomes (diameter 10-100 microm) in solutions of high ionic strength to perform a membrane-binding assay under physiological conditions. Using electroformation on ITO electrodes, we formed surface-attached giant liposomes in solutions of glycerol in a flow chamber and then introduced solutions of high ionic strength (up to 2 M KCl) into this chamber. The ionic solution exchanged with the isoosmolar glycerol solution inside and outside the liposomes. An initial mismatch in index of refraction between the inside and outside of liposomes allowed for the observation of solution replacement. Ions and small polar molecules exchanged into and out of surface-attached liposomes within minutes. In contrast, liposomes formed in solutions of macromolecules retained molecules larger than 4 kDa, allowing for encapsulation of these molecules for hours or days even if the solution outside the liposomes was exchanged. We propose that solutes entered liposomes through lipid tubules that attach liposomes to the film of lipids on the surface of the ITO electrode. The method presented here makes it straightforward to perform flow-through binding assays on giant liposomes under conditions of physiological ionic strength. We performed a membrane-binding assay for annexin V, a calcium-dependent protein that binds to phosphatidylserine (PS). The binding of annexin V depended on the concentration of PS and decreased as ionic strength increased to physiological levels.  相似文献   

4.
We describe a method to obtain giant liposomes (diameter 10-100 μm) in solutions of high ionic strength to perform a membrane-binding assay under physiological conditions. Using electroformation on ITO electrodes, we formed surface-attached giant liposomes in solutions of glycerol in a flow chamber and then introduced solutions of high ionic strength (up to 2 M KCl) into this chamber. The ionic solution exchanged with the isoosmolar glycerol solution inside and outside the liposomes. An initial mismatch in index of refraction between the inside and outside of liposomes allowed for the observation of solution replacement. Ions and small polar molecules exchanged into and out of surface-attached liposomes within minutes. In contrast, liposomes formed in solutions of macromolecules retained molecules larger than 4 kDa, allowing for encapsulation of these molecules for hours or days even if the solution outside the liposomes was exchanged. We propose that solutes entered liposomes through lipid tubules that attach liposomes to the film of lipids on the surface of the ITO electrode. The method presented here makes it straightforward to perform flow-through binding assays on giant liposomes under conditions of physiological ionic strength. We performed a membrane-binding assay for annexin V, a calcium-dependent protein that binds to phosphatidylserine (PS). The binding of annexin V depended on the concentration of PS and decreased as ionic strength increased to physiological levels.  相似文献   

5.
The inverted emulsion method is used to prepare giant liposomes by pushing water-in-oil droplets through the oil/water interface into an aqueous medium. Due to the high encapsulation efficiency of proteins under physiological conditions and the simplicity of the protocol, it has been widely used to prepare various cell models. However, the lamellarity of liposomes prepared by this method has not been evaluated quantitatively. Here, we prepared liposomes that were partially stained with a fluorescent dye, and analyzed their fluorescence intensity under an epifluorescence microscope. The fluorescence intensities of the membranes of individual liposomes were plotted against their diameter. The plots showed discrete distributions, which were classified into several groups. The group with the lowest fluorescence intensity was determined to be unilamellar by monitoring the exchangeability of the inner and the outer solutions of the liposomes in the presence of the pore-forming toxin α-hemolysin. Increasing the lipid concentration dissolved in oil increased the number of liposomes ∼100 times. However, almost all the liposomes were unilamellar even at saturating lipid concentrations. We also investigated the effects of lipid composition and liposome content, such as highly concentrated actin filaments and Xenopus egg extracts, on the lamellarity of the liposomes. Remarkably, over 90% of the liposomes were unilamellar under all conditions examined. We conclude that the inverted emulsion method can be used to efficiently prepare giant unilamellar liposomes and is useful for designing cell models.  相似文献   

