首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Carbon fiber microelectrodes either were implanted directly into striatal tissue or were mounted into the outlet of microdialysis probes that were implanted into striatal tissue. This allowed voltammetry and microdialysis to be used under identical in vivo experimental conditions to monitor extracellular dopamine levels during electrical stimulation of the medial forebrain bundle both before and after uptake inhibition with nomifensine. The marked differences between the results obtained with each technique cannot be explained on the basis of their inherent analytical attributes (sensitivity, temporal response, etc.). The results demonstrate that the microdialysis recovery factor for endogenous dopamine increases after uptake inhibition, an observation that stands in contradiction to the existing theory and practice of the microdialysis technique. The observations led to the development of a numerical model that rationalizes the observations reported herein and that allows in vivo voltammetry and in vivo microdialysis results to be interpreted within a single theoretical framework.  相似文献   

2.
Although microdialysis is widely used to sample endogenous and exogenous substances in vivo, interpretation of the results obtained by this technique remains controversial. The goal of the present study was to examine recent criticism of microdialysis in the specific case of dopamine (DA) measurements in the brain extracellular microenvironment. The apparent steady-state basal extracellular concentration and extraction fraction of DA were determined in anesthetized rat striatum by the concentration difference (no-net-flux) microdialysis technique. A rate constant for extracellular clearance of DA calculated from the extraction fraction was smaller than the previously determined estimate by fast-scan cyclic voltammetry for cellular uptake of DA. Because the relatively small size of the voltammetric microsensor produces little tissue damage, the discrepancy between the uptake rate constants may be a consequence of trauma from microdialysis probe implantation. The trauma layer has previously been identified by histology and proposed to distort measurements of extracellular DA levels by the no-net-flux method. To address this issue, an existing quantitative mathematical model for microdialysis was modified to incorporate a traumatized tissue layer interposed between the probe and surrounding normal tissue. The tissue layers are hypothesized to differ in their rates of neurotransmitter release and uptake. A post-implantation traumatized layer with reduced uptake and no release can reconcile the discrepancy between DA uptake measured by microdialysis and voltammetry. The model predicts that this trauma layer would cause the DA extraction fraction obtained from microdialysis in vivo calibration techniques, such as no-net-flux, to differ from the DA relative recovery and lead to an underestimation of the DA extracellular concentration in the surrounding normal tissue.  相似文献   

3.
Anatoxin-a is an important neurotoxin that acts a potent nicotinic acetylcholine receptor agonist. This characteristic makes anatoxin-a an important tool for the study of nicotinic receptors. Anatoxin-a has been used extensively in vitro experiments, however anatoxin-a has never been studied by in vivo microdialysis studies. This study test the effect of anatoxin-a on striatal in vivo dopamine release by microdialysis.The results of this work show that anatoxin-a evoked dopamine release in a concentration-dependent way. Atropine had not any effect on dopamine release evoked by 3.5 mM anatoxin-a. However, perfusion of nicotinic antagonists mecamylamine and α-bungarotoxin induced a total inhibition of the striatal dopamine release. Perfusion of α7*-receptors antagonists, metillycaconitine or α-bungarotoxin, partially inhibits the release of dopamine stimulated by anatoxin-a. These results show that anatoxin-a can be used as an important nicotinic agonist in the study of nicotinic receptor by in vivo microdialysis technique and also support further in vivo evidences that α7*nicotinic AChRs are implicated in the regulation of striatal dopamine release.  相似文献   

4.
Abstract: To investigate the hypothesis that the D2 dopamine (DA) receptor regulates DA uptake, as well as release, in the nucleus accumbens (N ACC), rats were pretreated for 10 days with either the selective D2 antagonist pimozide (1.0 mg/kg, i.p.) or vehicle, followed 3 h later by either cocaine (20 mg/kg, i.p.) or saline. On day 11, a microdialysis method was performed in which various DA concentrations (0, 10, and 20 n M DA) were perfused through the dialysis probe to characterize the diffusion of DA through tissue to and from the microdialysis probe (recovery). This diffusion of DA has been shown to be sensitive to changes in release and uptake. Pimozide pretreatment was shown to attenuate significantly a cocaine-induced increase in the in vivo recovery of DA ( p < 0.01). The in vivo recovery for the vehicle/cocaine group was 47 ± 4%, whereas the in vivo recovery for the pimozide/cocaine group was 31 ± 3%. There was no difference between the pimozide/cocaine and control groups (pimozide/saline, 26 ± 2%; vehicle/saline, 26 ± 3%). In vitro probe calibrations indicated no significant difference in probe efficiencies between groups. These data suggest that the D2 receptor is capable of modulating uptake as well as release of DA in the N ACC of the rat.  相似文献   

