首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model lipid membrane consisting of a monolayer of dioleoyl phosphatidylcholine (DOPC) adsorbed onto a Hg electrode has been used to study the interaction between the lipid and different formulations of Amphotericin B (AmB) [Fungizone (FZ), Heated Fungizone (HFZ), and Abelcet]. The lipid organizational order was measured by electrochemical methods [capacitance and metal ion (Tl(+)) reduction], characterizing the change in lipid order due to interaction with the drug. The mean size and number density of pores formed in the monolayer were estimated by fitting the reduction current transients to a random array of microelectrode model. This method was shown sensitive for investigation of the interaction of drugs with the DOPC monolayer. Abelcet was found to have a smaller disruptive effect on lipid order than FZ and HFZ. The formulations used to solubilize the AmB were also studied. Sodium deoxycholate used as a solubilizer in FZ displayed significant influence on lipid order similar to that observed for Abelcet. The lipid complex, used in Abelcet, did not significantly perturb the DOPC monolayer order. The lipid complex used in Abelcet may have an annealing or healing effect that buffers the disruption possible due to AmB.  相似文献   

2.
Fungal infections and leishmaniasis are an important cause of morbidity and mortality in immunocompromised patients. The macrolide polyene antibiotic amphotericin B (AmB) has long been recognized as a powerful fungicidal and leishmanicidal drug. A conventional intravenous dosage form of AmB, AmB- deoxycholate (Fungizone or D-AmB), is the most effective clinically available for treating fungal and parasitic (leishmaniasis) infections. However, the clinical efficacy of AmB is limited by its adverse effects mainly nephrotoxicity. Efforts to lower the toxicity are based on synthesis of AmB analogues such as AmB esters or preparation of AmB-lipid associations in the forms of liposomal AmB (L-AmB or AmBisome), AmB lipid complex (Abelcet or ABLC), AmB colloidal dispersion (Amphocil or ABCD), and intralipid AmB. These newer formulations are substantially more expensive, but allow patients to receive higher doses for longer periods of time with decreased renal toxicity than conventional AmB. Modifications of liposomal surface in order to avoid RES uptake, thus increased targetability has been attempted. Emulsomes and other nanoparticles are special carrier systems for intracellular localization in macrophage rich organs like liver and spleen. Injectable nano-carriers have important potential applications as in site-specific drug delivery.  相似文献   

3.
UV-visible and dichroic spectrum analysis and electron microscopy have been used to characterize a new amphotericin B (AmB) lipid formulation prepared by a solvent displacement process. The composition was dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) in molar ratio DMPC/DMPG/AmB 7:3:5, a similar composition to that of Abelcet®. Although the latter has a “ribbon-like” structure, our process gave a thin disc-like structure. Analysis of circular dichroism (CD) and UV-visible spectra of formulations containing different percentages of AmB revealed that a minimum of AmB self-association was observed with 7:3:5 molar ratio. Varying the lipid ratio (DMPC/DMPG) while maintaining the fixed ratio of AmB yielded similar results when DMPC was in excess (DMPC/DMPG from 10:0 to 6:4). However, when the ratio was between 5:5 to 3:7, AmB self-aggregation increased. For compositions rich in DMPG (2:8 and 0:10), inversion of the CD spectrum was observed. The influence of the lipid composition on the morphology of the complex was also evident in electron microscopy. DMPC/DMPG/AmB (10:0:5) gave large unfracturable lamellae. The presence of DMPG shortened the lamellae, which often appeared as disc-like structures. AmB content, the presence of DMPG and the preparation process all contribute to generating these original structures with particular CD spectra.  相似文献   

4.
Amphotericin B (AmB) is a potent antifungal agent used to treat patients with systemic mycoses. The clinical usefulness of the drug is limited by its high toxicity and several new less toxic formulations of AmB have been recently developed. In order to understand the mechanism of the decreases of toxicity caused by various new delivery systems, we have investigated by uv-visible spectroscopy the interaction of two of these formulations with human blood lipoproteins. The results were compared with those obtained with the commonly used pharmaceutical form of AmB (Fungizone). This study shows that AmB-lipoprotein interaction is hindered when the drug is in a monomeric form and/or when it is included in phospholipid-surfactant micelles. In an in vivo study on mice it is shown here that AmB monomerized by surfactant is less toxic to animals than the same concentration of Fungizone, where the polyene is strongly aggregated. It may be concluded from the present study that the AmB species which is responsible for the in vivo toxicity is a complex of the antibiotic with the low density and the very low density blood lipoproteins and that hindering of this complex formation results in a decrease of AmB toxicity.  相似文献   

