首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amino acid and carbohydrate compositions of chondroitinase AC [EC 4.2.2.5] from Arthrobacter aurescens were determined, and its physicochemical properties were examined. 1. The enzyme has been shown to be a glycoprotein containing mannose, glucose, glucosamine, and glucuronic acid (3:5:4:2). 2. Its molecular wieght was estimated to be 76,000 by gel filtration on Sephadex G-200, 75,000-80,000 by SDS disc electrophoresis, and 75,800 by sedimentation veolcity. No subunits were detected in the molecule. 3. The physicochemical properties determined include: sedimentation coefficient (s(o)20, w=5.14 S), diffusion constant (D(o)=6.09 X 10(-7) cm2/sec), frictional ratio (f:f(o)=1.19) and apparent partial specific volume (v=0.73 ml/g). 4. The optical rotatory dispersion and circular dichroism of the enzyme were investigated. The contents of alpha-helix and beta-structure of the enzyme were estimated to be 16 and 25%, respectively.  相似文献   

2.
Six naturally occurring and three synthetic molecular species of lactosylceramide (LacCer) were used to examine the molecular species specificity of CMP-N-acetylneuraminate:lactosylceramide alpha 2,3-sialyltransferase in a Golgi-rich fraction of rat liver. The enzyme molecular species specificity was determined either in the presence of nonspecific lipid transfer protein or in the presence of detergents. Assays performed in the presence of transfer protein showed that for those lactosylceramide molecular species with either d18:1 or d18:0 long chain base the enzyme activity decreased linearly as the effective carbon number of the fatty acid increased. An increase in the carbon number of the long chain base decreased the activity of the enzyme twice as much as a corresponding increase in the carbon number of the fatty acid. On the other hand, when the enzyme activity was assayed in the presence of detergents, there was no significant difference in activity among the various molecular species of lactosylceramide based upon the carbon number of the fatty acid or on the presence of a double bond in the long chain base. However, the decrease in enzyme activity with an increase in the carbon number of the long chain base persisted. These results demonstrate that sialyltransferase has binding specificity with respect to the long chain base, but not the fatty acid. The apparent molecular species towards the fatty acid is related to the aqueous solubility of the various LacCer molecular species.  相似文献   

3.
Human salivary kallikrein was isolated from saliva using affinity chromatography on aprotinin-Sepharose and anti-human urinary kallikrein IgG-Sepharose followed by ion exchange chromatography on DEAE-Sepharose. The enzyme preparation had a specific activity of 950 U/mg protein towards the synthetic substrate Ac-Phe-Arg-OEt, a specific biological activity of 2000 KE/mg protein (measured in the dog blood pressure assay) and 0.64 HMW-kininogen-U/mg, corresponding to the liberation of 679 micrograms bradykinin equivalents per mg enzyme per min from HMW-kininogen (using the rat uterus test). In sodium dodecyl sulfate gel electrophoresis one protein band corresponding to a molecular mass of 32 kDa was obtained. The amino-acid composition was determined and isoleucin was found as the only N-terminal residue. The bimolecular velocity constant for the inhibition by diisopropyl fluorophosphate was determined as 8 l x mol-1 x min-1. The dissociation constant Ki of the human salivary kallikrein-aprotinin complex was calculated to be 0.7 x 10(-10)M. The Km and Vmax values for the hydrolysis of the synthetic substrates Ac-Phe-Arg-OEt and D Val-Leu-Arg-Nan were determined. In the enzyme immunoassay for human urinary kallikrein parallel binding curves were obtained.  相似文献   

