首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Recently, our group described an AT(1)-mediated direct stimulatory effect of angiotensin II (Ang II) on the Na(+)-ATPase activity of proximal tubules basolateral membranes (BLM) [Am. J. Physiol. 248 (1985) F621]. Data in the present report suggest the participation of a protein kinase C (PKC) in the molecular mechanism of Ang II-mediated stimulation of the Na(+)-ATPase activity due to the following observations: (i) the stimulation of protein phosphorylation in BLM, induced by Ang II, is mimicked by the PKC activator TPA, and is completely reversed by the specific PKC inhibitor, calphostin C; (ii) the Na(+)-ATPase activity is stimulated by Ang II and TPA in the same magnitude, being these effects abolished by the use of the PKC inhibitors, calphostin C and sphingosine; (iii) the Na(+)-ATPase activity is activated by catalytic subunit of PKC (PKC-M), in a similar and nonadditive manner to Ang II; and (iv) Ang II stimulates the phosphorylation of MARCKS, a specific substrate for PKC.  相似文献   

2.
Angiotensin II (Ang II) stimulates the proximal tubule Na+-ATPase through the AT1 receptor/phosphoinositide phospholipase Cβ (PI-PLCβ)/protein kinase C (PKC) pathway. However, this pathway alone does not explain the sustained effect of Ang II on Na+-ATPase activity for 30 min. The aim of the present work was to elucidate the molecular mechanisms involved in the sustained effect of Ang II on Na+-ATPase activity. Ang II induced fast and correlated activation of Na+-ATPase and PKC activities with the maximal effect (115%) observed at 1 min and sustained for 30 min, indicating a pivotal role of PKC in the modulation of Na+-ATPase by Ang II. We observed that the sustained activation of PKC by Ang II depended on the sequential activation of phospholipase D and Ca2+-insensitive phospholipase A2, forming phosphatidic acid and lysophosphatidic acid, respectively. The results indicate that PKC could be the final target and an integrator molecule of different signaling pathways triggered by Ang II, which could explain the sustained activation of Na+-ATPase by Ang II.  相似文献   

3.
We showed previously that angiotensin-(1-7) [Ang-(1-7)] reversed stimulation of proximal tubule Na+-ATPase promoted by angiotensin II (Ang II) through a d-ala7-Ang-(1-7) (A779)-sensitive receptor. Here we investigated the signaling pathway coupled to this receptor. According to our data, Ang-(1-7) produces a MAS-mediated reversal of Ang II-stimulated Na+-ATPase by a Gs/PKA pathway because: (1) the Ang-(1-7) effect is reversed by GDPβS, an inhibitor of trimeric G protein and Gs polyclonal antibody. Cholera toxin, an activator of Gs protein, mimicked it; (2) in the presence of Ang II, Ang-(1-7) increased the PKA activity 10-fold; (3) the peptide inhibitor of PKA blocked the Ang-(1-7) effect on Ang II-stimulated Na+-ATPase; (4) Ang-(1-7) reverses the Ang II-stimulated PKC activity; (5) cAMP mimicked the Ang-(1-7) effect on the Ang II-stimulated Na+-ATPase. Our results provide new understanding about the signaling mechanisms coupled to MAS receptor-mediated renal Ang-(1-7) effects.  相似文献   

4.
5.
In previous papers, the isolation of brain soluble fractions able to modify neuronal Na+, K+-ATPase activity has been described. One of those fractions-peak I-stimulates membrane Na+, K+-ATPase while another-peak II-inhibits this enzyme activity, and has other ouabain-like properties. In the present study, synaptosomal membrane Na+, K+-ATPase was analyzed under several experimental conditions, using ATP orp-nitrophenylphosphate (p-NPP) as substrate, in the absence and presence of cerebral cortex peak II. Peak II inhibited K+-p-NPPase activity in a concentration dependent manner. Double reciprocal plots indicated that peak II uncompetitively inhibits K+-p-NPPase activity regarding substrate, Mg2+ and K+ concentration. Peak II failed to block the known K+-p-NPPase stimulation caused by ATP plus Na+. At various K+ concentrations, percentage K+-p-NPPase inhibition by peak II was similar regardless of the ATP plus Na+ presence, indicating lack of correlation with enzyme phosphorylation. Na+, K+-ATPase activity was decreased by peak II depending on K+ concentration. It is postulated that the inhibitory factor(s) present in peak II interfere(s) with enzyme activation by K+.  相似文献   