5.
AmB is an antifungal drug of polyene. Although it is prone to nephrotoxicity, it is still the gold standard in the clinical treatment of fungal infection. Sterol plays a decisive role in the drug activity of AmB. The antifungal activity of AmB depends on ergosterol in fungal membranes, and its toxicity is related to cholesterol in mammalian membranes. At the same time, AmB interacts with biofilms, leading to a significant loss of potassium ions and affecting the transport of potassium ions across membranes. Meanwhile, metal cation may also affect AmB molecules’ aggregation on the membrane. This paper mainly studied the effects of different concentrations of potassium ions on the interactions between AmB and lipid monolayers containing cholesterol or ergosterol and explored the differences in the impact of varying potassium ions on the drug activity of AmB on monolayers rich in these two kinds of sterols. The results show that potassium ions caused the collapse of lipid monolayer and lipid-AmB monolayer to disappear. The limiting molecular area of these monolayers also increased due to potassium ions. The limiting molecular area of the monolayer in the presence of ergosterol has a great difference in the different concentration of potassium ions, which is different from that in the presence of cholesterol. The presence of potassium ions, regardless of the intensity of K+ ions, increased the maximum elastic modulus of the lipid/sterol monolayer with and without AmB. The presence of potassium ions reduced the influence of AmB on the stability of the lipid monolayer containing cholesterol. The impact of AmB on the stability of the lipid monolayer containing ergosterol was related to the concentration of potassium ions. The potassium ions increased the area of the ordered “island” region on the lipid-AmB monolayer containing cholesterol, and the boundary of the microregion produced different degrees of curvature. However, on the lipid/ergosterol monolayer, 5 mM and 10 mM potassium ions made the holes caused by AmB more denser, and the diameter of holes become larger. These results can help to improve the effect of potassium ions on the transmembrane transport of substances affected by AmB. The results will provide a basis for further exploration of the effect mechanism of metal ions on the antifungal activity of polyene drugs.  相似文献   

6.
The aim of this study was to determine amphotericin B (AmB) permeation across lipid bilayer membranes mounted on Transwell® and to observe the phagocytosis of the AmB and the AmB-lipid formulations by alveolar macrophage (AM) cell lines using a fluorescence microscope. The lipid bilayer membranes were prepared from phospholipid and ergosterol as well as phospholipid and cholesterol in a ratio (67:33 mol%). AmB-lipid formulations were prepared from AmB incorporated with four lipid derivatives during a lyophilization process. In vitro cytotoxicity studies were carried out on kidney cells by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The levels of nitric oxide production by AMs exposed to these AmB-lipid formulations were determined by the Griess reaction. Phagocytosis of the AmB-lipid formulations was carried out using AM cells. The lipid bilayer membranes and AmB-lipid formulations were successfully prepared. In vitro cytotoxicity results showed less toxicity to kidney cells than pure AmB, and a 1,000-fold less production of nitric oxide by NR8383 cell lines was obtained when compared to lipopolysaccharide. Permeation results were two- to fivefold higher than for pure AmB in the ergosterol containing lipid bilayer and two- to fourfold higher than AmB in the cholesterol containing compositions, both of which were enough to kill the fungi according to their MICs and MFCs. AM phagocytosed the AmB-lipid formulations. We suggest that these products especially the AmB-sodium deoxycholate sulfate are potential candidates for targeting AM cells for the treatment of invasive pulmonary aspergillosis.  相似文献   

7.
The surface properties of colicin E1, a 522-amino acid protein, and its interaction with monolayers of Escherichia coli (E. coli) total lipid and 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DOPC) were studied using the Langmuir-Blodgett (LB) technique. Colicin E1 is amphiphilic, forming a protein monolayer at the air/buffer interface. The protein is thought to interact with the E. coli total lipid head groups through electrostatic interactions, followed by its insertion into the lipid monolayers. Supported lipid bilayers (SLBs) of E. coli total lipid and DOPC, deposited onto mica at the cell membrane equivalence pressure for E. coli and incubated with colicin E1, were imaged by contact mode atomic force microscopy (CM-AFM). Colicin E1 formed protein aggregates on DOPC SLBs, while E. coli total lipid SLB was deformed following its incubation with colicin E1. Corresponding lateral force images, along with electrostatic surface potentials for colicin E1 P190, imply a direct interaction of colicin E1 with lipid head groups facilitating their charge neutralization.  相似文献   

