首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary surfactant protein B (SP-B) is an essential protein for lowering surface tension in the alveoli. SP-B1-25, a peptide comprised of the N-terminal 25 amino-acid residues of SP-B, is known to retain much of the biological activity of SP-B. Circular dichroism has shown that when SP-B1-25 interacts with negatively charged lipid vesicles, it contains significant helical structure for the lipid compositions and peptide/lipid ratios studied here. The effect of SP-B1-25 on lipid organization and polymorphisms was investigated via DSC, dynamic light scattering, transmission electron microscopy, and solid-state NMR spectroscopy. At 1-3 mol% peptide and physiologic temperature, SP-B1-25 partitions at the interface of negatively charged PC/PG lipid bilayers. In lipid mixtures containing 1-5 mol% peptide, the structure of SP-B1-25 remains constant, but 2H and 31P NMR spectra show the presence of an isotropic lipid phase in exchange with the lamellar phase below the Tm of the lipids. This behavior is observed for both DPPC/POPG and POPC/POPG lipid mixtures as well as for both the PC and PG components of the mixtures. For 1-3 mol% SP-B1-25, a return to a single lamellar phase above the lipid mixture Tm is observed, but for 5 mol% SP-B1-25 a significant isotropic component is observed at physiologic temperatures for DPPC and exchange broadening is observed in 2H and 31P NMR spectra of the other lipid components in the two mixtures. DLS and TEM rule out the formation of micellar structures and suggest that SP-B1-25 promotes the formation of a fluid isotropic phase. The ability of SP-B1-25 to fuse lipid lamellae via this mechanism, particularly those enriched in DPPC, suggests a specific role for the highly conserved N-terminus of SP-B in the packing of lipid lamellae into surfactant lamellar bodies or in stabilizing multilayer structures at the air-liquid interface. Importantly, this behavior has not been seen for the other SP-B fragments of SP-B8-25 and SP-B59-80, indicating a critical role for the proline rich first seven amino acids in this protein.  相似文献   

2.
Lung surfactant protein B (SP-B) is critical to minimizing surface tension in the alveoli. The C-terminus of SP-B, residues 59-80, has much of the surface activity of the full protein and serves as a template for the development of synthetic surfactant replacements. The molecular mechanisms responsible for its ability to restore lung compliance were investigated with circular dichroism, differential scanning calorimetry, and 31P and 2H solid-state NMR spectroscopy. SP-B59-80 forms an amphipathic helix which alters lipid organization and acyl chain dynamics in fluid lamellar phase 4:1 DPPC:POPG and 3:1 POPC:POPG MLVs. At higher levels of SP-B59-80 in the POPC:POPG lipid system a transition to a nonlamellar phase is observed while DPPC:POPG mixtures remain in a lamellar phase. Deuterium NMR shows an increase in acyl chain order in DPPC:POPG MLVs on addition of SP-B59-80; in POPC:POPG MLVs, acyl chain order parameters decrease. Our results indicate SP-B59-80 penetrates deeply into DPPC:POPG bilayers and binds more peripherally to POPC:POPG bilayers. Similar behavior has been observed for KL4, a peptide mimetic of SP-B which was originally designed using SP-B59-80 as a template and has been clinically demonstrated to be successful in treating respiratory distress syndrome. The ability of these helical peptides to differentially partition into lipid lamellae based on their degree of monounsaturation and subsequent changes in lipid dynamics suggest a mechanism for lipid organization and trafficking within the dynamic lung environment.  相似文献   

3.
SP-BCTERM, a cationic, helical peptide based on the essential lung surfactant protein B (SP-B), retains a significant fraction of the function of the full-length protein. Solid-state 2H- and 31P-NMR were used to examine the effects of SP-BCTERM on mechanically oriented lipid bilayer samples. SP-BCTERM modified the multilayer structure of bilayers composed of POPC, POPG, POPC/POPG, or bovine lipid extract surfactant (BLES), even at relatively low peptide concentrations. The 31P spectra of BLES, which contains ∼1% SP-B, and POPC/POPG with 1% SP-BCTERM, look very similar, supporting a similarity in lipid interactions of SP-BCTERM and its parent protein, full-length SP-B. In the model systems, although the peptide interacted with both the oriented and unoriented fractions of the lipids, it interacted differently with the two fractions, as demonstrated by differences in lipid headgroup structure induced by the peptide. On the other hand, although SP-BCTERM induced similar disruptions in overall bilayer orientation in BLES, there was no evidence of lipid headgroup conformational changes in either the oriented or the unoriented fractions of the BLES samples. Notably, in the model lipid systems the peptide did not induce the formation of small, rapidly tumbling lipid structures, such as micelles, or of hexagonal phases, the observation of which would have provided support for functional mechanisms involving peptide-induced lipid flip-flop or stabilization of curved lipid structures, respectively.  相似文献   

