首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have replaced the lipid associated with a purified calcium transport protein with a series of defined synthetic dioleoyl phospholipids in order to determine the effect of phospholipid headgroup structure on the ATPase activity of the protein. At 37°C the zwitterionic phospholipids (dioleoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine) support the highest activity, while a phospholipid with two negative charges (dioleoyl phosphatidic acid) supports an activity which is at least twenty times lower. Dioleoyl phospholipids with a single net negative charge support at intermediate ATPase activity which is not affected by the precise chemical structure of the phospholipid headgroup. The protocol used to determine the phospholipid headgroup specificity of calcium transport protein is novel because it establishes the composition of the lipid in contact with the protein without the need to isolate defined lipid-protein complexes. This allows the lipid specificity to be determined using only very small quantities of test lipids.We also determined the ability of the same phospholipids to support calcium accumulation in reconstituted membranes. Two requirements had to be met. The phospholipid had to support the ATPase activity of the pump protein and it had to form sealed vesicles as determined by electron microscopy. Since a number of phospholipids met those requirements it is clear that in vitro the lipid specificity of the calcium-accumulating system is rather broad.  相似文献   

2.
The association of different phospholipids with a lipid-depleted oligomycin-sensitive ATPase from bovine cardiac mitochondria [Serrano, Kanner & Racker (1976) J. Biol. Chem. 251, 2453-2461] has been examined using three approaches. First, reconstitution of the ATPase with different synthetic diacyl phospholipids resulted in a 2-10-fold stimulation of ATPase specific activity depending upon the particular phospholipid employed. The phospholipid headgroup region displayed the following order of ATPase reactivation potential: dioleoylphosphatidylglycerol greater than dioleoylphosphatidic acid greater than dioleoylphosphatidylcholine. Furthermore, the ATPase showed higher levels of specific activity when reconstituted with dioleoyl phospholipid derivatives compared with dimyristoyl derivatives. Second, examination of the phospholipid remaining associated with the lipid-depleted ATPase upon purification showed that phosphatidylcholine, phosphatidylethanolamine, and diphosphatidylglycerol were present. No relative enrichment of any of these phospholipids (compared with their distribution in submitochondrial particles) was noted. Therefore, no preferential association between the ATPase and any one phospholipid could be found in the mitochondrial ATPase. Third, the sodium cholate-mediated phospholipid exchange procedure was employed for studying the phospholipid requirements of the ATPase. Replacement of about 50% of the mitochondrial phospholipid remaining with the lipid-depleted ATPase could be achieved utilizing either synthetic phosphatidic acid or phosphatidylcholine. Examination of the displaced mitochondrial phospholipid showed that phosphatidylcholine, phosphatidylethanolamine, and diphosphatidylglycerol were replaced with equal facility.  相似文献   

3.
The purified (Na+ + Mg2+)-ATPase from Acholeplasma laidlawii B membranes was successfully reconstituted with a number of different phospho- and glycolipids, and the ability of these lipids to support the function of this enzyme was evaluated by their ability to increase the specific activity of the purified enzyme and by their ability to restore its lipid-phase state-dependent properties which were lost during purification. The incorporation of this ATPase into liposomes composed of the endogenous membrane lipids of the organism, or of zwitterionic phospholipids such as phosphatidylcholine or phosphatidylethanolamine, results in a full reconstitution of its activity and its lipid-phase state-dependent properties. In contrast, anionic phospholipids alone, or in combination with zwitterionic phospholipids at concentrations higher than 10 mol % of the anionic phospholipid, cause an irreversible inhibition of this ATPase. However, when combined with neutral glycolipids, larger amounts of anionic phospholipid can be tolerated without enzyme inhibition. Phosphatidylcholines with acyl chains of 14-24 linear carbon atoms and varying degrees of branching and unsaturation successfully reconstitute the enzyme, in marked contrast to the shorter chain homologues, which were ineffective. Our results indicate that the full expression of the activity of the A. laidlawii B ATPase requires a host lipid bilayer membrane of low to moderate negative surface charge which is predominantly liquid-crystalline and of a minimal bilayer thickness. Once such requirements are met, the enzyme exhibits considerable flexibility regarding the nature of the lipids which can effectively support its function. In particular, the activity of the A. laidlawii B ATPase is not very sensitive to lipid "fluidity" in the liquid-crystalline state.  相似文献   