6.
We present a method that makes it possible to trigger, observe, and quantify membrane aggregation and fusion of giant liposomes in microfluidic chambers. Using electroformation from spin-coated films of lipids on transparent indium tin oxide electrodes, we formed two-dimensional networks of closely packed, surface-attached giant liposomes. We investigated the effects of fusogenic agents by simply flowing these molecules into the chambers and analyzing the resulting shape changes of more than 100 liposomes in parallel. We used this setup to quantify membrane fusion by several well-studied mechanisms, including fusion triggered by Ca2+, polyethylene glycol, and biospecific tethering. Directly observing many liposomes simultaneously proved particularly useful for studying fusion events in the presence of low concentrations of fusogenic agents, when fusion was rare and probabilistic. We applied this microfluidic fusion assay to investigate a novel 30-mer peptide derived from a recently identified human receptor protein, B5, that is important for membrane fusion during the entry of herpes simplex virus into host cells. This peptide triggered fusion of liposomes at an approximately 6 times higher probability than control peptides and caused irreversible interactions between adjacent membranes; it was, however, less fusogenic than Ca2+ at comparable concentrations. Closely packed, surface-attached giant liposomes in microfluidic chambers offer a method to observe membrane aggregation and fusion in parallel without requiring the use of micromanipulators. This technique makes it possible to characterize rapidly novel fusogenic agents under well-defined conditions.  相似文献   

7.
Abstract: Myelin vesicles, reconstituted liposomes with proteolipid protein (PLP), the main protein component of myelin, and electrophysiological patch-clamp are potentially powerful tools to study the role of myelin in functional ionic channels. However, technical difficulties in the vesiculation of myelin and the small size of the vesicles obtained do not permit the application of micropipettes for current recordings. From a suspension of purified myelin we have prepared oligolamellar vesicles (mean diameter of 144 nm) using the so-called French pressure system. From this preparation we obtained giant myelin vesicles ∼10 µm in mean diameter, using a dehydration-rehydration procedure. Qualitative analysis of proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed no significant loss of any component in these vesicles due to pressure, in comparison with non-vesiculated myelin. A way of preparing giant liposomes of ∼80–100 µm and proteoliposomes of ∼30 µm in mean diameter, using the same dehydration-rehydration procedure, is also reported. Reconstitution of purified PLP in giant liposomes was confirmed by fluorescent labeling of PLP and by fluorescence microscopy. The current recordings from these vesicles prove the validity of these methods and provide significant evidence of the existence of ionic channels in myelin membranes and the possibility that PLP functions as a channel. The physiological significance and characterization of these channels remain yet unresolved. These results have a special significance for elucidating the molecular role of myelin in the regulation of neural activity and in the brain ion microenvironment.  相似文献   

8.
This paper describes the formation of giant proteoliposomes containing P-glycoprotein (P-gp) from a solution of small proteoliposomes that had been deposited and partially dried on a film of agarose. This preparation method generated a significant fraction of giant proteoliposomes that were free of internalized vesicles, making it possible to determine the accessible liposome volume. Measuring the intensity of the fluorescent substrate rhodamine 123 (Rho123) inside and outside these giant proteoliposomes determined the concentration of transported substrates of P-gp. Fitting a kinetic model to the fluorescence data revealed the rate of passive diffusion as well as active transport by reconstituted P-gp in the membrane. This approach determined estimates for the membrane permeability coefficient (Ps) of passive diffusion and rate constants of active transport (kT) by P-gp as a result of different experimental conditions. The Ps value for Rho123 was larger in membranes containing P-gp under all assay conditions than in membranes without P-gp indicating increased leakiness in the presence of reconstituted transmembrane proteins. For P-gp liposomes, the kT value was significantly higher in the presence of ATP than in its absence or in the presence of ATP and the competitive inhibitor verapamil. This difference in kT values verified that P-gp was functionally active after reconstitution and quantified the rate of active transport. Lastly, patch clamp experiments on giant proteoliposomes showed ion channel activity consistent with a chloride ion channel protein that co-purified with P-gp. Together, these results demonstrate several advantages of using giant rather than small proteoliposomes to characterize transport properties of transport proteins and ion channels.  相似文献   

