首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soluble lectins of chicken, rat, frog, and the cellular slime mold, Dictyostelium discoideum, were purified and specific antibodies raised against these proteins were used to immunohistochemically localize the lectins in and around the tissues in which they were synthesized. Within cells, some of these soluble lectins (chicken-lactose-lectin-II in intestinal goblet cells, discoidin II in prespore cells) appear to be concentrated within vesicles whereas others (e.g., rat beta-galactoside lectin in pulmonary alveolar and smooth muscle cells) appear to be free in the cytoplasm. All of these lectins are eventually secreted to extracellular sites in developing or adult tissues. The sites include mucin (chicken-lactose-lectin-II in intestine); developing extracellular matrix (chicken-lactose-lectin-I in muscle; Xenopus laevis lectin in blastula stage embryos); slime (discoidin I); developing spore coat (discoidin II); and a specialized extracellular matrix, elastic fibers (rat beta-galactoside lectin in lung). In cases where this has been studied in detail (discoidin I, discoidin II, and chicken-lactose-lectin-II), the lectin is associated with a complementary extracellular ligand, at least transiently. Lectin-ligand interactions presumably confer specialized properties in these particular extracellular domains.  相似文献   

2.
Vascular resistance in the mammalian pulmonary circulation is affected by many endogenous agents that influence vascular smooth muscle, right ventricular myocardium, endothelial function, collagen and elastin deposition, and fluid balance. When the balance of these agents is disturbed, e.g. by airway hypoxia from high altitude or pulmonary obstructive disorders, pulmonary hypertension ensues, as characterized by elevated pulmonary artery pressure (P(PA)). Among neuropeptides with local pulmonary artery pressor effects are endothelin-1 (ET-1), angiotensin II (AII), and substance P, and among mitigating peptides are calcitonin gene-related peptide (CGRP), adrenomedullin (ADM), atrial natriuretic peptide (ANP), vasoactive intestinal peptide (VIP) and ET-3. Moreover, somatostatin28 (SOM28) exacerbates, whereas SOM14 decreases P(PA) in hypoxic rats, with lowering and increasing of lung CGRP levels, respectively. Pressure can also be modulated by increasing or decreasing plasma volume (VIP and ANP, respectively), or by induction or suppression of vascular tissue remodeling (ET-1 and CGRP, respectively). Peptide bioavailability and potency can be regulated through hypoxic up- and down- regulation of synthesis or release, activation by converting enzymes (ACE for AII and ECE for ET-1), inactivation by neutral endopeptidase and proteases, or by interaction with nitric oxide (NO). Moreover, altered receptor density and affinity can account for changed peptide efficacy. For example, upregulation of ET(A) receptors and ET-1 synthesis occurs in the hypoxic lung concomitantly with reduced CGRP release. Also, receptor activity modifying protein 2 (RAMP2) has been shown to confer ADM affinity to the pulmonary calcitonin-receptor-like receptor (CRLR). We recently detected the mRNA encoding for RAMP2, CRLR, and the CGRP receptor RDC-1 in rat lung. The search for an effective, lung selective treatment of pulmonary hypertension will likely benefit from exploring the imbalance and restoring the balance between these native modulators of intrapulmonary pressure. For example, blocking of the ET-1 receptor ET(A) and vasodilation by supplemental CGRP delivered i. v. or via airway gene transfer, have proven to be useful experimentally.  相似文献   

3.
4.
Synthetic pseudopeptides that fit well with the active site architecture allow the most effective binding to enzymes, similar to native substrates in high-energy transition states. Phosphinic acid peptide analogs that comprise the tetrahedral phosphorus moiety introduced to replace an internal amide bond exert such an isosteric or isoelectronic resemblance, combined with providing other advantageous features, for example, metal complexing properties. Accordingly, they are capable of inhibiting metal-dependent enzymes involved in biological functions in eukaryotic and prokaryotic cells. These enzymes are associated with notorious human diseases, such as cancer, e.g., matrix metalloproteinases, or are etiological factors of protozoal and bacterial infections, e.g., metalloaminopeptidases. The affinity and selectivity of these compounds can be conveniently adjusted, either by structural modification of dedicated side chains or by backbone elongation to enhance specific interactions with the corresponding binding pockets. Recent approaches to the synthesis of these compounds are illustrated by examples of the preparation of rationally designed structures of inhibitors of particular enzymes. Activity against appealing enzymatic targets is presented, along with the molecular mechanisms of action and therapeutic implications. Innovative aspects of phosphinic peptide application, e.g., as activity-based probes, and ligands of complexes of radioisotopes for nuclear medicine are also outlined.  相似文献   