4.
1. A procedure for the purification of ATPase extracted by chloroform from baker's yeast (Saccharomyces cerevisiae) is reported. The yield based on submitochondrial particles was 55% and the purification was 100-fold. The isolated complex was homogenous as assessed by gel filtration, ion-exchange chromatography, sedimentation in sucrose gradient and in the analytical ultracentrifuge. The molecular weight determined by gel filtration was 400000 +/- 20000. Ultracentrifugation yielded s020,w = 12.50 +/- 0.13 S and the laser light scattering study gave a diffusion coeficient of D20w - 2.92 X 10(-7) cm2 s-1. The amino acid composition as well as absorption, fluorescence, and circular dichroism spectra, from which the helicity of 39% was evaluated, are given. 2. On polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate, six components with molecular weights of 58500(alpha), 55000 (beta), 42000, 34000 (gamma), 10000(delta), and 8600 (epsilon) were observed with a stoichiometry of 3:3:1:1:1:1. The amino acid composition is given for alpha + beta and gamma as well as delta and epsilon components. 3. The maximum specific activity of the enzyme was 200 U/mg under the optimum conditions. The enzyme was inactivated by incubation at 0 degrees C and strongly inhibited by the antibiotic Dio-9 but not by oligomycin and N, N'-dicyclohexyl-carbodiimide. The effects of kinetic parameters and anions on the enzyme are reported. Two active sites for Mg-ATP with Km values of 0.045mM and 0.37mM and a single activie site for Mg-ITP with Km = 0.179mM were found. A study of the temperature dependence of the maximum activity revealed a straight line in the Arrhenius plots with an activation energy of 11.0 kcal/mol (= 46 kH/mol).  相似文献   

5.
Rhodanese (thiosulphate sulphurtransferase , EC 2.8.1.1.) from Cercopithecus aethiops (vervet monkey) liver has been isolated and purified by means of extraction, ammoniumsulphate and pH fractionation, anion-exchange chromatography, Sephacryl S-300 gel chromatography and cation-exchange chromatography. A yield of about 10% pure enzyme with a specific activity of 242 U/mg protein corresponding to a purification factor of 523 was obtained. The enzyme was physically characterized and its homogeneity determined by electrophoretic studies and gel chromatography. The rhodanese enzyme has a molecular weight of 37,000 daltons, a D020 ,w value of 7.6 X 10(-7) cm2 sec-1, a Stokes radius (molecular size) of 2.75 X 10(-7) cm and a frictional ratio of 1.071.  相似文献   

6.
Subcellular fractionation of cell-free extracts obtained by nitrogen cavitation showed that Penicillium chrysogenum Q176 contains a cytosolic as well as a mitochondrial homocitrate synthase activity. The cytosolic isoenzyme was purified about 500-fold, and its kinetic and molecular properties were investigated. Native homocitrate synthase shows a molecular mass of 155 +/- 10 kDa as determined by gel filtration and a pH of 4.9 +/- 0.1 as determined by chromatofocusing. The kinetic behaviour towards 2-oxoglutarate is hyperbolic, with Km = 2.2 mM; with respect to acetyl-CoA the enzyme shows sigmoidal saturation kinetics, with [S]0.5 = 41 microM and h = 2.6. The enzyme was inhibited strongly by L-lysine (Ki = 8 +/- 2 microM; 50% inhibition by 53 microM at 6 mM-2-oxoglutarate), competitively with 2-oxoglutarate, in protamine sulphate-treated and desalted cell-free extracts and in partially purified preparations. The extent of this inhibition was strongly pH-dependent. Both isoenzymes are equally susceptible to inhibition by lysine. The same inhibition pattern is shown by the enzyme from strain D6/1014A, which is a better producer of penicillin than strain Q176.  相似文献   

7.
Glucuronidation reactions catalysed by rat liver microsomal UDP-glucuronyltransferase are differentially inducible by 3-methylcholanthrene and phenobarbital. To elucidate the molecular basis of this functional heterogeneity the enzyme was purified from livers of rats pretreated with the inducing agents. Using cholate solubilization, chromatography on Bio-Gel A-1.5m and on DEAE-cellulose in the presence of the nonionic detergent Brij 58, two enzyme forms could be separated. Both forms were subsequently purified to apparent homogeneity by affinity chromatography on UDP-hexanolamine Sepharose 4B, 3-Methylcholanthrene-inducible enzyme activity towards 1-naphthol, 4-nitrophenol, 3-hydroxybenzo(a)pyrene and N-hydroxy-2-naphthylamine copurified with one enzyme form (enzyme 1). In contrast phenobarbital-inducible enzyme activity towards morphine, chloramphenicol and 4-hydroxybiphenyl was associated with the other enzyme fraction (enzyme 2). Sodium dodecylsulfate/polyacrylamide gels showed similar molecular weights of 54000 for enzyme 1 and 56000 for enzyme 2. The results suggest the presence of at least two forms of UDP-glucuronyltransferase in rat liver. Factors affecting enzyme activity in purified and membrane-bound states are discussed.  相似文献   