4.
The hydrophobic lung surfactant SP-B is essential for respiration. SP-B promotes spreading and adsorption of surfactant at the alveolar air-water interface and may facilitate connections between the surface layer and underlying lamellar reservoirs of surfactant material. SP-B63–78 is a cationic and amphipathic helical peptide containing the C-terminal helix of SP-B. 2H NMR has been used to examine the effect of SP-B63–78 on the phase behavior and dynamics of bicellar lipid dispersions containing the longer chain phospholipids DMPC-d 54 and DMPG and the shorter chain lipid DHPC mixed with a 3∶1∶1 molar ratio. Below the gel-to-liquid crystal phase transition temperature of the longer chain components, bicellar mixtures form small, rapidly reorienting disk-like particles with shorter chain lipid components predominantly found around the highly curved particle edges. With increasing temperature, the particles coalesce into larger magnetically-oriented structures and then into more extended lamellar phases. The susceptibility of bicellar particles to coalescence and large scale reorganization makes them an interesting platform in which to study peptide-induced interactions between lipid assemblies. SP-B63–78 is found to lower the temperature at which the orientable phase transforms to the more extended lamellar phase. The peptide also changes the spectrum of motions contributing to quadrupole echo decay in the lamellar phase. The way in which the peptide alters interactions between bilayered micelle structures may provide some insight into some aspects of the role of full-length SP-B in maintaining a functional surfactant layer in lungs.  相似文献   

5.
To explore the role of lung surfactant proteins SP-B and SP-C in storing and redelivering lipid from lipid monolayers during the compression and re-expansion occurring in lungs during breathing, we simulate the folding of lipid monolayers with and without these proteins. We utilize the MARTINI coarse-grained force field to simulate monolayers containing pure dipalmitoylphosphatidylcholine (DPPC) and DPPC mixed with palmitoyloleoylphosphatidylglycerol (POPG), palmitic acid (PA), and/or peptides. The peptides considered include the 25-residue N-terminal fragment of SP-B (SP-B1-25), SP-C, and several SP-B1-25 mutants in which charged and hydrophilic residues are replaced by hydrophobic ones, or vice-versa. We observe two folding mechanisms: folding by the amplification of undulations and folding by nucleation about a defect. The first mechanism is observed in monolayers containing either POPG or peptides, while the second mechanism is observed only with peptides present, and involves the lipid-mediated aggregation of the peptides into a defect, from which the fold can nucleate. Fold nucleation from a defect displays a dependence on the hydrophobic character of the peptides; if the number of hydrophobic residues is decreased significantly, monolayer folding does not occur. The addition of POPG or peptides to the DPPC monolayer has a fluidizing effect, which assists monolayer folding. In contrast, the addition of PA has a charge-dependent condensing affect on DPPC monolayers containing SP-C. The peptides appear to play a significant role in the folding process, and provide a larger driving force for folding than POPG. In addition to promoting fold formation, the peptides also display fusogenic behavior, which can lead to surface refining.  相似文献   

6.
KL4 is a 21-residue functional peptide mimic of lung surfactant protein B, an essential protein for lowering surface tension in the alveoli. Its ability to modify lipid properties and restore lung compliance was investigated with circular dichroism, differential scanning calorimetry, and solid-state NMR spectroscopy. KL4 binds fluid lamellar phase PC/PG lipid membranes and forms an amphipathic helix that alters lipid organization and acyl chain dynamics. The binding and helicity of KL4 is dependent on the level of monounsaturation in the fatty acid chains. At physiologic temperatures, KL4 is more peripheral and dynamic in fluid phase POPC/POPG MLVs but is deeply inserted into fluid phase DPPC/POPG vesicles, resulting in immobilization of the peptide. Substantial increases in the acyl chain order are observed in DPPC/POPG lipid vesicles with increasing levels of KL4, and POPC/POPG lipid vesicles show small decreases in the acyl chain order parameters on addition of KL4. Additionally, a clear effect of KL4 on the orientation of the fluid phase PG headgroups is observed, with similar changes in both lipid environments. Near the phase transition temperature of the DPPC/POPG lipid mixtures, which is just below the physiologic temperature of lung surfactant, KL4 causes phase separation with the DPPC remaining in a gel phase and the POPG partitioned between gel and fluid phases. The ability of KL4 to differentially partition into lipid lamellae containing varying levels of monounsaturation and subsequent changes in curvature strain suggest a mechanism for peptide-mediated lipid organization and trafficking within the dynamic lung environment.  相似文献   