8.
Amphotericin B (AmB) liposome formulations are very successful in the treatment of fungal infections and leishmaniasis. But higher cost limits its widespread use among people in developing countries. Therefore, we have developed a modified ethanol-injection method for the preparation of AmB liposomes. Two liposomal formulations were developed with dimyristoyl phosphatidylcholine [F-1a] and soya phosphatidylcholine [F-2a], along with egg phosphatidyl glycerol and cholesterol. AmB was dissolved in acidified dimethyl acetamide and mixed with ethanolic lipid solution and rapidly injected in 5% dextrose to prepare liposomes. Liposomes were characterized on the basis of size (~100?nm), zeta (-43.3?±?2.8 mV) and percent entrapment efficiency (>95%). The in vitro release study showed an insignificant difference (P?≥?0.05) for 24-hour release between marketed AmB liposomes (AmBisome) and F-1a and F-2a. Proliposome concentrate, used for the preparation of in situ liposomes, was physically stable for more than 3 months at experimental conditions. Similarly, AmB showed no sign of degradation in reconstituted liposomes stored at 2-8°C for more than 3 months. IC(50) value of Ambisome (0.18 μg/mL) was comparatively similar to F-1a (0.17 μg/mL) and F-2a (0.16 μg/mL) against intramacrophagic amastigotes. Under experimental conditions, a novel modified method for AmB liposomes is a great success and generates interest for development as a platform technology for many therapeutic drug products.  相似文献   

9.
Amphotericin B (AmB) liposome formulations are very successful in the treatment of fungal infections and leishmaniasis. But higher cost limits its widespread use among people in developing countries. Therefore, we have developed a modified ethanol-injection method for the preparation of AmB liposomes. Two liposomal formulations were developed with dimyristoyl phosphatidylcholine [F-1a] and soya phosphatidylcholine [F-2a], along with egg phosphatidyl glycerol and cholesterol. AmB was dissolved in acidified dimethyl acetamide and mixed with ethanolic lipid solution and rapidly injected in 5% dextrose to prepare liposomes. Liposomes were characterized on the basis of size (~100?nm), zeta (–43.3?±?2.8 mV) and percent entrapment efficiency (>95%). The in vitro release study showed an insignificant difference (P?≥?0.05) for 24-hour release between marketed AmB liposomes (AmBisome) and F-1a and F-2a. Proliposome concentrate, used for the preparation of in situ liposomes, was physically stable for more than 3 months at experimental conditions. Similarly, AmB showed no sign of degradation in reconstituted liposomes stored at 2–8°C for more than 3 months. IC50 value of Ambisome (0.18 µg/mL) was comparatively similar to F-1a (0.17 µg/mL) and F-2a (0.16 µg/mL) against intramacrophagic amastigotes. Under experimental conditions, a novel modified method for AmB liposomes is a great success and generates interest for development as a platform technology for many therapeutic drug products.  相似文献   

10.
The surface properties of colicin E1, a 522-amino acid protein, and its interaction with monolayers of Escherichia coli (E. coli) total lipid and 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DOPC) were studied using the Langmuir-Blodgett (LB) technique. Colicin E1 is amphiphilic, forming a protein monolayer at the air/buffer interface. The protein is thought to interact with the E. coli total lipid head groups through electrostatic interactions, followed by its insertion into the lipid monolayers. Supported lipid bilayers (SLBs) of E. coli total lipid and DOPC, deposited onto mica at the cell membrane equivalence pressure for E. coli and incubated with colicin E1, were imaged by contact mode atomic force microscopy (CM-AFM). Colicin E1 formed protein aggregates on DOPC SLBs, while E. coli total lipid SLB was deformed following its incubation with colicin E1. Corresponding lateral force images, along with electrostatic surface potentials for colicin E1 P190, imply a direct interaction of colicin E1 with lipid head groups facilitating their charge neutralization.  相似文献   

11.
The amphotericin B (AmB) - ergosterol complex, formed by interaction of the antibiotic with ergosterol-containing phospholipid vesicles, is associated with the lipid bilayer. It has been shown by circular dichroism studies that the AmB-ergosterol complex formed in water-propanol binary mixtures has a similar structure to that observed in phospholipid vesicles. A positive cooperativity is found for the interaction of AmB with ergosterol. The similar AmB-cholesterol complex is much less stable and rearranges rapidly to a different conformation.  相似文献   