5.
In vivo microdialysis was employed to detect changes in extracellular dopamine and serotonin in the rat caudate in response to electrical stimulation of the medial forebrain bundle. Extracellular dopamine concentrations increased linearly as a function of the frequency (4-33 Hz) of evenly spaced stimuli in both the presence and absence of cocaine added to the dialysate. Because dopamine neurons are known to fire in single-spike and burst patterns, stimulation pulses were also delivered in a bursting pattern. The response of extracellular dopamine was augmented in both the presence and absence of cocaine when the same number of stimuli were delivered in bursts as compared to an evenly spaced pattern. Serotonin, which was only assessed in the presence of cocaine, similarly increased linearly with frequency, but, in contrast to the dopamine response, levels of serotonin were not augmented by stimuli presented in bursts. These results suggest that microdialysis can be used to detect physiological changes in synaptic transmitter concentrations.  相似文献   

6.
微透析校正的相关问题和方法   总被引:9,自引:0,他引:9  
微透析技术是研究生物动态变化的一种新型的活体生物采样技术,近年来由于实验方法的不断改进,微透析技术已广泛应用于在体的定量研究。在进行生物细胞外液的定量研究中,微透析探针的校正是十分必要的。本从微透析的回收率、影响因素及校正方法等方面简要介绍了微透析校正的相关问题。  相似文献   

7.
Extracellular fluid levels of dopamine and neurotensin in the rat prefrontal cortex were measured using in vivo microdialysis. Electrical stimulation of the median forebrain bundle resulted in increased release of both dopamine and neurotensin from the prefrontal cortex. Thus, stimulation of neurons in which dopamine and neurotensin are colocalized can evoke the in vivo release of both substances.  相似文献   

8.
While using the technique of in vivo microdialysis, we have assessed the effect of the ionic composition of the perfusing solution on extracellular dopamine levels during resting conditions and following a pharmacological manipulation. Our results indicate that perfusion with solutions containing the ionic composition of commercially available Ringer's solution, which mimic the ionic composition of plasma as opposed to brain extracellular fluid, alters the turnover rate and basal release of dopamine. Moreover, perfusion with solutions containing higher calcium levels, i.e., 3.4 mM, than the amount we have determined to be present in the extracellular fluid of striatum (1.2 mM) alters the pharmacological responsiveness of the nigrostriatal dopamine system to synthesis inhibition.  相似文献   

9.
The present study compared two different in vivo microdialysis methods which estimate the extracellular concentration of analytes at a steady state where there is no effect of probe sampling efficiency. Each method was used to estimate the basal extracellular concentration of dopamine (DA) in the nucleus accumbens of the rat. In the first method, DA is added to the perfusate at concentrations above and below the expected extracellular concentration (0, 2.5, 5, and 10 nM) and DA is measured in the dialysate from the brain to generate a series of points which are interpolated to determine the concentration of no net flux. Using this method, basal DA was estimated to be 4.2 +/- 0.2 nM (mean +/- SEM, n = 5). The slope of the regression gives the in vivo recovery of DA, which was 65 +/- 5%. This method was also used to estimate a basal extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) concentration in the nucleus accumbens of 5.7 +/- 0.6 microM, with an in vivo recovery of 52 +/- 11% (n = 5). A further experiment which extended the perfusate concentration range showed that the in vivo recovery of DA is significantly higher than the in vivo recovery of DOPAC (p less than 0.001), whereas the in vitro recoveries of DA and DOPAA are not significantly different from each other. The in vivo difference is thought to be caused by active processes associated with the DA nerve terminal, principally release and uptake of DA, which may alter the concentration gradient in the tissue surrounding the probe.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Abstract: Voltammetric microelectrodes and microdialysis probes were used simultaneously to monitor extracellular dopamine in rat striatum during electrical stimulation of the medial forebrain bundle. Microelectrodes were placed far away (1 mm) from, immediately adjacent to, and at the outlet of microdialysis probes. In drug-naive rats, electrical stimulation (45 Hz, 25 s) evoked a robust response at microelectrodes far away from the probes, but there was no response at microelectrodes adjacent to and at the outlet of the probes. After nomifensine administration (20 mg/kg i.p.), stimulation evoked robust responses at all three microelectrode placements. These results demonstrate first that evoked release in tissue adjacent to microdialysis probes is suppressed in comparison with evoked release in tissue far away from the probes and second that equilibration of the dopamine concentration in the extracellular fluid adjacent to and far away from the probes is prevented by the high-affinity dopamine transporter. Hence, models of microdialysis, which assume the properties of tissue to be spatially uniform, require modification to account for the distance that separates viable sites of evoked dopamine release from the probe. We introduce new mass transfer resistance parameters that qualitatively explain the observed effects of uptake inhibition on stimulation responses recorded with microdialysis and voltammetry.  相似文献   

