首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We investigated the metapopulation genetic structure of two specialist parasitoids, Cotesia melitaearum and Hyposoter horticola, attacking the Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands south-western Finland. The host butterfly persists as a classic metapopulation in a network of 4,000 small habitat patches within an area of 50 by 70 km . The two parasitoids are known to differ greatly in their population dynamics and spatial pattern of occupancy in local host populations. Analysis of genetic population structure using FST and clustering of multilocus genotypes revealed a distinct large-scale spatial structure in C. melitaearum but a very weak pattern in H. horticola. This result is consistent with the known difference in the dispersal range (much longer in H. horticola) and population size (much greater in H. horticola) of the two parasitoids.  相似文献   

2.
The view of (insect) populations as assemblages of local subpopulations connected by gene flow is gaining ground. In such structured populations, local adaptation may occur. In phytophagous insects, one way in which local adaptation has been demonstrated is by performing reciprocal transplant experiments where performance of insects on native and novel host plants are compared. Trade-offs are assumed to be responsible for a negative correlation in performance on alternative host plants. Due to mixed results of these experiments, the importance of trade-offs in host plant use of phytophagous insects has been under discussion. Here we propose that another genetic mechanism, the evolution of coadapted gene complexes, might also be associated with local adaptation. In this case, however, transplant experiments might not reveal any local adaptation until hybridization takes place. We review the results we have obtained in our work on the host plant use of the flea beetle Phyllotreta nemorum L. (Coleoptera: Chrysomelidae: Alticinae), and propose a hypothesis involving coadapted genes to explain the distribution of genes that render P. nemorum resistant to defences of one of its host plants, Barbarea vulgaris R. Br. (Cruciferae).  相似文献   

3.
Ren Z  Zhu B  Wang D  Ma E  Su D  Zhong Y 《Genetica》2008,132(1):103-112
Most of our current understanding of comparative population structure has been come from studies of parasite–host systems, whereas the genetic comparison of gallnut-aphids and their host-plants remain poorly documented. Here, we examined the population genetic structure of the Chinese sumac aphid Schlechtendalia chinensis and its unique primary host-plant Rhus chinensis in a mountainous province in western China using inter-simple sequence repeat (ISSR) markers. Despite being sampled from a mountainous geographic range, analysis of molecular variance (AMOVA) showed that the majority of genetic variation occurred among individuals within populations of both the aphid and its host. The aphid populations were found to be structured similarly to their primary host populations (F ST values were 0.239 for the aphid and 0.209 for its host), suggesting that there are similar patterns of gene flow between the populations of the aphid and between populations of its host-plant. The genetic distances (F ST/1 − F ST) between the aphid populations and between its host-plant populations were uncorrelated, indicating that sites with genetically similar host-plant populations may not always have genetically similar aphid populations. The lack of relationships between genetic and geographical distance matrices suggested that isolation by distance (IBD) played a negligible role at this level. This may be mainly attributed to the founder effect, genetic drift and the relative small spatial scale between populations. Zhumei Ren and Bin Zhu contributed equally to this work.  相似文献   

4.
The objective of this study was to find features in microcyclic rust fungi (Uredinales) on wild host plants favorable for extension of the natural range of distribution. Puccinia glechomatis, a leptosporic rust fungus and its herbal host Glechoma hederacea (Lamiaceae), both natives to Eurasia and introduced in North America, were used for this study. Although the host has been known from North America since the beginning of the nineteenth century, the rust fungus was first observed there only in recent years. Favorable features were identified by studying the life cycle of the rust, including nuclear conditions and seasonal characteristics as well as its spread in North America. The life cycle was studied macroscopically by inoculation experiments, by various light microscope techniques, and by scanning electron microscopy. The spread of the pathogen and its host were reconstructed by evaluating host plant herbarium specimens and databases, literature, and field study data. The studies on P. glechomatis show that, generally for microcyclic rust fungi, establishment and potential for spread are based on several favorable features of both the host (e.g., synanthropic occurence and dispersal, genetic stability, regeneration of vegetative plant parts) and the rust fungus (asexual reproduction/genetic stability, homothallism, propagation with host plant, formation of both leptospores and thick-walled teliospores).  相似文献   