7.
Molecularly defined synthetic vaccines capable of inducing both antibodies and cellular anti-tumor immune responses, in a manner compatible with human delivery, are limited. Few molecules achieve this target without utilizing external immuno-adjuvants. In this study, we explored a self-adjuvanting glyco-lipopeptide (GLP) as a platform for cancer vaccines using as a model MO5, an OVA-expressing mouse B16 melanoma. A prototype B and T cell epitope-based GLP molecule was constructed by synthesizing a chimeric peptide made of a CD8+ T cell epitope, from ovalbumin (OVA257–264) and an universal CD4+ T helper (Th) epitope (PADRE). The resulting CTL–Th peptide backbones was coupled to a carbohydrate B cell epitope based on a regioselectively addressable functionalized templates (RAFT), made of four α-GalNAc molecules at C-terminal. The N terminus of the resulting glycopeptides (GP) was then linked to a palmitic acid moiety (PAM), obviating the need for potentially toxic external immuno-adjuvants. The final prototype OVA-GLP molecule, delivered in adjuvant-free PBS, in mice induced: (1) robust RAFT-specific IgG/IgM that recognized tumor cell lines; (2) local and systemic OVA257–264-specific IFN-γ producing CD8+ T cells; (3) PADRE-specific CD4+ T cells; (4) OVA-GLP vaccination elicited a reduction of tumor size in mice inoculated with syngeneic murine MO5 carcinoma cells and a protection from lethal carcinoma cell challenge; (5) finally, OVA-GLP immunization significantly inhibited the growth of pre-established MO5 tumors. Our results suggest self-adjuvanting glyco-lipopeptide molecules as a platform for B Cell, CD4+, and CD8+ T cell epitopes-based immunotherapeutic cancer vaccines. Both I. Bettahi and G. Dasgupta have contributed equally to this work.  相似文献   

8.
We investigate the structure of aggregates formed due to DNA interaction with saturated neutral phosphatidylcholines [dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine] in presence of Ca2+ and Mg2+ cations using simultaneous synchrotron small- and wide-angle X-ray diffractions. For DPPC:DNA = 3:1 mol/base and in the range of 1–50 mM Ca2+, the diffractograms show structural heterogeneity of aggregates. We observe the coexistence of two lamellar phases in aggregates prepared at 1 mM Ca2+: Lx phase with the DNA strands (of unknown organization) intercalated in water layers between adjacent lipid bilayers and LDPPC phase of DPPC bilayers without any divalent cations and DNA strands. Aggregates prepared in the range 2–50 mM Ca2+ show a condensed gel lamellar phase Lgc with the lipid bilayer periodicity d ≈ 8.0 nm, and the DNA–DNA interhelical distance d DNA ≈ 5.1 nm. The increase of temperature induces the decrease in the intensity and the increase in the width of the DNA related peak. In the fluid state, the condensed lamellar phase Lαc gradually converts into Lx phase. The aggregates do not exhibit rippled Pβ phase. The thermal behaviour of aggregates was investigated in the range 20–80°C. Applying heating–cooling cycles, the aggregates converted into energetically more favourable structure: a condensed lamellar phase Lc (or Lx) is preserved or we observe lateral segregation of the DNA strands and metal cations (Lx phase) in coexistence with LPC phase of pure phospholipids. Dedicated to Prof. Dr Klaus Arnold on the occasion of his 65th birthday.  相似文献   