4.
J D Pilot  J M East  A G Lee 《Biochemistry》2001,40(49):14891-14897
Diacylglycerol kinase (DGK) of Escherichia coli has been reconstituted into a variety of phospholipid bilayers and its activity determined as a function of lipid headgroup structure and phase preference. The anionic phospholipids dioleoylphosphatidic acid, dioleoylphosphatidylserine, and cardiolipin were all found to support activities lower than that supported by dioleoylphosphatidylcholine. In mixtures of dioleoylphosphatidylcholine and 20 mol % anionic phospholipids, the presence of anionic phospholipids all resulted in lower activities than in dioleoylphosphatidylcholine, except for dioleoylphosphatidylglycerol whose presence had little effect on activity. In some cases, the low activity in the presence of anionic phospholipid followed from a decrease in v(max); in some cases, it followed from an increase in the K(m) for diacylglycerol, and in the case of dioleoylphosphatidic acid, it followed from both. Activities in mixtures containing 80 mol % dioleoylphosphatidylethanolamine were lower than in dioleoylphosphatidylcholine at temperatures where both lipids adopted a bilayer phase; at higher temperatures where dioleoylphosphatidylethanolamine preferred a hexagonal H(II) phase, the differences in activity were greater. These experiments suggest that the presence of lipids preferring a hexagonal H(II) phase leads to low activities. Activities of DGK are low in a gel phase lipid.  相似文献   

5.
When fast twitch skeletal muscle vesicles (SR) and purified calcium pump protein are stripped with the nonionic detergent C12E8 (octaethylene glycol dodecyl ether), not all the membrane phospholipids are removed from the calcium pump protein. Maximal extraction produces a remnant of 6-8 mol of phospholipid/mole of calcium ATPase (CaATPase). In contrast to native SR and the prestripped purified CaATPase, the remaining phospholipid is markedly enriched in phosphatidylethanolamine (PE) and phosphatidylserine (PS) in both preparations; the remaining lipid is also enriched in phospholipid that is predominantly unsaturated. In addition, virtually all of the associated PE is plasmalogenic (96% as opposed to 63% in the native SR). The amino-specific cross-linking reagent DFDNB (1,5-difluoro-2,4-dinitrobenzene sulfonic acid) and the amino binding reagent TNBS (2,4,6-trinitrobenzene sulfonic acid) were utilized to identify the monolayer of the native preparation where these phospholipids reside, and to determine which phospholipids are closely associated with the calcium pump protein following detergent treatment. These studies demonstrate that PE and PS are closely associated with the pump protein, PE residing almost exclusively in the outer monolayer of SR, while PS resides in the inner monolayer. Nonspecific phospholipid exchange protein was shown to be capable of exchanging phospholipids from donor vesicles into those phospholipids associated with the CaATPase; stripping of lipid-exchanged vesicles with C12E8 exhibited the same specificity with regard to head-group species (i.e., PE is markedly enriched in the extracted protein associated fraction). The results suggest that specific protein-lipid interactions exist, favoring the association of plasmalogenic aminophospholipids with the calcium pump protein.  相似文献   

6.
The solubilization and delipidation of sarcoplasmic reticulum Ca2+-ATPase by different nonionic detergents were measured from changes in turbidity and recovery of intrinsic fluorescence of reconstituted ATPase in which tryptophan residues had been quenched by replacement of endogenous phospholipids with brominated phospholipids. It was found that incorporation of C12E8 or dodecyl maltoside (DM) at low concentrations in the membrane, resulting in membrane "perturbation" without solubilization, displaced a few of the phospholipids in contact with the protein; perturbation was evidenced by a parallel drop in ATPase activity. As a result of further detergent addition leading to solubilization, the tendency toward delipidation of the immediate environment of the protein was stopped, and recovery of enzyme activity was observed, suggesting reorganization of phospholipid and detergent molecules in the solubilized ternary complex, as compared to the perturbed membrane. After further additions of C12E8 or DM to the already solubilized membrane, the protein again experienced progressive delipidation which was only completed at a detergent concentration about 100-fold higher than that necessary for solubilization. Delipidation was correlated with a decrease in enzyme activity toward a level similar to that observed during perturbation. On the other hand, Tween 80, Tween 20, and Lubrol WX failed to solubilize SR membranes and to induce further ATPase delipidation when added after preliminary SR solubilization by C12E8 or dodecyl maltoside. For Tween 80, this can be related to an inability to solubilize pure lipid membrane; in contrast, Tween 20 and Lubrol WX were able to solubilize liposomes but not efficiently to solubilize SR membranes. In all three cases, insertion of the detergent in SR membranes is, however, demonstrated by perturbation of enzyme activity. Correlation between detergent structure and ability to solubilize and delipidate the ATPase suggests that one parameter impeding ATPase solubilization might be the presence of a bulky detergent polar headgroup, which could not fit close to the protein surface. We also conclude that in the active protein/detergent/lipid ternary complexes, solubilized by C12E8 or dodecyl maltoside, most phospholipids remain closely associated with the ATPase hydrophobic surface as in the membranous form. Binding of only a few detergent molecules on this hydrophobic surface may be sufficient for inhibition of ATPase activity observed at high ATP concentration, both during perturbation and in the completely delipidated, solubilized protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
A procedure for the isolation of sarcoplasmic reticulum from winter flounder (Pseudopleuronectes americanus) resulted in a fraction with a specific activity of lipid peroxidation two to three times that of previous preparations. In addition, good stability of the NADH-dependent lipid peroxidative activity was achieved. There appeared to be minimal contamination of the preparation with lysosomes and mitochondria. The flounder sarcoplasmic reticulum was highly active with respect to ATPase and calcium uptake. The membrane fraction contained 43% lipid and 57% protein; 60% of the lipids were phospholipids. Phosphatidylcholine was the major phospholipid present.  相似文献   

