首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The interaction of a polylysine amphiphile, which consists of a poly-L- or -D-lysine (1L or 1D) segment and two long alkyl chains at the C-terminus, with polynucleotides was studied with respect to the highly organized structure of polylysine assemblies on water. The results of surface pressure-area isotherm measurement showed that both of 1L and 1D formed stable monolayers on water in a neutral pH region. The secondary structure of polylysine segment for the surface monolayer was examined by means of circular dichroism and Fourier transform infrared spectroscopies. The helical structure was retained even at neutral pH, at which polylysine has been known to form a complete random coiled conformation in bulk solution. Protonated, positively charged and coiled 1L monolayer could interact electrostatically with guest polyanions including DNA in the subphase, and at the same time the conformation of the polylysine segment was converted from a random coil to an alpha-helix. Deprotonated, helical monolayers did not interact with single stranded polyadenylic acid, but with double stranded DNA. Double stranded DNA was found to interact more strongly with right-handed 1L monolayer than left-handed 1D monolayer. An obvious difference in the melting temperatures for these complexes was observed and discussed on the basis of difference in the interaction mode.  相似文献   

2.
Surface enhanced Raman spectra were recorded from a phospholipid monolayer directly at the air-water interface. We used an organized monolayer of negatively charged tetramyristoyl cardiolipins as a template for the electrochemical generation of silver deposits. This two-dimensional electrodeposition of silver under potentiostatic control was the substrate for enhancement of Raman spectra. We report the optimized conditions for the Raman enhancement, the microscopic observations of the deposits, and their characterization by atomic force microscopy. Laser excitation at 514.5 nm leads to intense and reproducible surface enhanced Raman scattering spectra recorded in situ from one monolayer of cardiolipin, using 0.5 mol % of 10N nonyl acridine orange or 5 mol % of acridine in the film, and demonstrates the possibility of estimating the pH at the metal/phospholipidic film interface.  相似文献   

3.
The surfactant properties of aqueous protein mixtures (ranaspumins) from the foam nests of the tropical frog Physalaemus pustulosus have been investigated by surface tension, two-photon excitation fluorescence microscopy, specular neutron reflection, and related biophysical techniques. Ranaspumins lower the surface tension of water more rapidly and more effectively than standard globular proteins under similar conditions. Two-photon excitation fluorescence microscopy of nest foams treated with fluorescent marker (anilinonaphthalene sulfonic acid) shows partitioning of hydrophobic proteins into the air-water interface and allows imaging of the foam structure. The surface excess of the adsorbed protein layers, determined from measurements of neutron reflection from the surface of water utilizing H(2)O/D(2)O mixtures, shows a persistent increase of surface excess and layer thickness with bulk concentration. At the highest concentration studied (0.5 mg ml(-1)), the adsorbed layer is characterized by three distinct regions: a protruding top layer of approximately 20 angstroms, a middle layer of approximately 30 angstroms, and a more diffuse submerged layer projecting some 25 angstroms into bulk solution. This suggests a model involving self-assembly of protein aggregates at the air-water interface in which initial foam formation is facilitated by specific surfactant proteins in the mixture, further stabilized by subsequent aggregation and cross-linking into a multilayer surface complex.  相似文献   

4.
Surface pressure was found to be produced spontaneously at the interface between air and a suspension containing fragmented sarcoplasmic reticulum (FSR) from rabbit white muscle. Large and stable surface pressure was formed only in a limited concentration range of FSR in the suspension and the pressure formation was proved to be an irreversible phenomenon, suggesting the formation of a monolayer membrane resulting from the disruption of FSR vesicles. Monolayer formation was directly confirmed by analyzing the components included in the membrane and by calculating the surface area occupied by these components. The monolayer included phospholipids, cholesterol and proteins, and appeared to originate from FSR vesicles since the molecular ratios of these components as well as the results of the SDS polyacrylamide gel electrophoresis were similar in both membranes. This phenomenon can be utilized as a method of monolayer preparation from biological membrane vesicles, and should be very useful for the reconstitution of planar biological membranes.  相似文献   