9.
Lung surfactant protein B (SP-B) is a lipophilic protein critical to lung function at ambient pressure. KL4 is a 21-residue peptide which has successfully replaced SP-B in clinical trials of synthetic lung surfactants. CD and FTIR measurements indicate KL4 is helical in a lipid bilayer environment, but its exact secondary structure and orientation within the bilayer remain controversial. To investigate the partitioning and dynamics of KL4 in phospholipid bilayers, we introduced CD3-enriched leucines at four positions along the peptide to serve as probes of side chain dynamics via 2H solid-state NMR. The chosen labels allow distinction between models of helical secondary structure as well as between a transmembrane orientation or partitioning in the plane of the lipid leaflets. Leucine side chains are also sensitive to helix packing interactions in peptides that oligomerize. The partitioning and orientation of KL4 in DPPC/POPG and POPC/POPG phospholipid bilayers, as inferred from the leucine side chain dynamics, is consistent with monomeric KL4 lying in the plane of the bilayers and adopting an unusual helical structure which confers amphipathicity and allows partitioning into the lipid hydrophobic interior. At physiologic temperatures, the partitioning depth and dynamics of the peptide are dependent on the degree of saturation present in the lipids. The deeper partitioning of KL4 relative to antimicrobial amphipathic α-helices leads to negative membrane curvature strain as evidenced by the formation of hexagonal phase structures in a POPE/POPG phospholipid mixture on addition of KL4. The unusual secondary structure of KL4 and its ability to differentially partition into lipid lamellae containing varying levels of saturation suggest a mechanism for its role in restoring lung compliance.  相似文献   

10.
SP-B(CTERM) is a cationic amphipathic helical peptide and functional fragment composed of residues 63 to 78 of surfactant protein B (SP-B). Static oriented and magic angle spinning solid state NMR, along with molecular dynamics simulation was used to investigate its structure, orientation, and depth in lipid bilayers of several compositions, namely POPC, DPPC, DPPC/POPC/POPG, and bovine lung surfactant extract (BLES). In all lipid environments the peptide was oriented parallel to the membrane surface. While maintaining this approximately planar orientation, SP-B(CTERM) exhibited a flexible topology controlled by subtle variations in lipid composition. SP-B(CTERM)-induced lipid realignment and/or conformational changes at the level of the head group were observed using (31)P solid-state NMR spectroscopy. Measurements of the depth of SP-B(CTERM) indicated the peptide center positions ~8? more deeply than the phosphate headgroups, a topology that may allow the peptide to promote functional lipid structures without causing micellization upon compression.  相似文献   

11.
Effects of intracellular Mg2+ on a native Ca2+-and voltage-sensitive large-conductance K+ channel in cultured human renal proximal tubule cells were examined with the patch-clamp technique in the inside-out mode. At an intracellular concentration of Ca2+ ([Ca2+]i) of 10−5–10−4 M, addition of 1–10 mM Mg2+ increased the open probability (Po) of the channel, which shifted the Po –membrane potential (Vm) relationship to the negative voltage direction without causing an appreciable change in the gating charge (Boltzmann constant). However, the Mg2+-induced increase in Po was suppressed at a relatively low [Ca2+]i (10−5.5–10−6 M). Dwell-time histograms have revealed that addition of Mg2+ mainly increased Po by extending open times at 10−5 M Ca2+ and extending both open and closed times simultaneously at 10−5.5 M Ca2+. Since our data showed that raising the [Ca2+]i from 10−5 to 10−4 M increased Po mainly by shortening the closed time, extension of the closed time at 10−5.5 M Ca2+ would result from the Mg2+-inhibited Ca2+-dependent activation. At a constant Vm, adding Mg2+ enhanced the sigmoidicity of the Po–[Ca2+]i relationship with an increase in the Hill coefficient. These results suggest that the major action of Mg2+ on this channel is to elevate Po by lengthening the open time, while extension of the closed time at a relatively low [Ca2+]i results from a lowering of the sensitivity to Ca2+ of the channel by Mg2+, which causes the increase in the Hill coefficient. M. Kubokawa and Y. Sohma contributed equally to this work.  相似文献   