8.
Some molecular properties of the elastase II preparation, homogenous in ultracentrifugation, have been determined. The molecular weight is 25 000, the sedimentation coefficient and the diffusion coefficient are 3.69-10(-13) s(-1) and 12.09-10(-7) cm2/s, respectively. The partial specific volume was 0.716 g/cm3, and the axial ratio is 1.95. Elastase II exhibited a considerably lower content of arginine, tyrosine, and valine, and a higher content of proline, serine and conjugated carbohydrates than elastase I. The N-terminal amino acid of the enzyme is leucine, and its isoelectric point was 10.7.  相似文献   

9.
1. A neutral proteinase (EC 3.4.-.-) with elastolytic activity was isolated from canine bloodstream leucocytes, and purified to apparent homogeneity by a two-step procedure consisting of DEAE-Sephadex chromatography and molecular sieving on Sephadex G-75. 2. The molecular weight of the enzyme was 23 500, and the absorbance (A1%1cm) at 282 nm was 6.1. Amino acid analysis showed high content of glycine, aspartic acid, and valine, and low proportion of methionine, lysine and histidine as well as the absence of tyrosine in the enzyme molecule. 3. The proteinase was active against several protein substrates as well as towards N-t-butyloxycarbonyl-L-alanine p-nitrophenyl ester, N-acetyl-L-alanyl-tyrosine ethyl ester. 4. The enzyme was inactivated by diisopropylfluorophosphate, N-acetyl-L-alanyl-L-alanyl-L-alanine chloromethyl ketone, and N-p-tosyl-L-phenylalanine chloromethyl ketone. Inhibition by some natural proteinase inhibitors was also noted.  相似文献   

10.
A novel thermostable MnSOD was purified to electrophoretic homogeneity from the fungal strain Humicola lutea 110. The preparation of the pure metalloenzyme was performed using treatment with acetone followed by ion exchange and gel permeation chromatography. We found that the activity of this enzyme comprises about 80% of the total superoxide dismutase activity in the crude extract, containing two proteins: MnSOD and Cu/ZnSOD. The MnSOD has a molecular mass of approximately 76 kDa and 7200 U/mg protein specific activity. It is a tetrameric enzyme with four identical subunits of 18 860 Da each as indicated by SDS-PAGE, amino acid analysis and mass spectrometry. N-terminal sequence analysis of MnSOD from the fungal strain revealed a high degree of structural homology with enzymes from other eukaryotic sources. Physicochemical properties were determined by absorption spectroscopy and circular dichroism measurements. The UV absorption spectrum was typical for an MnSOD enzyme, but displayed an increased absorption in the 280 nm region (epsilon280 = 10.4 mM(-1). cm(-1)), attributed to aromatic amino acid residues. The CD data show that MnSOD has two negative Cotton effects at 208 and 222 nm allowing the calculation of its helical content. The ellipticity at 222 nm is 6800 deg. x m(2) x dmol(-1) and thus similar to the values reported for other MnSODs. The MnSOD from H. lutea 110 is stable over a wide range of pH (4.5-8), even in the presence of EDTA. The enzyme is thermostable at 70-75 degrees C, and more stable than MnSODs from other sources.  相似文献   

11.
Crystalline L-histidine ammonia-lyase of Achromobacter liquidum was prepared with a 24% recovery of the activity. The specific activity of the pure enzyme (63 mumol of urocanic acid min-1 mg-1) is similar to those so far reported for the enzyme from other sources. The purified enzyme appeared to be homogeneous by analytical disc electrophoresis and isoelectric focusing (pI = 4.95). The molecular weight determined by Sephadex G-200 gel filtration is 200000. The optimum pH is 8.2, and the optimum temperature is 50 degrees C. The enzyme showed strict specificity to L-histidine (Km = 3.6 mM). Several histidine derivatives are not susceptible to the enzyme but do inhibit the enzyme activity competitively; the most effective inhibitors are L-histidine methyl ester (Ki = 3.66 mM) and beta-imidazole lactic acid (Ki = 3.84 mM). L-Histidine hydrazide (Ki = 36 mM) and imidazole (Ki = 6 mM) noncompetitively inhibited the enzyme EDTA markedly inhibited enzyme activity and this inhibition were reversed by divalent metal ions such as Mn2+, Co2+ Zn2+, Ni2+, Mg2+, and Ca2+. These results suggest that the presence of divalent metal ions is necessary for the catalytic activity of histidine ammonia-lyase. Sodium borohydride and hydrogen peroxide inhibited the enzyme activity.  相似文献   