5.
ADF/cofilins are abundant actin binding proteins critical to the survival of eukaryotic cells. Most ADF/cofilins bind both G and F-actin, sever the filaments and accelerate their treadmilling. These effects are linked to rearrangements of interprotomer contacts, changes in the mean twist, and filament destabilization by ADF/cofilin. Paradoxically, it was reported that under certain in vitro and in vivo conditions cofilin may stabilize actin filaments and nucleate their formation. Here, we show that yeast cofilin and human muscle cofilin (cofilin-2) accelerate the nucleation and elongation of ADP-F-actin and stabilize such filaments. Moreover, cofilin rescues the polymerization of the assembly incompetent tethramethyl rhodamine (TMR)-actin and T203C/C374S yeast mutant actin. Filaments of cofilin-decorated TMR-actin and unlabeled actin are indistinguishable, as revealed by electron microscopy and three-dimensional reconstruction. Our data suggest that ADF/cofilins play an active role in establishing new interprotomer interfaces in F-actin that substitute for disrupted (as in TMR-actin and mutant actin) or weakened (as in ADP-actin) longitudinal contacts in filaments.  相似文献   

6.
7.
Epi-polygodial, a drimane sesquiterpene was isolated from Drimys brasiliensis (Winteraceae). This compound demonstrated high parasite selectivity towards Trypanosoma cruzi trypomastigotes (IC50 = 5.01 μM) with a selectivity index higher than 40. These results were correlated with the effects observed when this compound was incorporated in cellular membrane models of protozoans, represented by Langmuir monolayers of dipalmitoylphosphoethanolamine (DPPE). Surface pressure-area isotherms showed that epi-polygodial expands DPPE monolayers at higher areas and condenses them at lower areas, which was attributed to the preferential interaction with the polar heads of the lipid. This mechanism of action could be corroborated with Polarization-Modulation Reflection-Absorption Spectroscopy and Brewster Angle Microscopy. These results pointed to the fact that the interaction of epi-polygodial with DPPE monolayers at the air-water interface affects the physical chemical properties of the mixed film, which may be important to comprehend the interaction of this drug with cellular membranes at the molecular level.  相似文献   

8.
The polymerization of actin in solutions of purified calf spleen actin or profilactin (1–10 mg·ml-1) was followed by synchrotron radiation X-ray solution scattering. At the concentration used, polymerization of actin from profilactin or actin occurs without any lag phase. It is shown by a combination of solution scattering, model calculations and electron microscopy that contrary to the conclusions from previous viscometry studies, filaments form without any lag phase in profilactin solution but aggregate in bundles or networks. This phenomenon is independent of the method used to induce polymerization: slow temperature increase, temperature jump in the presence of polymerizing salts or fast mixing with salt. This aggregation explains the lower final viscosity levels, as compared to actin solutions, observed during the polymerization of actin from profilactin.  相似文献   

9.
The interaction of p-10,12-pentacosadiyne-1-n-phenylamide alpha-D-mannopyranoside (MPDA) with protein concanavalin A (Con A) was studied at the air/water interface. The expansion of molecular area of PDA (10,12-pentacosadiynoic acid)/MPDA mixed monolayer after injection of Con A in subphase shows strong interaction between Con A and the monolayer. The maximum expansion of molecular area decreases as the molar ratio of MPDA increases due to the steric hindrance effect. By using enzyme mannosidase to cut-off the mannoside headgroup of MPDA, expansion of molecular area was greatly reduced, indicating that the binding of Con A is specific to the mannoside headgroup. The kinetics of the binding fits to the first order bimolecular reaction model. Fluorescence quenching of fluorescein isothiocyanate labeled Con A after injection into the subphase gives a direct proof of the molecular recognition.  相似文献   

10.
AC-3579 (2-N-methylpiperazinomethyl-1,3-diazafluoranthen 1-oxide) produces in rat hepatocytes a hypertrophy of the endoplasmic reticulum.Two possibilities that can explain this phenomenon are (1) that AC-3579 inactivates the phospholipases, and (2) that an AC-3579-lipid interaction hinders the enzymic activity.To demonstrate these hypotheses, a physicochemical model of biological membrane, the lipid-water interface, has been used. Dipalmitoyl dl-α-phosphatidylcholine was spread at the air-water interface, the enzymes (phospholipase A or phospholipase C) dissolved in the aqueous phase.The enzymic reaction was first studied with and without AC-3579 dissolved in the aqueous phase; no enzymic inactivation was observed. However in AC-3579- lipid complex completely inhibited the enzymic reaction in the case of phospholipase A.An explanation is given in terms of steric hindrance to the enzyme-substrate complex formation.  相似文献   