12.
A recombinant form of the peptide N-terminally positioned from proSP-B (SP-BN) has been produced in Escherichia coli as fusion with the Maltose Binding Protein, separated from it by Factor Xa cleavage and purified thereafter. This protein module is thought to control assembly of mature SP-B, a protein essential for respiration, in pulmonary surfactant as it progress through the progressively acidified secretory pathway of pneumocytes. Self-aggregation studies of the recombinant propeptide have been carried out as the pH of the medium evolved from neutral to moderately acid, again to neutral and finally basic. The profile of aggregation versus subsequent changes in pH showed differences depending on the ionic strength of the medium, low or moderate, and the presence of additives such as L-arginine (a known aggregation suppressor) and Ficoll 70 (a macromolecular crowder). Circular dichroism studies of SP-BN samples along the aggregation process showed a decrease in α-helical content and a concomitant increase in β-sheet. Intrinsic fluorescence emission of SP-BN was dominated by the emission of Trp residues in neutral medium, being its emission maximum shifted to red at low pH, suggesting that the protein undergoes a pH-dependent conformational change that increases the exposure of their Trp to the environment. A marked increase in the fluorescence emission of the extrinsic probe bis-ANS indicated the exposure of hydrophobic regions of SP-BN at pH 5. The fluorescence of bis-ANS decreased slightly at low ionic strength, but to a great extent at moderate ionic strength when the pH was reversed to neutrality, suggesting that self-aggregation properties of the SP-BN module could be tightly modulated by the conditions of pH and the ionic environment encountered by pulmonary surfactant during assembly and secretion.  相似文献   

13.
The effect of ANG II on pHi, [Ca2+]i and cell volume was investigated in T84 cells, a cell line originated from colon epithelium, using the probes BCECF-AM, Fluo 4-AM and acridine orange, respectively. The recovery rate of pHi via the Na+/H+ exchanger was examined in the first 2 min following the acidification of pHi with a NH4Cl pulse. In the control situation, the pHi recovery rate was 0.118 ± 0.001 (n = 52) pH units/min and ANG II (10−12 M or 10−9 M) increased this value (by 106% or 32%, respectively) but ANG II (10−7 M) decreased it to 47%. The control [Ca2+]i was 99 ± 4 (n = 45) nM and ANG II increased this value in a dose-dependent manner. The ANG II effects on cell volume were minor and late and should not interfere in the measurements of pHi recovery and [Ca2+]i. To document the signaling pathways in the hormonal effects we used: Staurosporine (a PKC inhibitor), W13 (a calcium-dependent calmodulin antagonist), H89 (a PKA inhibitor) or Econazole (an inhibitor of cytochrome P450 epoxygenase). Our results indicate that the biphasic effect of ANG II on Na+/H+ exchanger is a cAMP-independent mechanism and is the result of: 1) stimulation of the exchanger by PKC signaling pathway activation (at 10−12 – 10−7 M ANG II) and by increases of [Ca2+]i in the lower range (at 10−12 M ANG II) and 2) inhibition of the exchanger at high [Ca2+]i levels (at 10−9 – 10−7 M ANG II) through cytochrome P450 epoxygenase-dependent metabolites of the arachidonic acid signaling pathway.  相似文献   

14.
Targeted molecular therapies inhibit proliferation and survival of cancer cells but may also affect immune cells. We have evaluated the effects of Sirolimus and Sorafenib on proliferation and survival of lymphoid cell subsets. Both drugs were cytotoxic to CD4+CD25high T cells, and were growth inhibitory for CD4+ and CD8+ T cells. Cytotoxicity depended on CD3/CD28 stimulation and was detectable within 12 h, with 80–90% of CD4+CD25high cells killed by 72 h. Cell death was due to apoptosis, based on Annexin V and 7AAD staining. Addition of IL-2 prevented the apoptotic response to Sirolimus, potentially accounting for reports that Sirolimus can enhance proliferation of CD4+CD25high cells. These results predict that Sirolimus or Sorafenib would reduce CD4+CD25high cells if administered prior to antigenic stimulation in an immunotherapy protocol. However, administration of IL-2 protects CD4+CD25high T cells from cytotoxic effects of Sirolimus, a response that may be considered in design of therapeutic protocols.  相似文献   

15.
It is known that permeability of the inner mitochondrial membrane is low to most univalent cations (K+, Na+, H+) but high to Tl+. Swelling, state 4, state 3, and 2,4-dinitrophenol (DNP)-stimulated respiration as well as the membrane potential (ΔΨmito) of rat liver mitochondria were studied in media containing 0–75 mM TlNO3 either with 250 mM sucrose or with 125 mM nitrate salts of other monovalent cations (KNO3, or NaNO3, or NH4NO3). Tl+ increased permeability of the inner mitochondrial membrane to K+, Na+, and H+, that was manifested as stimulation of the swelling of nonenergized and energized mitochondria as well as via an increase of state 4 and dissipation of ΔΨmito. These effects of Tl+ increased in the order of sucrose <K+ <Na+ ≤ NH4+. They were stimulated by inorganic phosphate and decreased by ADP, Mg2+, and cyclosporine A. Contraction of energized mitochondria, swollen in the nitrate media, was markedly inhibited by quinine. It suggests participation of the mitochondrial K+/H+ exchanger in extruding of Tl+-induced excess of univalent cations from the mitochondrial matrix. It is discussed that Tl+ (like Cd2+ and other heavy metals) increases the ion permeability of the inner membrane of mitochondria regardless of their energization and stimulates the mitochondrial permeability transition pore in low conductance state. The observed decrease of state 3 and DNP-stimulated respiration in the nitrate media resulted from the mitochondrial swelling rather than from an inhibition of respiratory enzymes as is the case with the bivalent heavy metals.  相似文献   