9.
β淀粉样蛋白(amyloid β peptide,Aβ)与细胞膜间的相互作用很可能是阿尔茨海默症病(Alzheimer disease, AD)重要的风险因素。模型膜研究方法在该领域的应用和更新持续至今,但仍存在一些问题有待解决,例如,Aβ插膜后聚集状态与Aβ融合到脂质体膜聚集状态的差异,Aβ插膜后形成微通道的时间及与磷脂成分的关系等。本文试图解析这两个问题,同时,系统地总结出常用的和更新的模型膜研究方法,这些方法包括单层膜插膜及电镜样品的制备,脂质体制备方法的改进,脂质体膜上Aβ42经过高盐及酸清洗后的Western 印迹检测,ANTS-DPX研究脂质体泄漏等。研究结果显示:(1)胞外及膜内Aβ42单体与脂质体膜作用后的聚集状态存在差异,Aβ42单体插膜后更容易聚集成纤维,而膜内融合的Aβ42呈现寡聚体形式;(2) Sepharose CL-4B柱过滤比微型挤出器制备的脂质体更加均一分散;(3)Aβ42在膜上形成微通道很可能是一个缓慢的过程,且与脂质体的磷脂种类相关。这些方法为Aβ42与细胞膜的相互作用提供了实用的研究手段,同时也为其他膜蛋白质与细胞膜的相互作用提供了可以借鉴的办法。研究结果使β淀粉样蛋白代谢过程更加清晰。  相似文献   

10.
β淀粉样蛋白(amyloid β peptide,Aβ)与细胞膜间的相互作用很可能是阿尔茨海默症病(Alzheimer disease, AD)重要的风险因素。模型膜研究方法在该领域的应用和更新持续至今,但仍存在一些问题有待解决,例如,Aβ插膜后聚集状态与Aβ融合到脂质体膜聚集状态的差异,Aβ插膜后形成微通道的时间及与磷脂成分的关系等。本文试图解析这两个问题,同时,系统地总结出常用的和更新的模型膜研究方法,这些方法包括单层膜插膜及电镜样品的制备,脂质体制备方法的改进,脂质体膜上Aβ42经过高盐及酸清洗后的Western 印迹检测,ANTS-DPX研究脂质体泄漏等。研究结果显示:(1)胞外及膜内Aβ42单体与脂质体膜作用后的聚集状态存在差异,Aβ42单体插膜后更容易聚集成纤维,而膜内融合的Aβ42呈现寡聚体形式;(2) Sepharose CL-4B柱过滤比微型挤出器制备的脂质体更加均一分散;(3)Aβ42在膜上形成微通道很可能是一个缓慢的过程,且与脂质体的磷脂种类相关。这些方法为Aβ42与细胞膜的相互作用提供了实用的研究手段,同时也为其他膜蛋白质与细胞膜的相互作用提供了可以借鉴的办法。研究结果使β淀粉样蛋白代谢过程更加清晰。  相似文献   

11.
A voltage-dependent cationic channel of large conductance is observed in phospholipid bilayers formed by the tip-dip method from proteoliposomes derived from mitochondrial membranes. It is blocked by peptide M, a 13 residue peptide having the properties of a mitochondrial signal sequence. To verify the reliability of the experimental approach, mitochondrial membranes from bovine adrenal cortex or porin-deficient mutant yeast were either fused to planar bilayers or incorporated in giant liposomes which were studied by patch clamp. Cationic channels were found with both techniques. They had the same conductance levels and voltage-dependence as those which have been described using the tip-dip method. Moreover, they were similarly blocked by peptide M. The voltage-dependence of block duration was analyzed in planar bilayer and tip-dip records. Results strengthen the idea that peptide M might cross the channel. Other mitochondrial channels were observed in planar bilayers and patch clamp of giant liposomes. Because they were never detected in tip-dip records, they are likely to be inactivated at the surface monolayer used to form the bilayer in this type of experiment.  相似文献   