11.
We present here results that demonstrate the formation of a complex of DNA with zwitterionic dipalmitoylphosphatidylcholine (DPPC) monolayer at the air-water interface in the presence of Ca2+ ions; in particular, we show that the presence of Ca2+ cations is essential for the formation of the complex of DPPC with DNA. We characterize the resulting structure by X-ray reflectivity and by null-ellipsometry. We show that DNA maintains its native double helix form when attached to the zwitterionic lipid monolayer, at difference with the case of ammine containing monolayers. Our findings are discussed in view of other works that recently appeared on the interaction of DNA with zwitterionic phospholipids, emphasizing the role of DPPC as a potential vector for transfer of genetic material into mammalian cells by nonviral gene therapy and also suggesting Langmuir/Blodgett layers of zwitterionic phospoholipids as a method for nonconventional DNA immobilization.  相似文献   

12.
The solid-liquid phase behaviour of oleanolic acid (OLA)/stearyl stearate (SS) was investigated by differential scanning calorimetry and polarizing optical microscopy. A eutectic type diagram, with the eutectic composition close to pure SS was obtained. Complementary studies by NMR, X-ray diffraction (XRD) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy were performed. A mutual influence was detected in mixtures: the low melting form of SS is favoured at low OLA molar fractions (XOLA) and spherulitic structures appear at high XOLA and high temperature. Additionally, H-bonding between OLA carbonyl groups increases in the presence of SS. The study of OLA/SS by the Langmuir method and Brewster angle microscopy revealed the organization at the air-water interface: OLA interacts with water in the first layer, while SS is completely segregated to the upper layer for XOLA > 0.3, and it distributes in the first and upper layers for XOLA < 0.3.  相似文献   

13.
Lavoie H  Desbat B  Vaknin D  Salesse C 《Biochemistry》2002,41(45):13424-13434
Monomolecular films of the membrane protein rhodopsin have been investigated in situ at the air-water interface by polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and X-ray reflectivity in order to find conditions that retain the protein secondary structure. The spreading of rhodopsin at 0 or 5 mN m(-1) followed by a 30 min incubation time at 21 degrees C resulted in the unfolding of rhodopsin, as evidenced from the large increase of its molecular area, its small monolayer thickness, and the extensive formation of beta-sheets at the expense of the alpha-helices originally present in rhodopsin. In contrast, when spreading is performed at 5 or 10 mN m(-1) followed by an immediate compression at, respectively, 4 or 21 degrees C, the secondary structure of rhodopsin is retained, and the thickness of these films is in good agreement with the size of rhodopsin determined from its crystal structure. The amide I/amide II ratio also allowed to determine that the orientation of rhodopsin only slightly changes with surface pressure and it remains almost unchanged when the film is maintained at 20 mN m(-1) for 120 min at 4 degrees C. In addition, the PM-IRRAS spectra of rod outer segment disk membranes in monolayers suggest that rhodopsin also retained its secondary structure in these films.  相似文献   

14.
T‐cell antigen receptor (TCR) engagement induces formation of multi‐protein signalling complexes essential for regulating T‐cell functions. Generation of a complex of SLP‐76, Nck and VAV1 is crucial for regulation of the actin machinery. We define the composition, stoichiometry and specificity of interactions in the SLP‐76, Nck and VAV1 complex. Our data reveal that this complex can contain one SLP‐76 molecule, two Nck and two VAV1 molecules. A direct interaction between Nck and VAV1 is mediated by binding between the C‐terminal SH3 domain of Nck and the VAV1 N‐terminal SH3 domain. Disruption of the VAV1:Nck interaction deleteriously affected actin polymerization. These novel findings shed new light on the mechanism of actin polymerization after T‐cell activation.  相似文献   

15.
Regulating actin dynamics at membranes: a focus on dynamin   总被引:9,自引:0,他引:9  
Dynamin, the large guanosine triphosphatase, is generally considered to have a key role in deforming membranes to create tubules or vesicles. Dynamin, particularly dynamin2 isoforms, also are localized with actin filaments, often at locations where cellular membranes undergo remodeling. Perturbing dynamin function interferes with endocytic traffic and actin function. Thus, dynamin may regulate actin filaments coordinately with its activities that remodel membranes. This review will highlight recent observations that provide clues to mechanisms whereby dynamin might coordinate membrane remodeling and actin filament dynamics during endocytic traffic, cell morphogenesis and cell migration.  相似文献   