8.
Phospholipid specificity of bovine heart bc1 complex   总被引:1,自引:0,他引:1  
Bovine heart bc1 complex was reversibly inactivated by a new simple and effective chromatographic delipidation method. Upon phospholipid replenishment, catalytic activity increased from values near zero to values 2-6-times higher than those of the original preparation. Compared to original preparations maximally activated by additional phospholipid, the degree of reactivation was up to 100%. By this delipidation method, the 6.4-kDa protein subunit was removed with the phospholipid. The loss of this protein neither diminished electron transport activity nor abolished proton translocation. Two requirements were necessary to obtain quantitative data: (a) only bc1 complexes, homogeneously dissolved before and after relipidation had to be used and (b) the phospholipid bound to the complex had to be determined. The correlation of catalytic activity to bound phospholipid was studied in the range of low phospholipid/protein ratios, which had previously been insufficiently resolved. Catalytic activity increased linearly with added phospholipid up to a molar ratio of 80-100 lipid molecules/dimeric complex. This corresponds to the number of phospholipid molecules that complete a single bilayer annulus. The activating effect of phospholipid is not merely due to a hydrophobic phase effect, since it strongly depends on the nature of the polar head group of the added phospholipid. Of the three major phospholipids bound to the bc1 complex, only phosphatidylethanolamine and phosphatidylcholine activated when added as sole phospholipid. Tightly bound diphosphatidylglycerol was needed for preservation of the native complex structure.  相似文献   

9.
The delipidated sarcoplasmic reticulum (SR) Ca(2+)-ATPase was reconstituted into proteoliposomes containing different phospholipids. The result demonstrated the necessity of phosphatidylcholine (PC) for optimal ATPase activity and phosphatidylethanolamine (PE) for the optimal calcium transport activity. Fluorescence intensity of Fluorescein 5-isothiocyanate (FITC)-labeled enzyme at Lys515 as well as the measurement of the distance between 5-((2-[(iodoacetyl) amino] ethyl) amino)naphthalene-1-sulphonic acid (IAEDANS) label sites (Cys674/670) and Pr3+ demonstrated a conformational change of cytoplasmic domain, consequently, leading to the variation of the enzyme function with the proteoliposomes composition. Both the intrinsic fluorescence of Trp and its dynamic quenching by HB decreased with increasing PE content, revealing the conformational change of transmembrane domain. Time-resolved fluorescence study characterized three classes of Trp residues, which showed distinctive variation with the change in phospholipid composition. The phospholipid headgroup size caused the conformational change of SR Ca(2+)-ATPase, subsequent the ATPase activity and Ca2+ uptake.  相似文献   