16.
Pulmonary surfactant protein SP-B is synthesized as a larger precursor, proSP-B. We report that a recombinant form of human SP-BN forms a coiled coil structure at acidic pH. The protonation of a residue with pK = 4.8 ± 0.06 is the responsible of conformational changes detected by circular dichroism and intrinsic fluorescence emission. Sedimentation velocity analysis showed protein oligomerisation at any pH condition, with an enrichment of the species compatible with a tetramer at acidic pH. Low 2,2,2,-trifluoroethanol concentration promoted β-sheet structures in SP-BN, which bind Thioflavin T, at acidic pH, whereas it promoted coiled coil structures at neutral pH. The amino acid stretch predicted to form β-sheet parallel association in SP-BN overlaps with the sequence predicted by several programs to form coiled coil structure. A synthetic peptide (60W-E85) designed from the sequence of the amino acid stretch of SP-BN predicted to form coiled coil structure showed random coil conformation at neutral pH but concentration-dependent helical structure at acidic pH. Sedimentation velocity analysis of the peptide indicated monomeric state at neutral pH (s20, w = 0.55 S; Mr ~ 3 kDa) and peptide association (s20, w = 1.735 S; Mr = ~ 14 kDa) at acidic pH, with sedimentation equilibrium fitting to a Monomer-Nmer-Mmer model with N = 6 and M = 4 (Mr = 14692 Da). We propose that protein oligomerisation through coiled-coil motifs could then be a general feature in the assembly of functional units in saposin-like proteins in general and in the organization of SP-B in a functional surfactant, in particular.  相似文献   

17.
Deuterium nuclear magnetic resonance was used to monitor lipid acyl-chain orientational order in suspensions of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) containing Ca(2+) and the lung surfactant proteins SP-A and SP-B separately and together. To distinguish between protein-lipid interactions involving the PC and PG lipid headgroups and to examine whether such interactions might influence spatial distribution of lipids within the bilayer, acyl chains on either the DPPC or the DPPG component of the mixture were deuterated. The lipid components of the resulting mixtures were thus either DPPC-d(62)/DPPG (7:3) or DPPC/DPPG-d(62) (7:3), respectively. SP-A had little effect on DPPC-d(62) chain order but did narrow the temperature range over which DPPG-d(62) ordered at the liquid-crystal-to-gel transition. No segregation of lipid components was seen for temperatures above or below the transition. Near the transition, though, there was evidence that SP-A promoted preferential depletion of DPPG from liquid crystalline domains in the temperature range over which gel and liquid crystal domains coexist. SP-B lowered average chain order of both lipids both above and below the main transition. The perturbations of chain order by SP-A and SP-B together were smaller than by SP-B alone. This reduction in perturbation of the lipids by the additional presence of SP-A likely indicated a strong interaction between SP-A and SP-B. The competitive lipid-lipid, lipid-protein, and protein-protein interactions suggested by these observations presumably facilitate the reorganization of surfactant material inherent in the transformation from lamellar bodies to a functional surfactant layer.  相似文献   