5.
Pulmonary hypertension (PH) is a life-threatening lung disease. PH with concomitant lung diseases, e.g., idiopathic pulmonary fibrosis, is associated with poor prognosis. Development of novel therapeutic vasodilators for treatment of these patients is a key imperative. We evaluated the efficacy of dual activation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) using an active, small-molecule phosphodiesterase (PDE4)/PDE5 dual inhibitor (Compound A). Compound A increased both cAMP and cGMP levels in WI-38 lung fibroblasts and suppressed the expressions of type-1 collagen α1 chain and fibronectin. Additionally, compound A reduced right ventricular weight/left ventricular weight+septal weight ratio, brain natriuretic peptide expression levels in right ventricle, C─C motif chemokine ligand 2 expression levels in lung, and plasma surfactant protein D. Our data indicate that dual activation of cAMP/cGMP pathways may be a novel treatment strategy for PH.  相似文献   

6.
B R Pitt 《Federation proceedings》1984,43(11):2574-2577
Several important vasoactive substances are taken up and/or metabolized during a single transpulmonary passage. Such substances include 5-hydroxytryptamine, prostaglandins (PGs) of the E and F series, and peptide substrates (angiotensin I and bradykinin) for angiotensin-converting enzyme (ACE). When these metabolic processes are altered, predictable changes in systemic hemodynamics can follow because of altered arterial concentrations of the vasoactive substances. For example, a single dose of captopril (2 mg/kg, i.v.) given to conscious rabbits caused prolonged depression in pulmonary ACE activity, an effect that coincided with a significant reduction in mean systemic arterial pressure. In another study, total cardiopulmonary bypass in anesthetized dogs was associated with a time-dependent increase in arterial levels of immunoreactive PGE. Coincident with this elevation in PGE was a significant decrease in total systemic vascular resistance. The decrease in resistance was inhibited by pretreatment with indomethacin or by maintaining lung perfusion during extracorporeal circulation (i.e., left heart bypass). Thus, in the intact animal, significant reduction in lung metabolism, induced by either pharmacological or other experimental means, may modify vasoregulation of peripheral circulation. Furthermore, measurement of these metabolic functions may provide biochemical information about the pulmonary microcirculation, which is both the locus of these activities and an early site of acute lung injury.  相似文献   

7.
Reactive oxygen species (ROS) are considered to be chemically reactive with and damaging to biomolecules including DNA, protein, and lipid, and excessive exposure to ROS induces oxidative stress and causes genetic mutations. However, the recently described family of Nox and Duox enzymes generates ROS in a variety of tissues as part of normal physiological functions, which include innate immunity, signal transduction, and biochemical reactions, e.g., to produce thyroid hormone. Nature's "choice" of ROS to carry out these biological functions seems odd indeed, given its predisposition to cause molecular damage. This review describes normal biological roles of Nox enzymes as well as pathological conditions that are associated with ROS production by Nox enzymes. By far the most common conditions associated with Nox-derived ROS are chronic diseases that tend to appear late in life, including atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, Alzheimer's disease, and others. In almost all cases, with the exception of a few rare inherited conditions (e.g., related to innate immunity, gravity perception, and hypothyroidism), diseases are associated with overproduction of ROS by Nox enzymes; this results in oxidative stress that damages tissues over time. I propose that these pathological roles of Nox enzymes can be understood in terms of antagonistic pleiotropy: genes that confer a reproductive advantage early in life can have harmful effects late in life. Such genes are retained during evolution despite their harmful effects, because the force of natural selection declines with advanced age. This review discusses some of the proposed physiologic roles of Nox enzymes, and emphasizes the role of Nox enzymes in disease and the likely beneficial effects of drugs that target Nox enzymes, particularly in chronic diseases associated with an aging population.  相似文献   