12.
Aldose reductase from calf lens was purified 15,000-fold. The homogeneity of the final preparation was demonstrated by molecular sieve chromatography, analytical ultracentrifugation, sodium dodecyl sulfate gel electrophoresis, Ouchterlony immunodiffusion, and polyacrylamide gel electrophoresis at three pH values. The monomeric nature of the enzyme is suggested by the molecular weight of 37,000 from both molecular sieve chromatography and sodium dodecyl sulfate-gel electrophoresis with beta-mercaptoethanol. This closely corresponds with a molecular weight of 40,400 estimated by using calculate physical constants in the Svedberg equation. The S20,w was 3.6 to 3.7 as determined from ultracentrifuge and sucrose density gradient data. The Stokes radius was found to be 2.5 +/- 0.2 nm and 2.75 +/- 0.15 nm by two different methods. The diffusion constant D20,w is (7.8 +/- 10(-7) +/- 0.45 X 10(-7) cm2/s). The molecule is nearly spherical as indicated by a frictional ratio f/fo = 1.14. The alpha-helical content was estimated from circular dichroism data to be 5% and did not change in the presence of added substrates, products, and some enzyme inhibitors. Homotropic cooperative effects were observed as shown by the concave downward curvature of the reciprocal plots.  相似文献   

13.
The DNA-binding ability of the poly-ADPribose polymerase-like enzyme from the extremely thermophilic archaeon Sulfolobus solfataricus was determined in the presence of genomic DNA or single stranded oligodeoxyribonucleotides. The thermozyme protected homologous DNA against thermal denaturation by lowering the amount of melted DNA and increasing melting temperature. The archaeal protein induced structural changes of the nucleic acid by modifying the dichroic spectra towards a shape typical of condensing DNA. However, enzyme activity was slightly increased by DNA. Competition assays demonstrated that the protein interacted also with heterologous DNA. In order to characterize further the DNA binding properties of the archaeal enzyme, various ss-oligodeoxyribonucleotides of different base composition, lengths (12-mer to 24-mer) and structure (linear and circular) were used for fluorescence titration measurements. Intrinsic fluorescence of the archaeal protein due to tryptophan (excitation at 295 nm) was measured in the presence of each oligomer at 60 degrees C. Changes of tryptophan fluorescence were induced by all compounds in the same range of base number per enzyme molecule, but independently from the structural features of oligonucleotides, although the protein exhibited a slight preference for those adenine-rich and circular. The binding affinities were comparable for all oligomers, with intrinsic association constants of the same order of magnitude (K=10(6) M(-1)) in 0.01 M Na-phosphate buffer, pH 8.0, and accounted for a "non-specific" binding protein. Circular dichroism analysis showed that at 60 degrees C the native protein was better organized in a secondary structure than at 20 degrees C. Upon addition of oligonucleotides, enzyme structure was further stabilized and changed towards a beta-conformation. This effect was more marked with the circular oligomer. The analysed oligodeoxyribonucleotides slightly enhanced enzyme activity with the maximal increase of 50% as compared to the control. No activation was observed with the circular oligomer.  相似文献   

14.
The effect of the organophosphoric inhibitor, SA-152, on the fibrinogen-coagulating and TAME-esterase activity of bovine alpha-thrombin was studied. The irreversible inhibition constants (k11 = 1.1 x 10(4) M-1.min-1,Ki = 0.7 x 10(-4) M, k2 = 0.8 min-1 towards the coagulating activity and kII = 0.7 x 10(4) M-1.min-1, Ki = 0.3 x 10(-4) M, k2 = 0.2 min-1 towards the esterase activity) were determined. The SA-152 inactivated alpha-thrombin was dialyzed and incubated with 0.5 M and 2.5 M NaCl and 10 mM TAME. There was no reconstitution of activity of the SA-152 modified alpha-thrombin after dialysis and treatment with high concentrations of NaCl and TAME. Heparin interactions with the anion-binding site of the high molecular weight recognition center in the alpha-thrombin molecule did not significantly influence the values of the kinetic constants for the enzyme inhibition by SA-152. This finding is consistent with the hypothesis on the irreversible binding of SA-152 in the active center of the enzyme.  相似文献   