12.
The bacterial mechanosensitive (MS) channels of small (MscS) and large (MscL) conductance have functionally been reconstituted into giant unilamellar liposomes (GUVs) using an improved reconstitution method in the presence of sucrose. This method gives significant time savings (preparation times as little as 6 h) compared to the classical method of protein reconstitution which uses a dehydration/rehydration (D/R) procedure (minimum 2 days preparation time). Moreover, it represents the first highly reproducible method for functional reconstitution of MscS as well as MscS/MscL co-reconstitution. This novel procedure has the potential to be used for studies of other ion channels by liposome reconstitution.  相似文献   

13.
K Akashi  H Miyata  H Itoh    K Kinosita  Jr 《Biophysical journal》1996,71(6):3242-3250
Unilamellar liposomes with diameters of 25-100 microns were prepared in various physiological salt solutions, e.g., 100 mM KCl plus 1 mM CaCl2. Successful preparation of the giant liposomes at high ionic strengths required the inclusion of 10-20% of a charged lipid, such as phosphatidylglycerol, phosphatidylserine, phosphatidic acid, or cardiolipin, in phosphatidylcholine or phosphatidylethanolamine. Three criteria were employed to identify unilamellar liposomes, yielding consistent results. Under a phase-contrast microscope those liposomes that showed the thinnest contour and had a vigorously undulating membrane were judged unilamellar. When liposomes were stained with the lipophilic fluorescent dye octadecyl rhodamine B, fluorescence intensities of the membrane of individual liposomes were integer multiples (up to four) of the lowest ones, the least fluorescent liposomes being those also judged unilamellar in the phase-contrast image. Micropipette aspiration test showed that the liposomes judged unilamellar in phase and fluorescence images had an area elastic modulus of approximately 160 dyn/cm, in agreement with literature values. The giant liposomes were stable and retained a concentration gradient of K+ across the membrane, as evidenced in fluorescence images of the K(+)-indicator PBFI encapsulated in the liposomes. Ionophore-induced K+ transport and associated volume change were observed in individual liposomes.  相似文献   

14.
Cell-size, giant liposomes have been formed by submitting a mixture of asolectin lipid vesicles and native membranes from Torpedo, highly enriched in acetylcholine receptor (AcChR), to a partial dehydration/rehydration cycle [Criado, M., & Keller, B. U. (1987) FEBS Lett. 224, 172-176]. Giant liposomes can be prepared in bulk quantities, in the absence of potentially damaging detergents or organic solvents, and their formation is mediated by membrane fusion phenomena. In fact, fluorescence microscopy and freeze-fracture data indicate that protein and lipid components of the initial membranes and lipid vesicles are homogenously distributed in the resulting liposomes. Giant liposomes containing AcChR have been used as a model to evaluate whether this system can be used to monitor the activity of ionic channels by using high-resolution, patch-clamp techniques. Excised liposome patches in an "inside-out" configuration have been used in this work. We find that the most frequent pattern of electrical activity in response to the presence of acetylcholine in the patch pipet corresponds to a cation-specific channel exhibiting a dominant conductance level and a sublevel of approximately 78 and 25 pS, respectively. Such channel activity exhibits the pharmacological specificity, ion channel activation, ion selectivity, and desensitization properties expected from native Torpedo AcChR. Thus, it appears that the giant liposome technique offers a distinct advantage over other reconstitution procedures in that it provides a unique opportunity to undertake simultaneous biochemical, morphological, and electrophysiological studies of the incorporated ionic channel proteins.  相似文献   