6.
This study describes the modulation of the ouabain-insensitive Na(+)-ATPase activity from renal proximal tubule basolateral membranes (BLM) by protein kinase C (PKC). Two PKC isoforms were identified in BLM, one of 75 kDa and the other of 135 kDa. The former correlates with the PKC isoforms described in the literature but the latter seems to be a novel isoform, not yet identified. Both PKC isoforms of BLM are functional since a protein kinase C activator, TPA, increased the total hydroxylamine-resistant 32P(i) incorporation from [gamma-32P]ATP into the BLM. In parallel, TPA stimulated the Na(+)-ATPase activity from BLM in a dose-dependent manner, the effect being reversed by the PKC inhibitor sphingosine. The stimulatory effect of TPA on Na(+)-ATPase involved an increase in the V(max) (from 13.4+/-0.6 nmol P(i) mg(-1) min(-1) to 25.2+/-1.4 nmol P(i) mg(-1) min(-1), in the presence of TPA, P<0.05) but did not change the apparent affinity for Na(+) (K(0.5)=14.5+/-2.1 mM in control and 10.0+/-2.1 mM in the presence of TPA, P>0.07). PKC involvement was further confirmed by stimulation of the Na(+)-ATPase activity by the catalytic subunit of PKC (PKC-M). Finally, the phosphorylation of an approx. 100 kDa protein in the BLM (the suggested molecular mass of Na(+)-ATPase [1]) was induced by TPA. Taken together, these findings indicate that PKCs resident in BLM stimulate Na(+)-ATPase activity which could represent an important mechanism of regulation of proximal tubule Na(+) reabsorption.  相似文献   

7.
In the present paper we studied the involvement of the phosphatidylinositol-specific PLC (PI-PLC)/protein kinase C (PKC) pathway in (Na+ + K+)ATPase stimulation by heme in Leishmania amazonensis promastigotes. Heme stimulated the PKC-like activity with a concentration of 50 nM. Interestingly, the maximal stimulation of the PKC-like activity promoted by phorbol ester was of the same magnitude promoted by heme. However, the stimulatory effect of heme is completely abolished by ET-18-OCH3 and U73122, specific inhibitors of PI-PLC. (Na+ + K+)ATPase activity is increased in the presence of increased concentrations of heme, being maximally affected at 50 nM. This effect was completely reversed by 10 nM calphostin C, an inhibitor of PKC. Thus, the effect of 50 nM heme on (Na+ + K+)ATPase activity is completely abolished by ET-18-OCH3 and U73122. Taken together, these results demonstrate that the heme receptor mediates the stimulatory effect of heme on the (Na+ + K+)ATPase activity through a PI-PLC/PKC signaling pathway.  相似文献   

8.
The basolateral membranes of kidney proximal tubule cells have (Na++K+)-ATPase and Na+-ATPase activities, involved in Na+ reabsorption. We showed that ceramide (Cer) modulates protein kinase A (PKA) and protein kinase C (PKC), which are involved in regulating ion transporters. Here we show that ceramide, promotes 60% inhibition of Na+-ATPase activity (I50 ≈ 100 nM). This effect was completely reversed by inhibiting PKA but did not involve the classic PKC signaling pathway. In these membranes we found the Cer-activated atypical PKC zeta (PKCζ) isoform. When PKCζ is inhibited, Cer ceases to inhibit the Na+-ATPase, allowing the cAMP/PKA signaling pathway to recover its stimulatory effect on the pump. There were no effects on the (Na++K+)-ATPase. These results reveal Cer as a potent physiological modulator of the Na+-ATPase, participating in a regulatory network in kidney cells and counteracting the stimulatory effect of PKA via PKCζ.  相似文献   