11.
Abstract: The present study tests the hypothesis that ventilation with 100% O2 during recovery from asphyxia leads to greater disturbance in brain function, as measured by dopamine metabolism, than does ventilation with 21% oxygen. This hypothesis was tested using mechanically ventilated, anesthetized newborn piglets as an animal model. Cortical oxygen pressure was measured by the oxygen-dependent quenching of phosphorescence, striatal blood flow by laser Doppler, and the extracellular levels of dopamine and its metabolites by in vivo microdialysis. After establishment of a baseline, both the fraction of inspired oxygen (FiO2) and the ventilator rate were reduced in a stepwise fashion every 20 min over a 1-h period. For the subsequent 2-h recovery, the animals were randomized to breathing 21 or 100% oxygen. It was observed that during asphyxia cortical oxygen pressure decreased from 36 to 7 torr, extracellular dopamine increased 8,300%, and dihydroxyphenylacetic acid and homovanillic acid decreased by 65 and 60%, respectively, compared with controls. During reoxygenation after asphyxia, cortical oxygen pressure was significantly higher in the piglets ventilated with 100% oxygen than in those ventilated with 21% oxygen (19 vs. 11 torr). During the first hour of reoxygenation, extracellular dopamine levels decreased to ~200% of control in the 21% oxygen group, whereas these levels were still much higher in the 100% oxygen group (~500% of control). After ~2 h of reoxygenation, there was a secondary increase in extracellular dopamine to ~750 and ~3,000% of baseline for the animals ventilated with 21 and 100%, respectively. It is concluded that although 100% FiO2 after asphyxia increases cortical oxygenation compared with 21% FiO2, it also results in poorer recovery in dopamine metabolism and higher secondary release of striatal dopamine. The resulting increased extracellular levels of dopamine may exacerbate posthypoxic cerebral injury.  相似文献   

12.
Abstract: The effect of graded levels of tissue hypoxia on the extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid has been monitored in vivo by microdialysis. Reproducible levels of decreased oxygen in the brain were obtained by increasing the rate of ventilation from the control value of 25/min to as high as 95/min. With increasing ventilatory rate, the oxygen pressure in the cortex decreased from ∼40 torr to 16 torr. As the oxygen pressure decreased stepwise from 40 to 27, 22, and 16 torr, the dopamine levels in the extracellular medium rose by 70, 90, and 150%, respectively, returning to baseline within a few minutes of return to control ventilation rates. Levels of the catabolic products 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid decreased with decreasing tissue oxygen. Unlike the dopamine levels, these catabolite levels continued to decrease through 30 min of recovery (to 50% of control), returning to baseline only after recovery periods of 1–2 h. These data suggest that hypoxia induces long-term alterations in the neurotransmitter turnover. The marked effects of mild tissue hypoxia (decrease of oxygen from 40 torr to 26 torr) on both the extracellular dopamine concentration and dopamine metabolism indicate that the metabolic consequences of decreased tissue oxygen pressure extend to higher values than generally appreciated.  相似文献   

13.
Abstract: It is common practice in microdialysis studies for probes to be “calibrated” in artificial CSF and in vitro recoveries determined for all substances to be measured in vivo. Dialysate concentrations of such substances are then “corrected” for in vitro recoveries to provide “estimates” of extracellular concentrations. At least for dopamine, in vitro and in vivo recoveries are significantly different and, therefore, an estimate of extracellular dopamine based on correction for in vitro recovery is likely to be erroneous. Generally, however, the relative relationships of such estimates among animals are of interest rather than the “true” extracellular values. Such relationships would be valid to the extent that estimated values are correlated with or predictive of true values. Using the “no net flux” procedure, the present study sought to determine, for both dopamine and its metabolite 3,4-dihydroxy-phenylacetic acid (DOPAC), whether in vitro and in vivo recoveries would correlate with each other as well as whether respective estimated and true (no net flux) values of these substances would correlate with each other. Probes (3 mm; BAS/CMed MF-5393), previously calibrated, were lowered into both the nucleus accumbens and striatum of freely moving rats the day before sample collection was begun. In vitro and in vivo recoveries were not significantly correlated (r= 0.1–0.3), for either dopamine or DOPAC. For both dopamine and DOPAC, however, there were significant correlations (r= 0.7–0.8) between estimated and true values. Surprisingly, when using these commercial probes, absolute dialysate levels for both substances were even better correlated (r = 0.9–0.95) with true values. This suggests that, with these probes, a direct comparison of dialysate concentrations can be used to determine relative changes in basal extracellular levels of dopamine and DOPAC when it is not practical to do no net flux studies (e.g., because of the time required to characterize a drug effect). The use of in vitro calibrations adjusts the values closer to the true values but also adds noise to each value and therefore should be avoided.  相似文献   