8.
Chronic inflammation predisposes toward many types of cancer. Chronic bronchitis and asthma, for example, heighten the risk of lung cancer. Exactly which inflammatory mediators (e.g., oxidant species and growth factors) and lung wound repair processes (e.g., proangiogenic factors) enhance pulmonary neoplastic development is not clear. One approach to uncover the most relevant biochemical and physiological pathways is to identify genes underlying susceptibilities to inflammation and to cancer development at the same anatomic site. Mice develop lung adenocarcinomas similar in histology, molecular characteristics, and histogenesis to this most common human lung cancer subtype. Over two dozen loci, called Pas or pulmonary adenoma susceptibility, Par or pulmonary adenoma resistance, and Sluc or susceptibility to lung cancer genes, regulate differential lung tumor susceptibility among inbred mouse strains as assigned by QTL (quantitative trait locus) mapping. Chromosomal sites that determine responsiveness to proinflammatory pneumotoxicants such as ozone (O3), particulates, and hyperoxia have also been mapped in mice. For example, susceptibility QTLs have been identified on chromosomes 17 and 11 for O3-induced inflammation (Inf1, Inf2), O3-induced acute lung injury (Aliq3, Aliq1), and sulfate-associated particulates. Sites within the human and mouse genomes for asthma and COPD phenotypes have also been delineated. It is of great interest that several susceptibility loci for mouse lung neoplasia also contain susceptibility genes for toxicant-induced lung injury and inflammation and are homologous to several human asthma loci. These QTLs are described herein, candidate genes are suggested within these sites, and experimental evidence that inflammation enhances lung tumor development is provided.  相似文献   

9.
Peroxidative degradation of lipids yields the aldehyde 4-hydroxy-2-nonenal (4HNE) as a major product. The lipid aldehyde is an electrophile, and reactivity of 4HNE toward protein nucleophiles (i.e., Cys, His, and Lys) has been characterized. Through the use of purified enzymes and isolated cells, various pathways for biotransformation of the lipid aldehyde have been identified and include enzyme-mediated oxidation, reduction, and glutathione conjugation. Uncontrolled oxidative stress can yield excessive lipid peroxidation and 4HNE generation, however, and overwhelm these cellular defenses. Indeed, in vitro and in vivo production of 4HNE in response to pro-oxidant exposure has been demonstrated using antibodies to protein adducts of the lipid aldehyde. Recent evidence suggests a role for protein modification by 4HNE in the pathogenesis of several diseases (e.g., alcohol-induced liver disease); however, the precise mechanism(s) is currently unknown but likely results from adduction of proteins involved in cellular homeostasis or biological signaling.  相似文献   

10.
Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasible approach. However, reconstitution of the full biosynthetic pathway in a host often leads to low productivity, which is at least in part due to the low efficiency of enzyme interaction in vivo except for the well-known reasons of metabolic burden (e.g., expression of large NRP synthetases—NRPSs with molecular weights of >100 kDa) and cellular toxicity on host cells. To enhance the catalytic efficiency of large NRPSs in vivo, here we propose to staple NRPS enzymes by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher) for enhanced NRP production. We achieve this goal by introducing a stapled NRPS system for the biosynthesis of the antibiotic NRP valinomycin in E. coli. The results indicate that stapled valinomycin synthetase (Vlm1 and Vlm2) enables higher product accumulation than those two free enzymes (e.g., the maximum improvement is nearly fourfold). After further optimization by strain and bioprocess engineering, the final valinomycin titer maximally reaches about 2800 µg/L, which is 73 times higher than the initial titer of 38 µg/L. We expect that stapling NRPS enzymes will be a promising catalytic strategy for high-level biosynthesis of NRP natural products.  相似文献   

11.
The respiratory tract is a portal of entry for many environmental chemicals. The respiratory tract plays an important role in the detoxification or metabolic activation of these chemicals, e.g., via cytochrome P450 enzymes. Alterations in the capabilities of these enzymes to metabolize inhaled compounds can, therefore, affect the toxicity of the chemicals. The pulmonary cytochrome P450 activity has been studied in many species, but relatively little is known about this activity in the human lung tissue. In this limited study, we have investigated the possibility of modulating in vitro the P450 activity in lung slices from hamsters and humans. The alkoxyresorufin-O-dealkylase activity was measured in the S9 fraction of lung slices incubated for 24 h with 106 mol/L 20-methylcholanthrene (3MC) or -naphthoflavone (N). The ethoxyresorufin-O-deethylase (EROD) activity was increased by 3MC and N in lung slices of both species. The benzyloxyresorufin-O-deethylase (BROD) activity was decreased after incubation with 3MC but increased with N. These data show that in vitro modulation in lung slices is feasible, although technical improvement is still needed, particularly in relation to the viability of the slices.  相似文献   