5.
We studied the efficiency (proportion of the crop removed) and quantitative effectiveness (number of fruits removed) of dispersal of Miconia fosteri and M. serrulata (Melastomataceae) seeds by birds in lowland tropical wet forest of Ecuador. Specifically, we examined variation in fruit removal in order to reveal the spatial scale at which crop size influences seed dispersal outcome of individual plants, and to evaluate how the effect of crop size on plant dispersal success may be affected by conspecific fruit abundance and by the spatial distribution of frugivore abundance. We established two 9-ha plots in undisturbed terra-firme understory, where six manakin species (Pipridae) disperse most seeds of these two plant species. Mean levels of fruit removal were low for both species, with high variability among plants. In general, plants with larger crop sizes experienced greater efficiency and effectiveness of fruit removal than plants with smaller crops. Fruit removal, however, was also influenced by microhabitat, such as local topography and local neighborhood. Fruit-rich and disperser-rich patches overlapped spatially for M. fosteri but not M. serrulata, nonetheless fruit removal of M. serrulata was still much greater in fruit-rich patches. Fruit removal from individual plants did not decrease in patches with many fruiting conspecifics and, in fact, removal effectiveness was enhanced for M. fosteri with small crop sizes when such plants were in patches with more conspecifics. These results suggest that benefits of attracting dispersers to a patch balanced or outweighed the costs of competition for dispersers. Spatial pattern of fruit removal, a measure of plant fitness, depended on a complex interaction among plant traits, spatial patterns of plant distribution, and disperser behavior.  相似文献   

6.
Restricted migration and habitat fragmentation promote genetic differentiation between populations: Because most of the hosts of Panonychus citri are woody plants, mainly citrus trees that are usually planted at intervals of several metres, this mite likely faces more risks (e.g., starvation) by dispersing between host plants, compared to other spider mite species that infest both herbaceous and woody plants, such as Tetranychus urticae. Such a limited gene flow between patches (host plants) can lead to differentiation of populations even within a small area. Therefore, we hypothesize that P. citri populations are genetically differentiated not only between distant populations but also within small areas, such as within a grove. To test this hypothesis, we investigated the divergence of P. citri populations in Japanese citrus groves according to a hierarchical arrangement of geographical distance, ranging from distant populations (10 groves distributed throughout different areas in two major Japanese islands; this level of analysis is referred to as ‘geographic’) to local populations (different trees in a specific grove; ‘local’). Three molecular markers were used an esterase locus, one microsatellite and a point mutation in the mitochondrial cytochrome oxidase subunit I. At a local level acaricide susceptibility tests were also performed using two acaricides: fenpyroximate (25 ppm) and etoxazole (3.33 ppm). At a broad geographic level the gene diversity decreased with decreasing area size and distance between populations. By contrast, at the local level, populations maintained a significant level of variation between trees within groves, and the divergence within groves was higher than between groves. Whereas no statistical difference of the mortalities was detected among groves for the two acaricides tested, the difference was statistically significant among trees within groves in fenpyroximate (ANOVA, p < 0.025) and marginal in etoxazole (0.1 < p < 0.05). We concluded that P. citri populations maintain a higher level of variation between trees (or patches of trees) within groves than between groves at the local level, though the gene diversity tended to be smaller with decreasing distance between populations at the geographical level. Results are discussed in relation to the dispersal behaviour of spider mites.  相似文献   