10.
Brauer D  Tu SI 《Plant physiology》1989,89(3):867-874
The activation of the vanadate-sensitive ATPase from maize (Zea mays L.) root microsomes by phospholipids was assessed by two different methods. First, the vanadate-sensitive ATPase was partially purified and substantially delipidated by treating microsomes with 0.6% deoxycholate (DOC) at a protein concentration of 1 milligram per milliliter. Vanadate-sensitive ATP hydrolysis by the DOC-extracted microsomes was stimulated up to 100% by the addition of asolectin. Of the individual phospholipids tested, phosphatidylserine and phosphatidylglycerol stimulated activity as much as asolectin, whereas phosphatidylcholine did not. Second, phospholipid dependence of the ATPase was also assessed by reconstituting the enzyme into proteoliposomes of differing phospholipid composition. In these experiments, the rate of proton transport and ATP hydrolysis was only slightly affected by phospholipid composition. DOC-extracted microsomes reconstituted with dioleoylphosphatidylcholine had rates of proton transport similar to those found with microsomes reconstituted with asolectin. The difference between the two types of assays is discussed in terms of factors contributing to the interaction between proteins and lipids.  相似文献   

11.
ABCR is a photoreceptor-specific ATP-binding cassette transporter that has been linked to various retinal diseases, including Stargardt macular dystrophy, and implicated in retinal transport across rod outer segment (ROS) membranes. We have examined the ATPase and GTPase activity of detergent-solubilized and reconstituted ABCR. 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonic acid-solubilized ABCR had ATPase and GTPase activity (K(m) approximately 75 micrometer V(max) approximately 200 nmol/min/mg) that was stimulated 1.5-2-fold by all-trans-retinal and dependent on phospholipid and dithiothreitol. The K(m) for ATP decreased to approximately 25 micrometer after reconstitution, whereas the V(max) was strongly dependent on the lipid used for reconstitution. ABCR reconstituted in ROS phospholipid had a V(max) for basal and retinal activated ATPase activity that was 4-6 times higher than for ABCR in soybean or brain phospholipid. This enhanced activity was mainly due to the high phosphatidylethanolamine (PE) content of ROS membranes. PE was also required for retinoid-stimulated ATPase activity. ATPase activity of ABCR was stimulated by the addition of N-retinylidene-PE but not the reduced derivative, retinyl-PE. ABCR expressed in COS-1 cells also exhibited retinal-stimulated ATPase activity similar to that of the native protein. These results support the view that ABCR is an active retinoid transporter, the nucleotidase activity of which is strongly influenced by its lipid environment.  相似文献   

12.
The lipid-free particulate preparations of the mitochondrial ATPase require phospholipid for activity and can be inhibited by oligomycin, as has been demonstrated previously. In this communication a steady state analysis of the activation of a particulate preparation of the ATPase by phospholipids and its subsequent inhibition by oligomycin has been carried out. The relative affinity of the ATPase for purified phospholipids has been determined by measuring the Km for activation (Ka) for several phospholipids. The Ka values varied from 30 to 100 mum. The Vmax in the presence of phosphatides varies from 0.29 to 1.11 mumol ATP hydrolyzed/min/mg of protein; no correlation is noted between the relative affinity of the enzyme for a phospholipid and the V max value. Higher V max values are noted with the more acidic phospholipids, however. Sodium dodecyl sulfate and monoolein also activate with Ka values of 25 and 800 mum, respectively. Diglycerides, however, do not activate. With all lipids the ATPase activity stimulated is oligomycin-sensitive. The Ki values for oligomycin range from 0.1 to 0.6 mum. Oligomycin is a competitive inhibitor with respect to all the phospholipids tested except phosphatidylethanolamine and phosphatidyglycerol. It is also competitive with respect to sodium dodecyl sulfate (k-i equals 0.94 mum). In reciprocal plots of activity versus ATP concentration, with and without oligomycin, an intercept consistent with either mixed or partial noncompetitive inhibition kinetics is noted. Comparable K-i values for oligomycin are obtained when calculated assuming either mixed or partial noncompetitive inhibition. The Km for ATP is the same in the unactivated and the lipid activated particulate ATPase; the value obtained is slightly lower than the Km for ATP in the solubilized, purified ATPase. Using a spectrophotometric assay the time required for activation with phospholipid and inhibition with oligomycin has also been determined. This investigation suggests the possibility that activation of the ATPase is due a position to interact with the water-soluble substrate. Consistent with the above suggestion is the supposition that the lipids do not necessarily confer inhibitor sensitivity to the ATPase, but rather allow an oligomycin-sensitive activity to be expressed.  相似文献   