12.
Amphotericin B (AmB) is a polyene macrolide antibiotic used to treat systemic fungal infections. The molecular mechanism of AmB action is still only partly characterized. AmB interacts with cell-membrane components and forms membrane channels that eventually lead to cell death. The interaction between AmB and the membrane surface can be regarded as the first (presumably crucial) step on the way to channel formation. In this study molecular dynamics simulations were performed for an AmB–lipid bilayer model in order to characterize the molecular aspects of AmB–membrane interactions. The system studied contained a box of 200 dimyristoylphosphatidylcholine (DMPC) molecules, a single AmB molecule placed on the surface of the lipid bilayer and 8,065 water molecules. Two molecular dynamics simulations (NVT ensemble), each lasting 1 ns, were performed for the model studied. Two different programs, CHARMM and NAMD2, were used in order to test simulation conditions. The analysis of MD trajectories brought interesting information concerning interactions between polar groups of AmB and both DMPC and water molecules. Our studies show that AmB preferentially took a vertical position, perpendicular to the membrane surface, with no propensity to enter the membrane. Our finding may suggest that a single AmB molecule entering the membrane is very unlikely.Figure The figure presents the whole structure of the system simulated—starting point. AmB is presented as a space-filling model, DMPC molecules—green sticks, water molecules—red sticks  相似文献   

13.
Liposomal cytarabine, DepoCyt, is a chemotherapy agent which is used in cancer treatment. This form of cytarabine has more efficacy and fewer side effects relative to the other forms. Since DepoCyt contains the cytarabine encapsulated within phosphatidylcholine and the sterol molecules, we modeled dioleoylphosphatidylcholine (DOPC)/cholesterol bilayer membrane as a carrier for cytarabine to study drug–bilayer interactions. For this purpose, we performed a series of united-atom molecular dynamics (MD) simulations for 25?ns to investigate the interactions between cytarabine and cholesterol-containing DOPC lipid bilayers. Only the uncharged form of cytarabine molecule was investigated. In this study, different levels of the cholesterol content (0, 20, and 40%) were used. MD simulations allowed us to determine dynamical and structural properties of the bilayer membrane and to estimate the preferred location and orientation of the cytarabine molecule inside the bilayer membrane. Properties such as membrane thickness, area per lipid, diffusion coefficient, mass density, bilayer packing, order parameters, and intermolecular interactions were examined. The results show that by increasing the cholesterol concentration in the lipid bilayers, the bilayer thickness increases and area per lipid decreases. Moreover, in accordance with the experiments, our calculations show that cholesterol molecules have ordering effect on the hydrocarbon acyl chains. Furthermore, the cytarabine molecule preferentially occupies the polar region of the lipid head groups to form specific interactions (hydrogen bonds). Our results fully support the experimental data. Our finding about drug–bilayer interaction is crucial for the liposomal drug design.  相似文献   

14.
The lipodepsipeptide syringomycin E (SR-E) interacts with two mercury-supported biomimetic membranes, which consist of a self-assembled phospholipid monolayer (SAM) and of a tethered bilayer lipid membrane (tBLM) separated from the mercury surface by a hydrophilic tetraethyleneoxy (TEO) spacer that acts as an ionic reservoir. SR-E interacts more rapidly and effectively with a SAM of dioleoylphosphatidylserine (DOPS) than with one of dioleoylphosphatidylcholine (DOPC). The proximal lipid monolayer of the tBLM has no polar head region, being linked to the TEO spacer via an ether bond, while the distal monolayer consists of either a DOPC or a DOPS leaflet. The ion flow into or out of the spacer through the lipid bilayer moiety of the tBLM was monitored by potential step chronocoulometry and cyclic voltammetry. With the distal monolayer bathed by aqueous 0.1 M KCl and 0.8 μM SR-E, an ion flow in two stages was monitored with DOPC at pH 3 and 5.4 and with DOPS at pH 3, while a single stage was observed with DOPS at pH 5.4. This behavior was compared with that already described at conventional bilayer lipid membranes. The sigmoidal shape of the chronocoulometric charge transients points to an aggregation of SR-E monomers forming an ion channel via a mechanism of nucleation and growth. The ion flow is mainly determined by potassium ions, and is inhibited by calcium ions. The contribution to the transmembrane potential from the distal leaflet depends more on the nature of the lipid than that of the ion channel.  相似文献   