12.
The centrosome (centriole) and the cytoskeleton produced by it are structures, which probably determine differentiation, morphogenesis, and switching on the mechanism of replicative aging in all somatic cells of multicellular animals. The mechanism of such programming of the events seems to include cytoskeleton influences and small RNAs related to the centrosome. 1) If these functions are really related with centrioles, the multicellular organism's cells which: a) initially lack centrioles (e.g., higher plant cells and also zygote and early blastomeres of some animals) or cytoskeleton (e.g., embryonic stem cells); or b) generate centrioles de novo (e.g., zygote and early blastomeres of some animals), will be totipotent and lack replicative aging. Consequently, the absence (constant or temporary) of the structure determining the counting of divisions also means the absence of counting of differentiation processes. 2) Although a particular damage to centrioles or cytoskeleton (e.g., in tumor cells) fails to make the cells totipotent (because the morphogenetic status of these cells, as differentiated from that of totipotent ones, is not zero), but such a transformation can suppress the initiation of the aging mechanism induced by these structures and, thus, make such cells replicatively "immortal".  相似文献   

13.
The occurrence and development of acute lung injury (ALI) involve a variety of pathological factors and complex mechanisms. How pulmonary cells communicate with each other and subsequently trigger an inflammatory cascade remains elusive. Extracellular vesicles (EVs) are a critical class of membrane-bound structures that have been widely investigated for their roles in pathophysiological processes, especially in immune responses and tumor progression. Most of the current knowledge of the functions of EVs is related to functions derived from viable cells (e.g., microvesicles and exosomes) or apoptotic cells (e.g., apoptotic bodies); however, there is limited understanding of the rapidly progressing inflammatory response in ALI. Herein, a comprehensive analysis of micron-sized EVs revealed a mass production of 1-5 μm pyroptotic bodies (PyrBDs) release in the early phase of ALI induced by lipopolysaccharide (LPS). Alveolar macrophages were the main source of PyrBDs in the early phase of ALI, and the formation and release of PyrBDs were dependent on caspase-1. Furthermore, PyrBDs promoted the activation of epithelial cells, induced vascular leakage and recruited neutrophils through delivery of damage-associated molecular patterns (DAMPs). Collectively, these findings suggest that PyrBDs are mainly released by macrophages in a caspase-1-dependent manner and serve as mediators of LPS-induced ALI.  相似文献   

14.
The present article reviews the basic principles of a new approach to the characterization of pulmonary disease. This approach is based on the unique nuclear magnetic resonance (NMR) properties of the lung and combines experimental measurements (using specially developed NMR techniques) with theoretical simulations. The NMR signal from inflated lungs decays very rapidly compared with the signal from completely collapsed (airless) lungs. This phenomenon is due to the presence of internal magnetic field inhomogeneity produced by the alveolar air–tissue interface (because air and water have different magnetic susceptibilities). The air–tissue interface effects can be detected and quantified by magnetic resonance imaging (MRI) techniques using temporally symmetric and asymmetric spin‐echo sequences. Theoretical models developed to explain the internal (tissue‐induced) magnetic field inhomogeneity in aerated lungs predict the NMR lung behavior as a function of various technical and physiological factors (e.g., the level of lung inflation) and simulate the effects of various lung disorders (in particular, pulmonary edema) on this behavior. Good agreement has been observed between the predictions obtained from the mathematical models and the results of experimental NMR measurements in normal and diseased lungs. Our theoretical and experimental data have important pathophysiological and clinical implications, especially with respect to the characterization of acute lung disease (e.g., pulmonary edema) and the management of critically ill patients. Bioelectromagnetics 20:110–119, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
Individual variations in activity of pulmonary enzymes that metabolize tobacco-derived carcinogens may affect an individual's cancer risk from cigarette smoking. To investigate whether some of these enzymes (e.g., cytochrome P450IA-related) can serve as markers for carcinogen-induced DNA damage accumulating in the lungs of smokers, non-tumorous lung tissue specimens were taken during surgery from middle-aged men with either lung cancer (n = 54) or non-neoplastic lung disease (n = 20). Phase I (AHH, ECDE) and phase II (EH, UDPGT, GST) enzyme activities, glutathione and malondialdehyde contents were determined in lung parenchyma and/or bronchial tissues; some samples were analyzed for DNA adducts, using 32P-postlabeling.