13.
Membrane proteins are mostly protein-lipid complexes. For more than 30 examples of membrane proteins from prokaryotes, yeast, plant and mammals, the importance of phospholipids and sterols for optimal activity is documented. All crystallized membrane protein complexes show defined lipid-protein contacts. In addition, lipid requirements may also be transitory and necessary only for correct folding and intercellular transport. With respect to specific lipid requirements of membrane proteins, the phospholipid and glycolipid as well as the sterol content of the host cell chosen for heterologous expression should be carefully considered. The lipid composition of bacteria, archaea, yeasts, insects,Xenopus oocytes, and typical plant and mammalian cells are given in this review. A few examples of heterologous expression of membrane proteins, where problems of specific lipid requirements have been noticed or should be thought of, have been chosen.  相似文献   

14.
Summary Purified, delipidated rhodopsin is recombined with phospholipid using octyl-glucoside (OG) and preformed vesicles. Normal egg phosphatidylcholine, phosphatidylcholine in which the N-methyl groups are fully deuterated, and dioleoyl phosphatidylcholine labeled with deuterium at carbons 9 and 10 were used.31P nuclear magnetic resonance (NMR) and2H NMR measurements were obtained of the pure phospholipids and of the recombined membranes containing rhodopsin.31P NMR of the recombined membrane (containing the deuterated phospholipid) showed two overlapping resonances. One resembled a normal phospholipid bilayer, and the other was much broader, representing a motionally restricted phospholipid headgroup environment. The population of phospholipids in the motionally restricted environment can be modulated by conditions in the media.2H NMR spectra of the same recombined membranes showed only one component. These experimental results agree with a theoretical analysis that predicts an insensitivity of2H NMR to lipids bound to membrane proteins. A model containing at least three different phospholipid environments in the presence of the membrane protein rhodopsin is described.Deceased.  相似文献   

15.
The glucose transport system, isolated from rat adipocyte membrane fractions, was reconstituted into phospholipid vesicles. Vesicles composed of crude egg yolk phospholipids, containing primarily phosphatidylcholine (PC) and phosphatidylethanolamine (PE), demonstrated specific d-glucose uptake. Purified vesicles made of PC and PE also supported such activity but PC or PE by themselves did not. The modulation of this uptake activity has been studied by systematically altering the lipid composition of the reconstituted system with respect to: (1) polar headgroups; (2) acyl chains, and (3) charge. Addition of small amounts (20 mol%) of PS, phosphatidylinositol (PI), cholesterol, or sphingomyelin significantly reduced glucose transport activity. A similar effect was seen with the charged lipid, phosphatidic acid. In the case of PS, this effect was independent of the acyl chain composition. Polar headgroup modification of PE, however, did not appreciably affect transport activity. Free fatty acids, on the other hand, increased or decreased activity based on the degree of saturation and charge. These results indicate that glucose transport activity is sensitive to specific alterations in both the polar headgroup and acyl chain composition of the surrounding membrane lipids.  相似文献   

16.
PDC-109 is the main component of bovine seminal plasma and has been suggested to play an important role in the genesis of bovine sperm cells. Here, the effect of binding of PDC-109 to membranes on the structure and physical properties of the lipid phase was investigated. For that, ESR measurements were undertaken on model membranes (lipid vesicles) and on biological membranes (epididymal spermatozoa) by employing various spin-labeled phospholipids. We found that PDC-109 alters the membrane structure of lipid vesicles as well as of bovine epididymal spermatozoa in that the mobility of spin-labeled phospholipids was reduced in the presence of the protein. This immobilizing effect of the protein was not restricted to analogues of phosphatidylcholine but was also detected with spin-labeled phosphatidylethanolamine. However, the extent of immobilization was lower for phosphatidylethanolamine compared with phosphatidylcholine, supporting the lipid headgroup specificity of the protein. Besides phospholipid headgroups, the physical state of membrane lipids is also important for the interaction of PDC-109 with membranes, in that, e.g., the immobilizing effect of the protein on labeled lipids was larger in membranes above the phase transition temperature compared with the effect below this temperature. The results are of relevance for understanding the physiological role of PDC-109 in the genesis of sperm cells.  相似文献   