14.
Abstract: The somatodendritic release of dopamine in substantia nigra previously has been suggested to be nonvesicular in nature and thus to differ from the classical, exocytotic release of dopamine described for the dopaminergic nerve terminal in striatum. We have compared the effects of reserpine, a compound that disrupts vesicular sequestration of monoamines, on the storage and release of dopamine in substantia nigra and striatum of rats. Reserpine administration (5 mg/kg, i.p.) significantly decreased the tissue level of dopamine in substantia nigra pars reticulata, substantia nigra pars compacta, and striatum. In these brain areas, reserpine-induced reductions in tissue dopamine level occurred within 2 h and persisted at 24 h postdrug. In vivo measurements using microdialysis revealed that reserpine administration rapidly decreased the extracellular dopamine concentration to nondetectable levels in substantia nigra as well as in striatum. In both structures, it was observed that reserpine treatment significantly attenuated the release of dopamine evoked by a high dose of amphetamine (10 mg/kg, i.p.) given 2 h later. In contrast, dopamine efflux in response to a low dose of amphetamine (2 mg/kg, i.p.) was not altered by reserpine pretreatment either in substantia nigra or in striatum. The present data suggest the existence, both at the somatodendritic and at the nerve terminal level, of a vesicular pool of dopamine that is the primary site of transmitter storage and that can be displaced by high but not low doses of amphetamine. The physiological release of dopamine in substantia nigra and in striatum is dependent on the integrity of this vesicular store.  相似文献   

15.
Previous ex vivo studies have provided indirect evidence that the dopamine (DA) metabolite 3-methoxytyramine (3-MT) may be a useful index of DA release in vivo. In the present study, in vivo microdialysis was utilized to assess directly the relationship between extracellular DA and 3-MT in the striatum of rats following a variety of pharmacological manipulations. Apomorphine, a DA receptor agonist, produced a rapid, transient decrease in both DA and 3-MT. Conversely, the DA receptor antagonist haloperidol produced a concomitant increase in extracellular DA and 3-MT. Increases in DA and 3-MT were also noted following the administration of the DA uptake inhibitor, bupropion. Local application of tetrodotoxin resulted in the complete elimination of measurable amounts of DA and 3-MT in the dialysate, gamma-Butyrolactone also greatly decreased DA and 3-MT. Finally, d-amphetamine produced a large increase in DA and 3-MT in animals that had been treated previously with gamma-butyrolactone. The Pearson correlation coefficients for DA and 3-MT following these manipulations ranged from 0.87 to 0.97. These data indicate that interstitial 3-MT is an accurate index of DA release. However, when compared with previous ex vivo findings, the present results also suggest that changes in tissue concentrations of 3-MT may not reliably reflect DA release following certain pharmacological manipulations.  相似文献   

16.
Abstract: In vivo microdialysis was used to determine the extent to which ionotropic glutamate receptors in the ventral tegmental area (VTA) regulate dopamine release in the nucleus accumbens. Coapplication of 2-amino-5-phosphonopentanoic acid (AP5; 200 µ M ) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 50 µ M ) to the VTA via reverse dialysis decreased extracellular concentrations of dopamine in the nucleus accumbens by ∼30%. In accordance with previous results, electrical stimulation of the prefrontal cortex increased dopamine release by 60%. Application of AP5 and CNQX to the VTA during cortical stimulation blocked the effect of stimulation on dopamine release. These results indicate that ionotropic glutamate receptors in the VTA are critically involved in basal and evoked dopamine release in the nucleus accumbens and suggest that a glutamatergic projection from the prefrontal cortex regulates the activity of dopaminergic neurons in the VTA.  相似文献   