9.
In previous papers we showed that Ang II increases the proximal tubule Na+-ATPase activity through AT1/PKC pathway [L.B. Rangel, C. Caruso-Neves, L.S. Lara, A.G. Lopes, Angiotensin II stimulates renal proximal tubule Na+-ATPase activity through the activation of protein kinase C. Biochim. Biophys. Acta 1564 (2002) 310-316, L.B.A. Rangel, A.G. Lopes, L.S. Lara, C. Caruso-Neves, Angiotensin II stimulates renal proximal tubule Na+)-ATPase activity through the activation of protein kinase C. Biochim. Biophys. Acta 1564 (2002) 310-316]. In the present paper, we study the involvement of PI-PLCbeta on the stimulatory effect of angiotensin II (Ang II) on the proximal tubule Na+-ATPase activity. Western blotting assays, using a polyclonal antibody for PI-PLCbeta, show a single band of about 150 KDa, which correspond to PI-PLCbeta isoforms. Ang II induces a rapid decrease in PIP2 levels, a PI-PLCbeta substrate, being the maximal effect observed after 30 s incubation. This effect of Ang II is completely abolished by 5 x 10(-8) M U73122, a specific inhibitor of PI-PLCbeta. In this way, the effect of 10(-8) M Ang II on the proximal tubule basolateral membrane (BLM) Na+-ATPase activity is completely abolished by 5 x 10(-8) M U73122. The increase in diacylglycerol (DAG) concentration, an product of PI-PLCbeta, from 0.1 to 10 nM raises the Na+-ATPase activity from 6.1+/-0.2 to 13.1+/-1.8 nmol Pi mg(-1) min(-1). This effect is similar and non-additive to that observed with Ang II. Furthermore, the stimulatory effect of 10 nM DAG is completely reversed by 10(-8) M calphostin C (Calph C), an inhibitor of PKC. Taken together these data indicate that Ang II stimulates the Na+-ATPase activity of proximal tubule BLM through a PI-PLCbeta/PKC pathway.  相似文献   

10.
Summary

The addition of juvenile hormone I (JH I) to membrane preparations of the follicle cells from vitellogenic follicles of the insect Rhodnius prolixus causes a significant increase in the phosphorylation of a 100 kDa polypeptide; and ouabain, a specific inhibitor of Na+K+-ATPase, eliminates this effect. H-7 (1-(5-isoquinolinesulfonyl)-2-methylpiperazine), an inhibitor of protein kinase C (PKC), also eliminates the JH-dependent phosphorylation of this polypeptide. PDBU (phorbol-12, 13-dibutyrate), an activator of PKC, mimics the action of JH in increasing the phosphorylation of the 100 kDa polypeptide. Because these findings parallel the action of JH in causing the patency, the appearance of large spaces between the follicle cells through which vitellogenin gains access to the oocyte surface, they suggest that phosphorylation of one or more membrane proteins is a key event in the development of patency in response to JH. The 100 kDa polypeptide may represent the a-subunit of Na+K+-ATPase.  相似文献   

11.
We have already described the separation of two brain soluble fractions by Sephadex G-50, one of which stimulates (peak I) and the other inhibits (peak II) Na+, K+-ATPase and K+-p-nitrophenylphosphatase (K+-p-NPPase) activities. Here we examine the features of synaptosomal membrane p-NPPase activity in the presence and absence of brain peak I. It was observed that stimulation of Mg2+, K+-p-NPPase activity by peak I was concentration dependent, The ability of peak I to stimulate p-NPPase activity was lost by heat treatment followed by brief centrifugation. Pure serum albumin also stimulated enzyme activity. K+-p-NPPase stimulation by peak I proved dependent on K+ concentration but independent of Mg2+ and substrate p-nitrophenylphosphate concentrations. Since our determinations were performed in a non-phosphorylating condition reflecting the Na+, K+-ATPase Na+ site, it is suggested that peak I may stimulate the Na+-dependent enzyme phosphorylation known to take place from the internal cytoplasmic side.  相似文献   