15.
The interaction of sheep erythrocyte membranes with phosphatidylcholine vesicles (liposomes) or human plasma lipoproteins is described. Isolated sheep red cell membranes were incubated with liposomes containing [14C]phosphatidylcholine or [3H]phosphatidylcholine in the presence of EDTA. A time-dependent uptake of phosphatidylcholine into the membranes could be observed. The content of this phospholipid was increased from 2 to 5%. The rate of transfer was dependent on temperature, the amount of phosphatidylcholine present in the incubation mixture and on the fatty acid composition of the liposomal phosphatidylcholine. A possible adsorption of lipid vesicles to the membranes could be monitored by adding cholesteryl [14C]oleate to the liposomal preparation. As cholesterylesters are not transferred between membranes [1], it was possible to differentiate between transfer of phosphatidylcholine molecules from the liposomes into the membranes and adsorption of liposomes to the membranes. The phosphatidylcholine incorporated in the membranes was isolated, and its fatty acids were analysed by gas chromatography. It could be shown that there was a preferential transfer of phosphatidylcholine molecules containing two unsaturated fatty acids.  相似文献   

16.
A simple physical method to determine the monomer concentration of detergents below as well as above the critical micelle concentration based on the bubble-pressure measurement is described. Aggregated surfactant molecules (micelles) and phospholipid vesicles if present in the sample will not disturb the measurements. Three applications of the method relevant to the preparation of liposomes are shown: (i) measurements of critical micelle concentrations, (ii) evaluation of the affinity constant of the interaction of detergents with liposomal membranes, and (iii) monitoring of residual detergent in liposome preparations during dialysis or after gel chromatography of mixed micelle-derived liposomes. It was found that the efficiency of detergents to produce liposomes during their removal depends on their critical micelle concentrations as well as on their affinity to liposomal membranes.  相似文献   

17.
Cytochrome oxidase vesicles with high oxidase activity and respiratory control ratio (greater than 3.5) were characterized by the freeze-etch technique for electron microscopy. By the use of this technique, cytochrome oxidase is shown to be an inner membrane particle. By locating cross-fractured vesicles in the same preparation, cytochrome oxidase particles are shown to extend across the phospholipid bilayer membranes. When cytochrome oxidase is added to preformed liposomes respiratory control is not observed, but high oxidase activity is maintained. In this preparation the cytochrome oxidase particles are located on the outer vesicle membrane surface. These observations provide direct evidence that cytochrome oxidase is found in a transmembranous position in closed, activecytochrome oxidase vesicles having respiratory control.  相似文献   

18.
Liposomes are artificially prepared vesicles consisting of natural and synthetic phospholipids that are widely used as a cell membrane mimicking platform to study protein-protein and protein-lipid interactions3, monitor drug delivery4,5, and encapsulation4. Phospholipids naturally create curved lipid bilayers, distinguishing itself from a micelle.6 Liposomes are traditionally classified by size and number of bilayers, i.e. large unilamellar vesicles (LUVs), small unilamellar vesicles (SUVs) and multilamellar vesicles (MLVs)7. In particular, the preparation of homogeneous liposomes of various sizes is important for studying membrane curvature that plays a vital role in cell signaling, endo- and exocytosis, membrane fusion, and protein trafficking8. Several groups analyze how proteins are used to modulate processes that involve membrane curvature and thus prepare liposomes of diameters <100 - 400 nm to study their behavior on cell functions3. Others focus on liposome-drug encapsulation, studying liposomes as vehicles to carry and deliver a drug of interest9. Drug encapsulation can be achieved as reported during liposome formation9. Our extrusion step should not affect the encapsulated drug for two reasons, i.e. (1) drug encapsulation should be achieved prior to this step and (2) liposomes should retain their natural biophysical stability, securely carrying the drug in the aqueous core. These research goals further suggest the need for an optimized method to design stable sub-micron lipid vesicles.Nonetheless, the current liposome preparation technologies (sonication10, freeze-and-thaw10, sedimentation) do not allow preparation of liposomes with highly curved surface (i.e. diameter <100 nm) with high consistency and efficiency10,5, which limits the biophysical studies of an emerging field of membrane curvature sensing. Herein, we present a robust preparation method for a variety of biologically relevant liposomes.Manual extrusion using gas-tight syringes and polycarbonate membranes10,5 is a common practice but heterogeneity is often observed when using pore sizes <100 nm due to due to variability of manual pressure applied. We employed a constant pressure-controlled extrusion apparatus to prepare synthetic liposomes whose diameters range between 30 and 400 nm. Dynamic light scattering (DLS)10, electron microscopy11 and nanoparticle tracking analysis (NTA)12 were used to quantify the liposome sizes as described in our protocol, with commercial polystyrene (PS) beads used as a calibration standard. A near linear correlation was observed between the employed pore sizes and the experimentally determined liposomes, indicating high fidelity of our pressure-controlled liposome preparation method. Further, we have shown that this lipid vesicle preparation method is generally applicable, independent of various liposome sizes. Lastly, we have also demonstrated in a time course study that these prepared liposomes were stable for up to 16 hours. A representative nano-sized liposome preparation protocol is demonstrated below.  相似文献   