17.
The endothelial cell-type plasminogen activator inhibitor (PAI-1) may exist in an inactive, latent form that can be converted into an active form upon treatment of the protein with denaturants, such as sodium dodecyl sulfate, guanidine HCl, or urea. The present paper demonstrates that latent PAI-1 can be activated by lipid vesicles containing the negatively charged phospholipids phosphatidylserine (PS) or phosphatidylinositol. The presence of a net negative charge on the phospholipid headgroup is essential for activation, since lipid vesicles consisting exclusively of zwitterionic phospholipids, such as phosphatidylcholine and phosphatidylethanolamine, do not activate PAI-1. In the presence of PS vesicles, PAI-1 inhibited tissue-type plasminogen activator 50-fold more effectively than in the absence of phospholipids, whereas sodium dodecyl sulfate enhanced PAI-1 activity by 25-fold. In mixed phospholipid vesicles containing PS and phosphatidylcholine in various molar ratios, the extent of PAI-1 activation was directly related to the PS content of the phospholipid membrane. Ca2+ ions interfered with the inhibitory activity of PS-activated PAI-1, suggesting that Ca2+ ions may regulate PAI-1 activity in the presence of negatively charged phospholipids. An important consequence of these findings is that, as in blood coagulation, negatively charged phospholipids may play an important regulatory role in controlling the fibrinolytic system by activating an inhibitor of tissue-type plasminogen activator.  相似文献   

18.
The bovine seminal plasma protein PDC-109 modulates the maturation of bull sperm cells by removing lipids, mainly phosphatidylcholine and cholesterol, from their cellular membrane. Here, we have characterized the process of extraction of endogenous phospholipids and of their respective analogues. By measuring the PDC-109-mediated release of fluorescent phospholipid analogues from lipid vesicles and from biological membranes (human erythrocytes, bovine epididymal sperm cells), we showed that PDC-109 extracts phospholipids with a phosphorylcholine headgroup mainly from the outer leaflet of these membranes. The ability of PDC-109 to extract endogenous phospholipids from epididymal sperm cells was followed by mass spectrometry, which allowed us to characterize the fatty acid pattern of the released lipids. From these cells, PDC-109 extracted phosphatidylcholine and sphingomyelin that contained an enrichment of mono- and di-unsaturated fatty acids as well as short-chain and lyso-phosphatidylcholine species. Based on the results, a model explaining the phospholipid specificity of PDC-109-mediated lipid release is presented. Astrid Tannert and Anke Kurz have contributed equally to this work. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

19.
(Ca2+ + Mg2+)ATPase (EC 3.6.1.3) was solubilized from human erythrocyte membranes by detergent extraction with Triton N-101 (0.5 mg/mg membrane protein) and purified by calmodulin affinity chromatography. ATPase activity was assayed in mixtures of Triton N-101 and phospholipid, without reconstitution into bilayer vesicles. At low levels of phospholipid (5 micrograms/ml), the ATPase activity was highly sensitive to the detergent concentration, with maximal activity occurring at or near the critical micelle concentration of the detergent. With increased amounts of phospholipid (50 micrograms/ml), detergent concentrations greater than the critical micelle concentration were required for maximal activity. Detergent alone did not support ATPase activity. Sonicated phospholipid in the form of vesicles was equally ineffective. Activity seemed to be dependent on the presence of detergent/phospholipid mixed micelles. The acidic phospholipids, phosphatidylserine and phosphatidylinositol, as well as the commercial phospholipid preparation, Asolectin, gave activities five to eight times greater than the same amount of phosphatidylcholine. Mixtures of phosphatidylserine and phosphatidylcholine produced intermediate ATPase activities, with the maximal value dependent on the phosphatidylserine concentration. Addition of phosphatidylcholine to fixed concentrations of phosphatidylserine caused a rise in activity that was independent of the ratio of the two phospholipids or the total phospholipid concentration. Phosphatidylcholine may therefore be irreplaceable for some aspect of ATPase function. The number of phospholipid molecules present in mixed micelles at maximal ATPase activity was calculated to be near 50. This value implied that the hydrophobic surface of the ATPase molecule must be completely coated by a single layer of phospholipid molecules for maximum activity to occur.  相似文献   

20.
Ultrasound velocimetry and densitometry methods were used to study the interactions of the Na,K-ATPase with the lipid bilayer in large unilamellar liposomes composed of dioleoyl phosphatidylcholine (DOPC). The ultrasound velocity increased and the specific volume of the phospholipids decreased with increasing concentrations of protein. These experiments allowed us to determine the reduced specific apparent compressibility of the lipid bilayer, which decreased by approx. 11% with increasing concentrations of the Na,K-ATPase up to an ATPase/DOPC molar ratio = 2 × 10??. Assuming that ATPase induces rigidization of the surrounding lipid molecules one can obtain from the compressibility data that 3.7 to 100 times more lipid molecules are affected by the protein in comparison with annular lipids. However, this is in contradiction with the current theories of the phase transitions in lipid bilayers. It is suggested that another physical mechanisms should be involved for explanation of observed effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号