15.
The pressor enzyme renin (EC 3.4.99.19) was isolated in a pure and stable form from hog kidney by affinity chromatography on a pepstatin/agarose gel followed by three additional steps of conventional chromatography. Destruction of the enzyme by proteolysis during isolation was prevented by chemically eliminating proteases in extracts. The pure preparation was used for the characterization of this enzyme. Renin was found to be a glycoprotein containing glucosamine and possessing binding affinity to concanavalin A. Contrary to previous reports, pure renin is stable at neutral pH either at 4 or -20 degrees for 3 to 8 weeks. It has a molecular weight of 36,400 as determined by equilibrium ultracentrifugation, an isoelectric point of 5.2 and E1%1cm (280 nm) of 9.1. In contrast to crude preparations, the enzyme activity has a broad pH optimum between pH 5.5 and 7.0 for both hog angiotensinogen and the synthetic octapeptide substrate benzyloxycarbonyl-Pro-Phe-His-Leu-Leu-Val-Tyr-Ser-beta-naphthylamide. The rate of formation of angiotensin I from hog angiotensinogen at pH 6.0 and 37 degrees was 267 microng/h/microng of renin, or 2000 Goldblatt units/mg of renin. For the synthetic fluorogenic octapeptide substrate benzyloxycarbonyl-Pro-Phe-His-Leu-Leu-Val-Tyr-Ser-beta-naphthylamide, a Km of 33 micronM and a Vmax of 0.94 micronmol/h/mg of enzyme were obtained at pH 6.5 and 37 degrees.  相似文献   

16.
4-Chlorobenzoate:CoA ligase, the first enzyme in the pathway for 4-chlorobenzoate dissimilation, has been partially purified from Arthrobacter sp. strain TM-1, by sequential ammonium sulphate precipitation and chromatography on DEAE-Sepharose and Sephacryl S-200. The enzyme, a homodimer of subunit molecular mass approximately 56 kD, is dependent on Mg2+-ATP and coenzyme A, and produces 4-chlorobenzoyl CoA and AMP. Besides Mg2+, Mn2+, Co2+, Fe2+ and Zn2+ are also stimulatory, but not Ca2+. Maximal activity is exhibited at pH 7.0 and 25 degrees C. The ligase demonstrates broad specificity towards other halobenzoates, with 4-chlorobenzoate as best substrate. The apparent Michaelis constants (Km) of the enzyme for 4-chlorobenzoate, CoA and ATP were determined as 3.5, 30 and 238 microM respectively. 4-Chlorobenzoyl CoA dehalogenase, the second enzyme, has been purified to homogeneity by sequential column chromatography on hydroxyapatite, DEAE-Sepharose and Sephacryl S-200. It is a homotetramer of 33 kD subunits with an isoelectric point of 6.4. At pH 7.5 and 30 degrees C, Km and kcat for 4-CBCoA are 9 microM and 1 s(-1) respectively. The optimum pH is 7.5, and maximal enzymic activity occurs at 45 degrees C. The properties of this enzyme are compared with those of the 4-chlorobenzoyl CoA dehalogenases from Arthrobacter sp. strain 4-CB1 and Pseudomonas sp. strain CBS-3, which differ variously in their N-terminal amino acid sequences, optimal pH values, pI values and/or temperatures of maximal activity.  相似文献   