12.
Recently, our group described a B1-mediated stimulatory effect of des-Arg(9)-bradykinin (DABK) on the Na(+)-ATPase activity of proximal tubule basolateral membranes (BLM) [Biochim. Biophys. Acta 1431 (1999) 483.]. Data in the present report suggest the participation of a phosphatidylinositol-specific PLC (PI-PLC)/protein kinase C (PKC) pathway as the molecular mechanism of DABK-mediated stimulation of the Na(+)-ATPase activity since (i) 10(-8) M DABK activates PI-PLC activity; (ii) 10(-9) M U73122, a PI-PLC inhibitor, abolishes the effect of 10(-8) M DABK on the Na(+)-ATPase activity; (iii) 10(-8) M DABK increases phosphoprotein formation by 34%. This effect is completely reversed by 10(-7) M calphostin C, an inhibitor of PKC; (iv) 20 ng/ml TPA, an activator of PKC, and 10(-8) M DABK stimulate the Na(+)-ATPase activity in a similar and nonadditive manner. Furthermore, the effect of 10(-8) M DABK is completely reversed by calphostin C; (v) 10(-8) M DABK increases phosphoserine residue levels by 54%. This effect is completely reversed by 10(-7) M calphostin C.  相似文献   

13.
Clinical and experimental data show an increase in sodium reabsorption on the proximal tubule (PT) in essential hypertension. It is well known that there is a link between essential hypertension and renal angiotensin II (Ang II). The present study was designed to examine ouabain-insensitive Na+-ATPase activity and its regulation by Ang II in spontaneously hypertensive rats (SHR). We observed that Na+-ATPase activity was enhanced in 14-week-old but not in 6-week-old SHR. The addition of Ang II from 10− 12 to 10− 6 mol/L decreased the enzyme activity in SHR to a level similar to that obtained in WKY. The Ang II inhibitory effect was completely reversed by a specific antagonist of AT2 receptor, PD123319 (10− 8 mol/L) indicating that a system leading to activation of the enzyme in SHR is inhibited by AT2-mediated Ang II. Treatment of SHR with losartan for 10 weeks (weeks 4-14) prevents the increase in Na+-ATPase activity observed in 14-week-old SHR. These results indicate a correlation between AT1 receptor activation in SHR and increased ouabain-insensitive Na+-ATPase activity. Our results open new possibilities towards our understanding of the pathophysiological mechanisms involved in the increased sodium reabsorption in PT found in essential hypertension.  相似文献   

14.

Background

High Na+ intake is a reality in nowadays and is frequently accompanied by renal and cardiovascular alterations. In this study, renal mechanisms underlying perinatal Na+ overload-programmed alterations in Na+ transporters and the renin/angiotensin system (RAS) were investigated, together with effects of short-term treatment with enalapril in terms of reprogramming molecular alterations in kidney.

Methodology/Principal Findings

Male adult Wistar rats were obtained from dams maintained throughout pregnancy and lactation on a standard diet and drinking water (control) or 0.17 M NaCl (saline group). Enalapril (100 mg/l), an angiotensin converting enzyme inhibitor, was administered for three weeks after weaning. Ninety day old offspring from dams that drank saline presented with proximal tubules exhibiting increased (Na++K+)ATPase expression and activity. Ouabain-insensitive Na+-ATPase activity remained unchanged but its response to angiotensin II (Ang II) was lost. PKC, PKA, renal thiobarbituric acid reactive substances (TBARS), macrophage infiltration and collagen deposition markedly increased, and AT2 receptor expression decreased while AT1 expression was unaltered. Early treatment with enalapril reduced expression and activity of (Na++K+)ATPase, partially recovered the response of Na+-ATPase to Ang II, and reduced PKC and PKA activities independently of whether offspring were exposed to high perinatal Na+ or not. In addition, treatment with enalapril per se reduced AT2 receptor expression, and increased TBARS, macrophage infiltration and collagen deposition. The perinatally Na+-overloaded offspring presented high numbers of Ang II-positive cortical cells, and significantly lower circulating Ang I, indicating that programming/reprogramming impacted systemic and local RAS.