7.
Spatial variation in the resistance structure of Linum marginale (wild flax) populations to the rust fungus Melampsora lini, and in the racial structure of this pathogen, was investigated by sampling 10 populations distributed throughout the Kosciusko National Park, New South Wales, Australia. Considerable differences were found among populations in the structure of both host and pathogen. Host populations were divided into three broad categories: (1) populations susceptible to all testing races; (2) populations containing a strictly limited number of resistant phenotypes; and (3) populations with a considerable diversity of resistant phenotypes. The pathogen populations also showed a range of diversity. The major differences between these populations were determined by the occurrence and frequency of four common races of pathogen (races A, E, K, and N). These differences were apparent both at a regional spatial scale (over the 100 km separation of the most distant populations) and at a local scale where major differences were detected between two populations only 300 m apart. The distribution of the four common races of M. lini was consistent with the hypothesis that a fitness cost was associated with unnecessary virulence. In general, however, differences in the structure of pathogen populations from genetically very similar host populations implied that, in addition to host resistance genes, other evolutionary forces are also important in determining the genetic structure of individual pathogen populations.  相似文献   

8.
Yugal K. Prasad 《BioControl》1990,35(3):421-429
The discovery of isolated patches of prey by the natural enemies of the cottony-cushion scaleIcerya purchasi Maskell was tested in the field on potted plants ofAcacia baileyana and citrus between November and February in South Australia. The survival of scales to adults in patches in the 4 fortnightly releases (cohort sets) was not significantly different between location-1 (under anAcacia tree harbouring scales and its natural enemies) and location-2 (about 500 m away from the nearest host plant of the scale). The temporal distribution of mortality in the scale cohorts was described by the Weibull model. The proportion of scales surviving at the 2 locations (on the 3rd & 6th fornight) was not significantly different suggesting that the total effect of all the mortality factors on the scales at the 2 locations was the same. The trends in prey patches destroyed in time could be explained from the period of activity of the natural enemies in the field.Rodolia cardinalis (Mulsant) had discovered the prey patches within a fortnight of the release of scale crawlers. The results substantiate earlier reports thatRodolia can find and destroy isolated scale colonies.   相似文献   

9.
Jin Y  He T  Lu BR 《Genetica》2006,128(1-3):41-49
Knowledge of spatial patterns of genetic variation within populations of wild relative species has significant implications with respect to sampling strategies for ex situ and in situ conservation. To study spatial genetic structure of wild soybean (Glycine soja Sieb. et Zucc.) at the fine scale, three natural populations in northern China were analyzed using inter-simple sequence repeat (ISSR) fingerprints for estimating kinship coefficients. A regression analysis of kinship coefficients against spatial distances revealed that individuals occurring close together tended to be more genetically related. The Sp statistic further indicated a comparable spatial pattern among the three wild soybean populations with similar Sp values (mean = 0.0734, varied from 0.0645 to 0.0943) detected across the three populations. Genetic patches were on average ca. 20 m in size, and the effective neighborhood sizes varied between 10 and 15 m. The spatial genetic structure evident in the wild soybean populations may be attributed to the restricted seed dispersal and predominant inbreeding mating system of this species. The detection of family structure in the populations of wild soybean has a significant implication for the effective conservation of the important genetic resources.  相似文献   

10.
Local extinction and colonisation rates are key factors in host–parasitoid metapopulation theory, but experimental evidence from the field is scarce. We studied the host–parasitoid system consisting of the aphid Metopeurum fuscoviride and its specialist parasitoid Lysiphlebus hirticornis. This system is characterised by a patchy distribution of the host plants (Tanacetum vulgare) and by frequent extinctions of local aphid populations. In a first field experiment, we found that the presence of the parasitoid increases the likelihood of extinction of local host populations (=all aphids living on one plant). In a second field experiment, we manipulated the distance between local host populations. Parasitoid colonisation rate strongly decreased with increasing distance between local host populations. Thus, our results show the importance of parasitoids for local host populations extinction and of distance between local host populations for parasitoid colonisation rate, suggesting the importance of spatial processes for host–parasitoid systems in the field.  相似文献   