15.
Amphotericin B (AmB) is a widely used polyene antibiotic to treat systemic fungal infections. This drug is known to be lethal to fungal cells but it has also side effect toxicity on mammalian cells. The mechanism of action of AmB is thought to be related to the difference of the main sterol present in the mammalian and the fungal cells, namely cholesterol and ergosterol, respectively. The effect of AmB has been investigated on pure dipalmitoylphosphatidylcholine (DPPC) and on cholesterol- and ergosterol-containing DPPC bilayers by 2H NMR spectroscopy. The 2H NMR results first confirm that AmB forms a complex with sterol-free DPPC bilayers, the interaction causing the structurization of the lipids and the increase of the gel-to-lamellar fluid DPPC phase transition temperature with increasing concentration of the antibiotic. The results also show that the effects of AmB on cholesterol- and ergosterol-containing DPPC bilayers are remarkably different. On one hand, the drug causes an increase of the orientational order of the lipid acyl chains in cholesterol-containing membranes, mostly in high cholesterol content membranes. On the other hand, the addition of AmB disorders the DPPC acyl chains when ergosterol is present. This is thought to be due to the direct complexation of the ergosterol by AmB, causing the sterol ordering effect to be weaker on the lipids.  相似文献   

16.
The hydrophobic, photoreactive probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) was used to characterize the effects of lipids and detergents on acetylcholine receptor (AChR) conformation. Affinity purified AChR reconstituted into dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidic acid (DOPA), and cholesterol showed the same pattern of [125I]TID-labeling and demonstrated the same reduction in labeling of all four subunits upon desensitization by the agonist carbamylcholine, as partially purified AChR in native lipids. On the basis of the patterns of [125I]TID incorporation, reconstitution into DOPC/DOPA also appeared to stabilize the resting (functional) conformation of the AChR, while reconstitution in DOPC/cholesterol or DOPC alone largely desensitized the AChR. The effects of lipids on the functional state of the AChR was determined independently by measuring the ability of AChR reconstituted into different lipid combinations to undergo the change in affinity for agonist diagnostic of desensitization. The dramatic reduction in the apparent levels of [125I]TID associated with the subunits of the AChR observed upon agonist-induced desensitization was shown not to be due to a change in affinity for tightly bound lipid. Solubilization of affinity purified AChR reconstituted into DOPC/DOPA/cholesterol by the non-ionic detergents octyl glucoside, Triton X-100, and Tween 20 (final detergent concentration = 1%) was shown to produce the same pattern of [125I]TID-labeling as desensitization by agonist, while solubilization in 1% sodium cholate appeared to stabilize a conformation of the AChR more similar to the resting state.  相似文献   

17.
MK-801, a noncompetitive antagonist of the NMDA (N-methyl-D-aspartate) receptor, has protective effects against excitotoxicity and ethanol withdrawal seizures. We have determined membrane/buffer partition coefficients (Kp[mem]) of MK-801 and its rates of association with and dissociation from membranes. Kp[mem] (+/- SD) = 1137 (+/- 320) in DOPC membranes and 485 (+/- 99) in synaptoneurosomal (SNM) lipid membranes from rat cerebral cortex (unilamellar vesicles). In multilamellar vesicles, Kp[mem] was higher: 3374 (+/- 253) in DOPC and 6879 (+/- 947) in SNM. In cholesterol/DOPC membranes, Kp[mem] decreased as the cholesterol content increased. MK-801 associated with and dissociated from membranes rapidly. Addition of ethanol to SNM did not affect Kp[mem]. MK-801 decreased the cooperative unit size of DMPC membranes. The decrease was smaller than that caused by 1,4-dihydropyridine drugs, indicating a weaker interaction with the hydrocarbon core. Small angle x-ray diffraction, with multilayer autocorrelation difference function modeling, indicated that MK-801 in a cholesterol/DOPC membrane (mole ratio = 0.6) causes a perturbation at approximately 16.0 A from the bilayer center. In bilayers of cholesterol/DOPC = 0.15 (mole ratio) or pure DOPC, the perturbation caused by MK-801 was more complex. The physical chemical interactions of MK-801 with membranes in vitro are consistent with a fast onset and short duration of action in vivo.  相似文献   