17.
Inhibitory signaling in the ventral tegmental area (VTA) is involved in the mechanism of action for many drugs of abuse. Although drugs of abuse have been shown to alter extracellular γ-aminobutyric acid (GABA) concentration in the VTA, knowledge on how uptake mechanisms are regulated in vivo is limited. Quantitative (no-net-flux) microdialysis is commonly used to examine the extracellular concentration and clearance of monoamine neurotransmitters, however it is unclear whether this method is sensitive to changes in clearance for amino acid neurotransmitters such as GABA. The purpose of this study was to determine whether changes in GABA uptake are reflected by in vivo extraction fraction within the VTA. Using quantitative (no-net-flux) microdialysis adapted for transient conditions, we examined the effects of local perfusion with the GABA uptake inhibitor, nipecotic acid, in the VTA of Long Evans rats. Basal extracellular GABA concentration and in vivo extraction fraction were 44.4?±?1.9 nM (x-intercepts from 4 baseline regressions using a total of 24 rats) and 0.19?±?0.01 (slopes from 4 baseline regressions using a total of 24 rats), respectively. Nipecotic acid (50 μM) significantly increased extracellular GABA concentration to 170?±?4 nM and reduced in vivo extraction fraction to 0.112?±?0.003. Extraction fraction returned to baseline following removal of nipecotic acid from the perfusate. Conventional microdialysis substantially underestimated the increase of extracellular GABA concentration due to nipecotic acid perfusion compared with that obtained from the quantitative analysis. Together, these results show that inhibiting GABA uptake mechanisms within the VTA alters in vivo extraction fraction measured using microdialysis and that in vivo extraction fraction may be an indirect measure of GABA clearance.  相似文献   

18.
Pallidal dopamine, GABA and the endogenous opioid peptides enkephalins have independently been shown to be important controllers of sensorimotor processes. Using in vivo microdialysis coupled to liquid chromatography-mass spectrometry and a behavioral assay, we explored the interaction between these three neurotransmitters in the rat globus pallidus. Amphetamine (3 mg/kg i.p.) evoked an increase in dopamine, GABA and methionine/leucine enkephalin. Local perfusion of the dopamine D(1) receptor antagonist SCH 23390 (100 μM) fully prevented amphetamine stimulated enkephalin and GABA release in the globus pallidus and greatly suppressed hyperlocomotion. In contrast, the dopamine D(2) receptor antagonist raclopride (100 μM) had only minimal effects suggesting a greater role for pallidal D(1) over D(2) receptors in the regulation of movement. Under basal conditions, opioid receptor blockade by naloxone perfusion (10 μM) in the globus pallidus stimulated GABA and inhibited dopamine release. Amphetamine-stimulated dopamine release and locomotor activation were attenuated by naloxone perfusion with no effect on GABA. These findings demonstrate a functional relationship between pallidal dopamine, GABA and enkephalin systems in the control of locomotor behavior under basal and stimulated conditions. Moreover, these findings demonstrate the usefulness of liquid chromatography-mass spectrometry as an analytical tool when coupled to in vivo microdialysis.  相似文献   

19.
The effects of apomorphine (0.1-2.5 mg/kg) on release of endogenous dopamine and extracellular levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the prefrontal cortex and the striatum were examined in vivo by a microdialysis method. Apomorphine significantly reduced release of dopamine and the extracellular levels of dopamine metabolites, DOPAC and HVA, not only in the striatum, but also in the prefrontal cortex. These findings indicate that dopamine autoreceptors modulate in vivo release of dopamine in the prefrontal cortex.  相似文献   

20.
Abstract: 3,4-Dihydroxyphenylacetic acid (DOPAC) is commonly considered to be the main dopamine (DA) metabolite produced by monoamine oxidase (MAO); however, the initial product of DA oxidation is 3,4-dihydroxyphenylacetaldehyde (DOPALD). Owing to technical difficulties in detecting DOPALD from a biological matrix, no studies have so far been performed to measure brain levels of this aldehyde in vivo. In this work, using transstriatal microdialysis in freely moving rats, we identified DOPALD by HPLC coupled to a coulometric detector. In chromatograms obtained from microdialysis samples, DOPALD appeared as a peak with a retention time coincident with that of the standards obtained via enzymatic and chemical synthesis. On the other hand, DOPALD was undetectable ex vivo from rat striatal homogenates. This discrepancy is probably due to the preferential extraneuronal localization together with the high reactivity of the aldehyde, which is rapidly removed by the dialysis probe, whereas the ex vivo procedure allows its condensation and enzymatic conversion. Measurement of DOPALD levels as a routine procedure might represent a reliable tool to evaluate DA oxidative metabolism directly, in vivo. Moreover, parallel detection of DOPALD and DOPAC levels in brain dialysate may make it possible to distinguish between the activity of MAO and aldehyde dehydrogenase. DOPALD, like many endogenous aldehydes, has been shown to be toxic to the cell in which it is formed. Therefore, in vivo measurement of DOPALD levels could highlight new aspects in the molecular mechanisms underlying both acute neurological insults and neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号