11.
The enterobacterial pathogen Erwinia chrysanthemi causes soft rot diseases on a wide range of plants, including the model plant Arabidopsis thaliana. This bacterium proliferates in the host by secreting a set of pectin degrading enzymes responsible for symptom development. In addition, survival of this bacterium in planta requires two high-affinity iron acquisition systems mediated by siderophores and protective systems against oxidative damages, suggesting the implication by both partners of accurate mechanisms controlling their iron homeostasis under conditions of infection. In this review, we address this question and we show that ferritins both from the pathogen and the host are subtly implicated in the control of this interplay.  相似文献   

12.
Spatial variation in environmental conditions can lead to local adaptation of plant populations, particularly if gene flow among populations is low. Many studies have investigated adaptation to contrasting environmental conditions, but little is known about the spatial scale of adaptive evolution. We studied population differentiation and local adaptation at two spatial scales in the monocarpic grassland perennial Carlina vulgaris. We reciprocally transplanted seedlings among five European regions (northwestern Czech Republic, central Germany, Luxembourg, southern Sweden and northwestern Switzerland) and among populations of different sizes within three of the regions. We recorded survival, growth and reproduction over three growing periods. At the regional scale, several performance traits and the individual fitness of C. vulgaris were highest if the plants were grown in their home region and they decreased with increasing transplant distance. The effects are likely due to climatic differences that increased with the geographical distance between regions. At the local scale, there were significant interactions between the effects of the population of origin and the transplant site, but these were not due to an enhanced performance of plants at their home site and they were not related to the geographical or environmental distance between the site of origin and the transplant site. The size of the population of origin did not influence the strength of local adaptation. The results of our study suggest that C. vulgaris consists of regionally adapted genotypes, and that distance is a good predictor of the extent of adaptive differentiation at large scales ( > 200 km) but not at small scales. We conclude that patterns of local adaptation should be taken into account for the efficient preservation of genetic resources, when assessing the status of a plant species and during conservation planning.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

13.
Habitat fragmentation can disrupt communities of interacting species even if only some of the species are directly affected by fragmentation. For instance, if parasitoids disperse less well than their herbivorous hosts, habitat fragmentation may lead to higher herbivory in isolated plant patches due to the absence of the third trophic level. Community-level studies suggest that parasitoids tend to have limited dispersal abilities, on the order of tens of metres, much smaller than that of their hosts, while species-oriented studies document dispersal by parasitoids on the scale of kilometres. In this study the distribution patterns of three parasitoid species with different life histories and their moth host, Hadena bicruris, a specialist herbivore of Silene latifolia, were compared in a large-scale network of natural fragmented plant patches along the rivers Rhine and Waal in the Netherlands. We examined how patch size and isolation affect the presence of each species. Additionally, experimental plots were used to study the colonisation abilities of the species at different distances from source populations.In the natural plant patches the presence of the herbivore and two of the parasitoids, the gregarious specialist Microplitis tristis and the gregarious generalist Bracon variator were not affected by patch isolation at the scale of the study, while the solitary specialist Eurylabus tristis was. In contrast to the herbivore, the presence of all parasitoid species declined with plant patch size. The colonisation experiment confirmed that the herbivore and M. tristis are good dispersers, able to travel at least 2 km within a season. B. variator showed intermediate colonisation ability and E. tristis showed very limited colonisation ability at this spatial scale. Characteristics of parasitoid species that may contribute to differences in their dispersal abilities are discussed.  相似文献   