18.
Summary The aim of this work was to investigate the effect of a short-term exposure to somatostatin (SS), its receptors (SSTR) selective agonists as well as muscarinic receptors agonists upon acetylcholine-induced release of 3H-MPP+ from bovine adrenal medullary cells. Acetylcholine (ACH, 100, 500 μM) was found to increase the release of 3H-MPP+ by these cells (to 175 and 171% of basal release, respectively). ACH-elicited 3H-MPP+ release was significantly reduced by hexamethonium (100 μM) and atropine (100 μM), selective nicotinic and muscarinic antagonists, respectively. Previous exposure to any of two muscarinic agonists, oxotremorine or pilocarpine, led to a significant reduction of 3H-MPP+ release in response to 100 μM ACH, to about a maximum of 51% and 78% of control, respectively. Somatostatin (SS, 0.01–0.1 μM), previously applied to the preparation, depressed ACH-elicited 3H-MPP+ release by 25–27%, but only when a 500 μM ACH concentration was used. The inhibition exerted by SS upon ACH-evoked 3H-MPP+ release appeared to be mediated by its SSTR: (1) SSTR2, 3 and 4 subtype agonists mimicked the effects seen with SS, and (2) the SSTR non-selective antagonist, cyclo-SS, counteracted the SS inhibitory effect. When SS was tested in the presence of any of the muscarinic agonists, oxotremorine or pilocarpine, its inhibitory effect on 500 μM ACH-induced 3H-MPP+ release was no longer detectable. These results, showing a somewhat similar effect of short-term exposure to SS and muscarinic agonists over ACH-induced release of 3H-MPP+, as well as the loss of effect of SS by the presence of the muscarinic agonists, suggest that these compounds may share signalling pathways.  相似文献   

19.
New molecular-dynamic topology of phosphatidylcholine bilayer (DPPC) in total atomic OPLS force field was developed and used to study the structural characteristics of liquid-crystalline and gel state of lipid bilayer in the absence and in the presence of Na+ and Be2+ cations adsorbed at the interface and different in their affinity. The parameters of bilayer geometry, the amount of surface water, and the electrostatic potential distribution were estimated quantitatively from the simulation in both phase states. The azimuthal angle of hydrocarbon chains was found nearly the same in the region of each monolayer in gel state. The amount of surface water decreases upon bilayer “freezing” mainly by loss of water molecules not participating in H-bonds between lipid headgroups. The cation adsorption was shown to have a small effect on these H-bonded water molecules, whereas Be2+ appeared to retain surface water in the bilayer upon its freezing. The electric potential distribution in the normal direction to the membrane-water interface had a similar shape in any bilayer phase state regardless of the presence of the adsorbed cations. Analysis of the microscopic nature of the electric potential revealed a mutual compensation of the contributions of the main structural components of the system (lipids, water, and ions). The boundary potential increased by 116 mV for pure DPPC, by 212 mV in the presence of Na+, and by 133 mV in the presence of Be2+ upon the phase transition of bilayer to the gel state. The boundary potential difference in the presence of Na+ and Be2+ and its change at the bilayer phase transition are in a good agreement with the experimental data published earlier [Ermakov Yu.A., 1993].  相似文献   

20.
K+-conductive pathways were evaluated in isolated surface and crypt colonic cells, by measuring 86Rb efflux. In crypt cells, basal K+ efflux (rate constant: 0.24 ± 0.044 min−1, span: 24 ± 1.3%) was inhibited by 30 mM TEA and 5 mM Ba2+ in an additive way, suggesting the existence of two different conductive pathways. Basal efflux was insensitive to apamin, iberiotoxin, charybdotoxin and clotrimazole. Ionomycin (5 μM) stimulated K+ efflux, increasing the rate constant to 0.65 ± 0.007 min−1 and the span to 83 ± 3.2%. Ionomycin-induced K+ efflux was inhibited by clotrimazole (IC50 of 25 ± 0.4 μM) and charybdotoxin (IC50 of 65 ± 5.0 nM) and was insensitive to TEA, Ba2+, apamin and iberiotoxin, suggesting that this conductive pathway is related to the Ca2+-activated intermediate-conductance K+ channels (IKca). Absence of extracellular Ca2+ did neither affect basal nor ionomycin-induced K+ efflux. However, intracellular Ca2+ depletion totally inhibited the ionomycin-induced K+ efflux, indicating that the activation of these K+ channels mainly depends on intracellular calcium liberation. K+ efflux was stimulated by intracellular Ca2+ with an EC50 of 1.1 ± 0.04 μM. In surface cells, K+ efflux (rate constant: 0.17 ± 0.027 min−1; span: 25 ± 3.4%) was insensitive to TEA and Ba2+. However, ionomycin induced K+ efflux with characteristics identical to that observed in crypt cells. In conclusion, both surface and crypt cells present IKCa channels but only crypt cells have TEA- and Ba2+-sensitive conductive pathways, which would determine their participation in colonic K+ secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号