17.
A novel GST isoenzyme was purified from hepatopancreas cytosol of Atactodea striata with a combination of affinity chromatography and reverse-phase HPLC. The molecular weight of the enzyme was determined to be 24 kDa by SDS-PAGE electrophoresis and 48 kDa by gel chromatography, in combination with GST information from literature revealed that the native enzyme was homodimeric with a subunit of M(r) 24 kDa. The purified enzyme, exhibited high activity towards 1-chloro-2,4-dinitrobenzene (CDNB) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Kinetic analysis with respect to CDNB as substrate revealed a K(m) of 0.43 mM and V(max) of 0.24 micromol/min/mg and a specific activity of 108.9 micromol/min/mg. The isoelectric point of the enzyme was 5.5 by isoelectric focusing and its optimum temperature was 38 degrees C and the enzyme had a maximum activity at approximately pH 8.0. The amino acid composition was also determined for the purified enzyme.  相似文献   

18.
A glutathione S-transferase (GST) from Lactuca sativa was purified to electrophoretic homogeneity approximately 403-fold with a 9.6% activity yield by DEAE-Sephacel and glutathione (GSH)-Sepharose column chromatography. The molecular weight of the enzyme was determined to be approximately 23,000 by SDS-polyacrylamide gel electrophoresis and 48,000 by gel chromatography, indicating a homodimeric structure. The activity of the enzyme was significantly inhibited by ShexylGSH and S-(2,4-dinitrophenyl) glutathione. The enzyme displayed activity towards 1-chloro-2,4-dinitrobenzene, a general GST substrate and high activities towards ethacrynic acid. It also exhibited glutathione peroxidase activity toward cumene hydroperoxide.  相似文献   

19.
Acid phosphatase from yeast Saccharomyces cerevisiae was purified, and its physicochemical and kinetic properties were investigated. The sedimentation coefficient has been determined to be s0(20,w) = 13.6 S. The diffusion constant has been found to be 3.9 X 10(-7) cm2s-1, and the calculated partial specific volume was v = 0.663 cm3/g. From these data, a molecular weight of 252,000 was calculated. Electrophoresis on gel slabs, with a linear concentration gradient of polyacrylamide (4-30%), showed size heterogeneity of the native enzyme preparation and indicated an apparent molecular weight in the range of 170,000 to 360,000. In the presence of sodium dodecyl sulfate, the molecular weight was in the range of 82,000 to 165,000, indicating dimeric structure of the native enzyme, which was confirmed by cross-linking experiments. Isoelectric focusing demonstrated charge heterogeneity of enzyme preparation. From CD spectrum it was calculated that the enzyme contains about 29% of alpha-helical structure. Excitation at 278 nm gave an emission fluorescence spectrum with a maximum at 340 nm. Amino acid analysis revealed a high content of aspartic acid, serine, and threonine. Glycine is found as the NH2-terminal amino acid. Initial velocity dependence on substrate concentration, as well as on pH, and thermostability studies indicated the presence of at least two enzyme forms in the preparation.  相似文献   

20.
An endoglucanase (1,4-beta-D-glucan glucanohydrolase, EC 3.2.1.4) was purified from Clostridium thermocellum by procedures that included centrifugation, ultrafiltration, selective precipitation, ion-exchange Sephadex chromatography and preparative gel electrophoresis. The 22-fold-purified enzyme behaved as a homogeneous protein under non-denaturing conditions. The enzyme represented a significant component (greater than 25%) of total extracellular endoglucanase activity, but was purified in low yield by the procedures employed. The native molecular weight of the endoglucanase was determined by ultracentrifugational analysis, amino acid composition and polyacrylamide-gel electrophoresis, and varied between 83000 and 94000. The enzyme contained 11.2% carbohydrate and was isoelectric at pH 6.72. The pH and temperature optima of the endoglucanase were 5.2 and 62 degrees C respectively. The enzyme lacked cysteine and was low in sulphur-containing amino acids. The purified endoglucanase displayed: high activity towards carboxymethylcellulose, celloheptaose, cellohexaose and cellopentaose; low activity towards Avicel microcrystalline cellulose and cellotetraose; no detectable activity towards cellotriose or cellobiose; increased activity towards cello-oligosaccharides with increasing degree of polymerization. The internal glycosidic bonds of cello-oligosaccharides were cleaved by the enzyme in preference to external linkages. The apparent Michaelis constant ([S]0.5V) and Vmax. for cellopentaose and cellohexaose hydrolysis were 2.30 mM and 39.3 mumol/min per mg of protein, and 0.56 mM and 58.7 mumol/min per mg of protein, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号