Conclusions/Significance

Maternal Na+ overload programmed alterations in renal Na+ transporters and in its regulation, as well as severe structural lesions in adult offspring. Enalapril was beneficial predominantly through its influence on Na+ pumping activities in adult offspring. However, side effects including down-regulation of PKA, PKC and AT2 receptors and increased TBARS could impair renal function in later life.  相似文献   

15.
Considerable evidence indicates that the renal Na+,K+-ATPase is regulated through phosphorylation/dephosphorylation reactions by kinases and phosphatases stimulated by hormones and second messengers. Recently, it has been reported that amino acids close to the NH2-terminal end of the Na+,K+-ATPase α-subunit are phosphorylated by protein kinase C (PKC) without apparent effect of this phosphorylation on Na+,K+-ATPase activity. To determine whether the α-subunit NH2-terminus is involved in the regulation of Na+,K+-ATPase activity by PKC, we have expressed the wild-type rodent Na+,K+-ATPase α-subunit and a mutant of this protein that lacks the first thirty-one amino acids at the NH2-terminal end in opossum kidney (OK) cells. Transfected cells expressed the ouabain-resistant phenotype characteristic of rodent kidney cells. The presence of the α-subunit NH2-terminal segment was not necessary to express the maximal Na+,K+-ATPase activity in cell membranes, and the sensitivity to ouabain and level of ouabain-sensitive Rb+-transport in intact cells were the same in cells transfected with the wild-type rodent α1 and the NH2-deletion mutant cDNAs. Activation of PKC by phorbol 12-myristate 13-acetate increased the Na+,K+-ATPase mediated Rb+-uptake and reduced the intracellular Na+ concentration of cells transfected with wild-type α1 cDNA. In contrast, these effects were not observed in cells expressing the NH2-deletion mutant of the α-subunit. Treatment with phorbol ester appears to affect specifically the Na+,K+-ATPase activity and no evidence was observed that other proteins involved in Na+-transport were affected. These results indicate that amino acid(s) located at the α-subunit NH2-terminus participate in the regulation of the Na+,K+-ATPase activity by PKC. Received: 10 July 1996/Revised: 19 September 1996  相似文献   

16.
Miltefosine has been shown to be a very active compound against Trypanosoma cruzi. Here, we evaluated the effects of miltefosine on the activity of the Na+-ATPase and protein kinase C (PKC) present in the plasma membrane of T. cruzi. Furosemide (2 mM), a specific inhibitor of Na+-ATPase, abolished the growth of T. cruzi showing a crucial role of this enzyme to parasite growth. Miltefosine inhibited the Na+-ATPase activity with IC50 = 18 ± 5 μg mL−1. This effect was shown to be reversible, dependent on the pH and Ca2+. The inhibition was not observed when the membranes were solubilized with 0.1% deoxycholate, suggesting that the interaction between the enzyme and membrane phospholipids might be important for the drug effect. Miltefosine also inhibited the parasite PKC activity, but through a Na+-ATPase-independent way. Altogether the results indicate that miltefosine inhibits T. cruzi growth through, at least in part, the inhibition of both Na+-ATPase and PKC activities.  相似文献   

17.
The naturally occurring toxin rottlerin has been used by other laboratories as a specific inhibitor of protein kinase C-delta (PKC-δ) to obtain evidence that the activity-dependent distribution of glutamate transporter GLAST is regulated by PKC-δ mediated phosphorylation. Using immunofluorescence labelling for GLAST and deconvolution microscopy we have observed that d-aspartate-induced redistribution of GLAST towards the plasma membranes of cultured astrocytes was abolished by rottlerin. In brain tissue in vitro, rottlerin reduced apparent activity of (Na+, K+)-dependent ATPase (Na+, K+-ATPase) and increased oxygen consumption in accordance with its known activity as an uncoupler of oxidative phosphorylation (“metabolic poison”). Rottlerin also inhibited Na+, K+-ATPase in cultured astrocytes. As the glutamate transport critically depends on energy metabolism and on the activity of Na+, K+-ATPase in particular, we suggest that the metabolic toxicity of rottlerin and/or the decreased activity of the Na+, K+-ATPase could explain both the glutamate transport inhibition and altered GLAST distribution caused by rottlerin even without any involvement of PKC-δ-catalysed phosphorylation in the process.  相似文献   