14.
We investigated spatio-temporal genetic variation in allele frequency and estimated gene flow among sympatric populations of Tetranychus kanzawai on different host plants by the use of microsatellite markers. In the analysis of spatial genetic variation, no isolation by distance was detected among the populations. Gene flow between populations on Hydrangea macrophylla and those on other host plants was relatively restricted, whereas the populations on Akebia quinata and Clerodendrum trichotomum were almost panmictic. Our study on temporal genetic variation showed (1) that population differentiation was slightly reduced during the period from April to May owing to frequent gene flow among populations; and (2) that population differentiation was greatly enhanced from May to October because of bottleneck effects. Genetic differentiation among T. kanzawai populations was caused by the effect of host plants rather than by the effect of geographic distance among populations, suggesting possibility of sympatric host race formation in this species.This revised version was published online in May 2005 with a corrected cover date.  相似文献   

15.
The extent and speed at which pathogens adapt to host resistance varies considerably. This presents a challenge for predicting when—and where—pathogen evolution may occur. While gene flow and spatially heterogeneous environments are recognized to be critical for the evolutionary potential of pathogen populations, we lack an understanding of how the two jointly shape coevolutionary trajectories between hosts and pathogens. The rust pathogen Melampsora lini infects two ecotypes of its host plant Linum marginale that occur in close proximity yet in distinct populations and habitats. In this study, we found that within-population epidemics were different between the two habitats. We then tested for pathogen local adaptation at host population and ecotype level in a reciprocal inoculation study. Even after controlling for the effect of spatial structure on infection outcome, we found strong evidence of pathogen adaptation at the host ecotype level. Moreover, sequence analysis of two pathogen infectivity loci revealed strong genetic differentiation by host ecotype but not by distance. Hence, environmental variation can be a key determinant of pathogen population genetic structure and coevolutionary dynamics and can generate strong asymmetry in infection risks through space.  相似文献   

16.
Contrasting host and parasite population genetic structures can provide information about the population ecology of each species and the potential for local adaptation. Here, we examined the population genetic structure of the nematode Neoheligmonella granjoni at a regional scale in southeastern Senegal, using 11 microsatellite markers. Using the results previously obtained for the two main rodent species of the host community, Mastomys natalensis and Mastomys erythroleucus, we tested the hypothesis that the parasite population structure was mediated by dispersal levels of the most vagile host. The results showed similar genetic diversity levels between host and parasite populations, and consistently lower levels of genetic differentiation in N. granjoni, with the exception of one outlying locus with a high FST. The aberrant pattern at this locus was primarily due to two alleles occurring at markedly different frequencies in one locality, suggesting selection at this locus, or a closely linked one. Genetic differentiation levels and isolation by distance analyses suggested that gene flow was high and random in N. granjoni at the spatial scale examined. The correlation between pair-wise genetic differentiation levels in the parasite and its main host was consistent with the hypothesis tested. Models of local adaptation as a function of the dispersal rates of hosts and parasites suggest that opportunities for local adaptation would be low in this biological system.  相似文献   

17.
Establishment of salt tolerant rice plants was examined by single step or step up NaCl treatments of shoot bud clumps in vitro, and variation among in vitro salt tolerant plants were examined by rapid amplified polymorphic DNA (RAPD). Shoot bud clumps were necrotic, stubbed or dead when subjected to single step treatment with 1.5 or 2.0 % NaCl. Conversely all the clumps could grow vigorously when subjected to step up salt treatment with 0.5, 1.0, 1.5 and 2.0 % NaCl at 3 week intervals and 2 % NaCl tolerant plants were established. RAPD revealed shoot bud clumps with and without different NaCl treatments, seedlings from field and grown in vitro, and regenerants from callus were genetically close to one another. Conversely, callus cultures were genetically isolated. Growth under different salt stress conditions was not correlated with the genetic variation, suggesting that 2.0 % NaCl tolerant plants might not result from genetic mutation but were due to adaptation of plants by step up NaCl treatment in vitro.  相似文献   