19.
Zhao H  Bose S  Tuominen EK  Kinnunen PK 《Biochemistry》2004,43(31):10192-10202
Due to its net positive charge histone H1 readily associates with liposomes containing acidic phospholipids, such as phosphatidylserine (PS). Interestingly, circular dichroism reveals that while histone H1 in aqueous solutions appears as a random coil, its binding to liposomes containing PS is associated with a pronounced increase in alpha-helicity and beta-sheet content, estimated at 7% and 24%, respectively. This interaction further results in vesicle aggregation and lipid mixing. Fluorescence microscopy revealed rapid binding of Texas Red-labeled H1 (TR-H1) to giant liposomes composed of phosphatidylcholine and PS (SOPC/brain PS, 9/1 molar ratio), followed by lateral segregation and subsequent translocation of the membrane-bound H1 into the giant liposome. The above processes in giant liposomes did depend on the presence of the negatively charged PS. Comparison of the behavior of H1 in giant liposomes to that in cultured leukemic T cells demonstrated very similar patterns. More specifically, fluorescence microscopy revealed binding of TR-H1 to the plasma membrane as lateral segregated microdomains, followed by translocation into the cell. H1 also triggered membrane blebbing and fragmentation of the nuclei of these cells, thus suggesting induction of apoptosis. Our findings indicate that histone H1 and acidic phospholipids form supramolecular aggregates in the plasma membrane of T cells, subsequently resulting in major rearrangements of cellular membranes. Our results allow us to conclude that the minimal requirement for the interaction of histone H1 with the leukemia cell plasma membrane is reproduced by giant liposomes composed of unsaturated phosphatidylcholine and phosphatidylserine, the latter being mandatory for the observed changes in the secondary structure of H1 as well as the macroscopic consequences of the H1-PS interactions.  相似文献   

20.
Sphingomyelin is an abundant component of eukaryotic membranes. A specific enzyme, sphingomyelinase can convert this lipid to ceramide, a central second messenger in cellular signaling for apoptosis (programmed cell death), differentiation, and senescence. We used microinjection and either Hoffman modulation contrast or fluorescence microscopy of giant liposomes composed of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), N-palmitoyl-sphingomyelin (C16:0-SM), and Bodipy-sphingomyelin as a fluorescent tracer (molar ratio 0.75:0.20:0.05, respectively) to observe changes in lipid lateral distribution and membrane morphology upon formation of ceramide. Notably, in addition to rapid domain formation (capping), vectorial budding of vesicles, i.e., endocytosis and shedding, can be induced by the asymmetrical sphingomyelinase-catalyzed generation of ceramide in either the outer or the inner leaflet, respectively, of giant phosphatidylcholine/sphingomyelin liposomes. These results are readily explained by 1) the lateral phase separation of ceramide enriched domains, 2) the area difference between the adjacent monolayers, 3) the negative spontaneous curvature, and 4) the augmented bending rigidity of the ceramide-containing domains, leading to membrane invagination and vesiculation of the bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号