16.
SNARE proteins are implicated in membrane fusion during neurotransmission and peptide hormone secretion. Relatively little is known about the molecular interactions of their trans- and juxtamembrane domains with lipid membranes. Here, we report the structure and the assembling behavior of one of the SNARE proteins, VAMP1/synaptobrevin1 incorporated in a lipid monolayer at an air-water interface which mimics the membrane environment. Our results show that the protein is extremely sensitive to surface pressure as well as the lipid composition. Monolayers of proteins alone or in the presence of the neutral phospholipid DMPC underwent structural transition from α-helix to β-sheet upon surface compression. In contrast, the anionic phospholipid DMPG inhibited this transition in a concentration-dependent manner. Moreover, the orientation of the proteins was highly sensitive to the charge density of the lipid layers. Thus, the structure of VAMP1 is clearly controlled by protein-lipid interactions.  相似文献   

17.
The binary mixtures involving tristearin (TS), stearyl stearate (SS) and stearic acid (SA) were studied by surface pressure-area (pi-A) measurements and by Brewster angle microscopy (BAM), at the air-water interface, and the Langmuir-Blodgett (LB) monolayers, transferred onto mica substrates, were analysed by AFM. The thermodynamic analysis indicated miscibility in the whole composition range for the system SA/TS, and partial miscibility for systems SA/SS and TS/SS. This behaviour was further confirmed by BAM observation and AFM analysis of LB films. The AFM imaging of collapsed monolayers revealed domains with a multilayered structure varying with system and composition. The layers thickness determined by cross section analysis are consistent with estimated molecular lengths and conformations proposed for the molecules, assuming nearly perpendicular or tilted orientations of the hydrocarbon chains to the interface.  相似文献   

18.
Phalloidin increases F-actin microfilament content and actin-directed immunofluorescence in hepatocytes in vivo and also increases actin polymerization and the stability of F-actin in vitro. We studied the sensitivity of immunofluorescent staining of actin to an actin depolymerizing factor (ADF) as well as actin content, degree of polymerization, and turnover in livers of in vivo phalloidin-treated rats. Pretreatment with ADF abolished anti-actin antibody (AAA) staining of normal liver but did not modify staining of livers from phalloidin-treated animals. Plani-metric analyses of SDS-polyacrylamide gels snowed the percent actin of total protein was increased by approximately 40% and the absolute amount of actin by approximately 43%, ten days after daily phalloidin treatment (50 μg/100 gm body weight). Similar but smaller changes could be seen after one day of treatment. Ultracentrifugational analyses of liver extracts indicated no change in the amount or proportion of G-actin but a 194% increase in the proportion of F-actin in ten-day treated animals, changes also apparent in one day animals. Neither the relative fractional rate of actin synthesis nor its synthesis as a percent of total protein synthesis was altered either at one-day or ten-day post-phalloidin treatment. Dual-isotope experiments indicated that the rate of actin degradation was decreased selectively in the one- to three-day period -following drug treatment. Thus, phalloidin appears to stabilize actin against the depolymerizing actions of ADF, increases the proportion of F-actin without altering the size of the G-actin pool, and causes accumulation of actin by decreasing its relative rate of degradation.  相似文献   

19.
20.
In the present work, it is shown that the photobleaching technique as well as experimentation based on fluorescence recovery after bleaching can be extended to monolayers spread at the air-water interface. A mathematical model is derived which allows the determination of translational diffusion coefficients of species diffusing in such a system. Using 12-(9-anthroyl)stearic acid (anthroylstearate) as a fluorescent probe, dispersed either in dipalmitoylphosphatidylcholine or in dipalmitoylphosphatidylglycerol in various conditions of subphase ionic composition and surface pressure of the monolayer, including phase transition domains, we are led to the following conclusions: 1. Anthroylstearate molecules seem to aggregate in 'microdomains' where their fluorescence properties remain unchanged regardless of the compression states of the host monolayer. 2. In any case, a break in the diffusion constants appears on compressing films of both dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol. In particular, this break coincides with the liquid expanded to gel phase transition of these lipids when it occurs. 3. Diffusion of anthroylstearate in dipalmitoylphosphatidylglycerol depends strongly on the subphase ionic strength and on the nature of cations: Na+, Mg2+, Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号