18.
The effects of herbivory by the guild of chrysomelid beetles on the growth and survival ofRumex plants were examined in relation to the distribution and size of the plants. Gastrophysa atrocyanea never appeared on solitary plants whereasMantula clavareaui showed even utilization of solitary and clumped plants.Galerucella vittaticollis utilized large solitary plants most frequently. In patches of the host plants, the frequency of withering of the aerial parts was higher on small plants. The regrowth rate was higher when the aerial parts withered in spring than in summer. In patches of the host plants, the regrowth rate was higher on small plants. On the other hand, it was lower on small solitary plants than on large solitary plants and small plants in patches. In large plants, no difference in survival rate was recognized between solitary and clumped plants, because both the frequency of withering of the aerial parts and the regrowth rate were lower in clumped than solitary plants. The high vigor against intense herbivory by the chrysomelid beetles brought on the delay in the phenology ofRumex plants. This shift permits in parts the existence ofG. vittaticollis in mid summer. The temporal and spatial interactions between herbivore guild and the host plants were discussed.  相似文献   

19.
For insects that develop inside discrete hosts, both host size and host quality constrain offspring growth, influencing the evolution of body size and life history traits. Using a two-generation common garden experiment, we quantified the contribution of maternal and rearing hosts to differences in growth and life history traits between populations of the seed-feeding beetle Stator limbatus that use a large-seeded host, Acacia greggii, and a small-seeded host, Pseudosamanea guachapele. Populations differed genetically for all traits when beetles were raised in a common garden. Contrary to expectations from the local adaptation hypothesis, beetles from all populations were larger, developed faster and had higher survivorship when reared on seeds of A. greggii (the larger host), irrespective of their native host. We observed two host plant-mediated maternal effects: offspring matured sooner, regardless of their rearing host, when their mothers were reared on P. guachapele (this was not caused by an effect of rearing host on egg size), and females laid larger eggs on P. guachapele. This is the first study to document plasticity by S. limbatus in response to P. guachapele, suggesting that plasticity is an ancestral trait in S. limbatus that likely plays an important role in diet expansion. Although differences between populations in growth and life history traits are likely adaptations to their host plants, host-associated maternal effects, partly mediated by maternal egg size plasticity, influence growth and life history traits and likely play an important role in the evolution of the breadth of S. limbatus’ diet. More generally, phenotypic plasticity mediates the fitness consequences of using novel hosts, likely facilitating colonization of new hosts, but also buffering herbivores from selection post-colonization. Plasticity in response to novel versus normal hosts varied among our study populations such that disentangling the historical role of plasticity in mediating diet evolution requires the consideration of evolutionary history.  相似文献   

20.
Restricted seed dispersal frequently leads to fine‐scale spatial genetic structure (i.e., FSGS) within plant populations. Depending on its spatial extent and the mobility of pollinators, this inflated kinship at the immediate neighbourhood can critically impoverish pollen quality. Despite the common occurrence of positive FSGS within plant populations, our knowledge regarding the role of long‐distance pollination preventing reproductive failure is still limited. Using microsatellite markers, we examined the existence of positive FSGS in two low‐density populations of the tree Pyrus bourgaeana. We also designed controlled crosses among trees differing in their kinship to investigate the effects of increased local kinship on plant reproduction. We used six pollination treatments and fully monitored fruit production, fruit and seed weight, proportion of mature seeds per fruit, and seed germination. Our results revealed positive FSGS in both study populations and lower fruit initiation in flowers pollinated with pollen from highly‐genetically related individuals within the neighbourhood, with this trend intensifying as the fruit development progressed. Besides, open‐pollinated flowers exhibited lower performance compared to those pollinated by distant pollen donors, suggesting intense qualitative pollen limitation in natural populations. We found positive fine‐scale spatial genetic structure is translated into impoverished pollen quality from nearby pollen donors which negatively impacts the reproductive success of trees in low‐density populations. Under this scenario of intrapopulation genetic rescue by distant pollen donors, the relevance of highly‐mobile pollinators for connecting spatially and genetically distant patches of trees may be crucial to safeguarding population recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号