18.
The geographical distribution of aquatic crustaceans is determined by ambient factors like salinity that modulate their biochemistry, physiology, behavior, reproduction, development and growth. We investigated the effects of exogenous pig FXYD2 peptide and endogenous protein kinases A and C on gill (Na+, K+)-ATPase activity, and characterized enzyme kinetic properties in a freshwater population of Macrobrachium amazonicum in fresh water (<0.5 ‰ salinity) or acclimated to 21 ‰S. Stimulation by FXYD2 peptide and inhibition by endogenous kinase phosphorylation are salinity-dependent. While without effect in shrimps in fresh water, the FXYD2 peptide stimulated activity in salinity-acclimated shrimps by ≈50 %. PKA-mediated phosphorylation inhibited gill (Na+, K+)-ATPase activity by 85 % in acclimated shrimps while PKC phosphorylation markedly inhibited enzyme activity in freshwater- and salinity-acclimated shrimps. The (Na+, K+)-ATPase in salinity-acclimated shrimp gills hydrolyzed ATP at a Vmax of 54.9 ± 1.8 nmol min?1 mg?1 protein, corresponding to ≈60 % that of freshwater shrimps. Mg2+ affinity increased with salinity acclimation while K+ affinity decreased. (Ca2+, Mg2+)-ATPase activity increased while V(H+)- and Na+- or K+-stimulated activities decreased on salinity acclimation. The 120-kDa immunoreactive band expressed in salinity-acclimated shrimps suggests nonspecific α-subunit phosphorylation by PKA and/or PKC. These alterations in (Na+, K+)-ATPase kinetics in salinity-acclimated M. amazonicum may result from regulatory mechanisms mediated by phosphorylation via protein kinases A and C and the FXYD2 peptide rather than through the expression of a different α-subunit isoform. This is the first demonstration of gill (Na+, K+)-ATPase regulation by protein kinases in freshwater shrimps during salinity challenge.  相似文献   

19.
In the present study some properties of an inhibitory extract of synaptosomal membrane Na+,K+-ATPase were investigated. This extract (peak II) was prepared by gel filtration in Sephadex G-50 of a soluble fraction of the rat cerebral cortex. Ultrafiltration of peak II through Amicon membranes indicated that the inhibitor has a low MW (<1000). The inhibitory activity was not modified by heating in neutral pH at 95°C for 20 min but it was destroyed by charring in acid pH at 200°C for 120 min. The inhibitory activity decreased by incubation of peak II with carboxypeptidase A. These findings suggest that the factor responsible for the inhibition of Na+,K+-ATPase activity is probably a polypeptide. On the other hand, the inhibition was reverted by the chelators EDTA and EGTA, indicating the participation of an ionic compound as well. The increase of Mg2+ concentration during the enzyme assay did not increase the inhibition, indicating that the ion involved might not be vanadate. It is suggested that both a polypeptide and an ionic compound coparticipate in the inhibitory effect of peak II on Na+,K+-ATPase activity.  相似文献   

20.
K+-dependent Na+/Ca2+-exchanger isoform 4 (NCXK4) is one of the most broadly expressed members of the NCKX (K+-dependent Na+/Ca2+-exchanger) family. Recent data indicate that NCKX4 plays a critical role in controlling normal Ca2+ signal dynamics in olfactory and other neurons. Synaptic Ca2+ dynamics are modulated by purinergic regulation, mediated by ATP released from synaptic vesicles or from neighbouring glial cells. Previous studies have focused on modulation of Ca2+ entry pathways that initiate signalling. Here we have investigated purinergic regulation of NCKX4, a powerful extrusion pathway that assists in terminating Ca2+ signals. NCKX4 activity was stimulated by ATP through activation of the P2Y receptor signalling pathway. Stimulation required dual activation of PKC (protein kinase C) and CaMKII (Ca2+/calmodulin-dependent protein kinase II). Mutating T312, a putative PKC phosphorylation site on NCKX4, partially prevented purinergic stimulation. These data illustrate how purinergic regulation can shape the dynamics of Ca2+ signalling by activating a signal damping and termination pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号