18.
G3139 is an antisense oligonucleotide (ODN) that can down-regulate bcl-2, thus potentially acting as a potent anticancer drug. However, effective therapy requires efficient ODN delivery, which may be achieved by employing G3139 lipoplexes. Yet, lipofection is a complex, multifactorial process that is still poorly understood. In order to shed more light on this issue, we prepared 18 different G3139 lipoplex formulations and compared them in terms of their capability to transfect MCF-7 breast cancer cells. Each formulation was composed of a cationic lipid and sometimes a helper lipid. The cationic lipid was either DOTAP (N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride), DC-CHOL (3ss[N-(N',N'-dimethylaminoethane)carbamoyl]-cholesterol), or CCS (ceramide carbomoyl spermine). The helper lipid was either DOPC, DOPE, or cholesterol. Each lipid combination existed in two different structural forms--either large unilamellar vesicles (approximately 100 nm LUV) or unsized heterolamellar vesicles (UHV). Cell proliferation assays were used to evaluate the cytotoxicity of G3139 lipoplexes, control cationic lipid assemblies, and free G3139. Western blots were used to confirm the specific activity of G3139 as an anti-bcl-2 antisense agent. We determined that treatment of MCF-7 cells with G3139:CCS lipoplexes (UHV-derived) produced a maximal 50-fold improvement in antisense efficacy compared to treatment with free G3139. The other G3139 lipoplexes were not superior to free G3139. Thus, successful lipofection requires precise optimization of lipoplex lipid composition, structure, and concentration.  相似文献   

19.
G3139 is an antisense oligonucleotide (ODN) that can down-regulate bcl-2, thus potentially acting as a potent anticancer drug. However, effective therapy requires efficient ODN delivery, which may be achieved by employing G3139 lipoplexes. Yet, lipofection is a complex, multifactorial process that is still poorly understood. In order to shed more light on this issue, we prepared 18 different G3139 lipoplex formulations and compared them in terms of their capability to transfect MCF-7 breast cancer cells. Each formulation was composed of a cationic lipid and sometimes a helper lipid. The cationic lipid was either DOTAP (N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride), DC-CHOL (3β[N-(N′,N′-dimethylaminoethane)carbamoyl]-cholesterol), or CCS (ceramide carbomoyl spermine). The helper lipid was either DOPC, DOPE, or cholesterol. Each lipid combination existed in two different structural forms — either large unilamellar vesicles (~100 nm LUV) or unsized heterolamellar vesicles (UHV). Cell proliferation assays were used to evaluate the cytotoxicity of G3139 lipoplexes, control cationic lipid assemblies, and free G3139. Western blots were used to confirm the specific activity of G3139 as an anti-bcl-2 antisense agent. We determined that treatment of MCF-7 cells with G3139:CCS lipoplexes (UHV-derived) produced a maximal 50-fold improvement in antisense efficacy compared to treatment with free G3139. The other G3139 lipoplexes were not superior to free G3139. Thus, successful lipofection requires precise optimization of lipoplex lipid composition, structure, and concentration.  相似文献   

20.
The interactions between a drug and lipids may be critical for the pharmacological activity. We previously showed that the ability of a fluoroquinolone antibiotic, ciprofloxacin, to induce disorder and modify the orientation of the acyl chains is related to its propensity to be expelled from a monolayer upon compression [1]. Here, we compared the binding of ciprofloxacin on DPPC and DPPG liposomes (or mixtures of phospholipids [DOPC:DPPC], and [DOPC:DPPG]) using quasi-elastic light scattering and steady-state fluorescence anisotropy. We also investigated ciprofloxacin effects on the transition temperature (T(m)) of lipids and on the mobility of phosphate head groups using Attenuated Total Reflection Fourier Transform Infrared-Red Spectroscopy (ATR-FTIR) and (31)P Nuclear Magnetic Resonance (NMR) respectively. In the presence of ciprofloxacin we observed a dose-dependent increase of the size of the DPPG liposomes whereas no effect was evidenced for DPPC liposomes. The binding constants K(app) were in the order of 10(5) M(-1) and the affinity appeared dependent on the negative charge of liposomes: DPPG>DOPC:DPPG (1:1; M:M)>DPPC>DOPC:DPPC (1:1; M:M). As compared to the control samples, the chemical shift anisotropy (Deltasigma) values determined by (31)P NMR showed an increase of 5 and 9 ppm for DPPC:CIP (1:1; M:M) and DPPG:CIP (1:1; M:M) respectively. ATR-FTIR experiments showed that ciprofloxacin had no effect on the T(m) of DPPC but increased the order of the acyl chains both below and above this temperature. In contrast, with DPPG, ciprofloxacin induced a marked broadening effect on the transition with a decrease of the acyl chain order below its T(m) and an increase above this temperature. Altogether with the results from the conformational analysis, these data demonstrated that the interactions of ciprofloxacin with lipids depend markedly on the nature of their phosphate head groups and that ciprofloxacin interacts preferentially with anionic lipid compounds, like phosphatidylglycerol, present at a high content in these membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号