Data analysis of subsets or the whole group of patients yielded the following results. (1) Phase I and II drug-metabolizing enzyme (AHH, EH, UDPGT, GST) activities in histologically normal surgical specimens of lung parenchyma were correlated with the respective enzyme activities in bronchial tissues of the same subject. (2) In lung parenchyma, enzyme (AHH, ECDE, EH, UDPGT) activities were significantly and positively related to each other, implying a similar regulatory control of their expression. (3) Mean activities of pulmonary enzymes (AHH, ECDE) were significantly (2- and 7-fold, respectively) higher in lung cancer patients who had smoked within 30 days before surgery (except GST, which was depressed) than in cancer-free subjects with a similar smoking history. (4) In the cancer patients, the time required for AHH, EH and UDPGT activities to return to the level found in non-smoking subjects was several weeks. (5) Bronchial tree and peripheral lung parenchyma preparations exhibited a poor efficiency in activating promutagens to bacterial mutagens in Salmonella. However, they decreased the mutagenicity of several direct-acting mutagens, an effect which was more pronounced in tissue from recent smokers. GSH concentration and GST activity were positively correlated with mutagen inactivation in the same sample. (6) In recent smokers, AHH activity in lung parenchyma was positively correlated with the level of tobacco smoke-derived DNA adducts. (7) Pulmonary AHH and EH activity had prognostic value in tobacco-related lung cancer patients. (8) An enhanced level of pro-oxidant state in the lungs was associated with recent cigarette smoking. Malondialdehyde level in lung parenchyma was associated with the degree of small airway obstruction, suggesting a common free radical-mediated pathway for both lung cancer induction and small airway obstruction.

These results demonstrate the pronounced effect of recent cigarette smoke exposure on pulmonary xenobiotic metabolism and lipid peroxidation and lend further support to the hypothesis that the inducibility of pulmonary AHH activity (cytochrome P450IA1 levels) in tobacco smokers is associated with lung cancer risk. Results on DNA adducts in smokers' lung tissue may help to explain why a certain metabolic phenotype accumulates more DNA damage in lung cells.  相似文献   


16.
The ways in which dietary polyunsaturated fats and antioxidants affect the balance between activation and detoxification of environmental precarcinogens is discussed, with particular reference to the polycyclic aromatic hydrocarbon benzo(a)pyrene. The structure and composition of membranes and their susceptibility to peroxidation is dependent on the polyunsaturated fatty acid (PUFA) content of the cell and its antioxidant status, both of which are determined to a large degree by dietary intake of these compounds. An increase in the PUFA content of membranes stimulates the oxidation of precarcinogens to reactive intermediates by affecting the configuration and induction of membrane-bound enzymes (e.g., the mixed-function oxidase system and epoxide hydratase); providing increased availability of substrates (hydroperoxides) for peroxidases that cooxidise carcinogens (e.g., prostaglandin synthetase and P-450 peroxidase); and increasing the likelihood of direct activation reactions between peroxyl radicals and precarcinogens. Antioxidants, on the other hand, protect against lipid peroxidation, scavenge oxygen-derived free radicals and reactive carcinogenic species. In addition some synthetic antioxidants exert specific effects on enzymes, which results in increased detoxification and reduced rates of activation. The balance between dietary polyunsaturated fats, antioxidants and the initiation of carcinogenesis is discussed in relation to animal models of chemical carcinogenesis and the epidemiology of human cancer.  相似文献   

17.
The present investigations on rat lung show that metabolic changes occurring around the 20th gestational day are accompanied by multiple alterations in the quantitative pattern of enzymes. This involves increases in two lysosomal enzymes (N-acetyl beta-glucosaminidase and beta-galactosidase) and a rise and fall in pyruvate kinase and alpha-glucosidase. The striking transient upsurge of adenylate kinase, however, is postponed until after birth. The normal diminution of thymidine kinase and peptidylproline hydroxylase is drastically enhanced by an injection of cortisol to fetal rats. Studies on human pulmonary tissues consisted in determining enzyme concentration from the ninth to the 21st week of gestation and an histologically normal adult lungs. The results show that the 15th to the 21st week of gestation is the period of increase in pyruvate kinase, adenylate kinase and alpha-glucosidase. The rise during the development of several enzymes (e.g., 5'-nucleotidase, alkaline phosphatase, and gamma-glutamyl transpeptidase) and the decline in thymidine kinase and peptidylproline hydroxylase, however, dose not begin until after the 21st week of gestation.  相似文献   

18.
The effects of pulmonary arterial embolization on calculated pulmonary capillary pressure as determined by the venous occlusion technique are examined using a simple pressure-flow model for the lung. It is predicted that pulmonary, arterial embolization can induce significant underestimation of pulmonary capillary pressure in flowing vessels. This underestimation is related to the percent of vessels embolized and the caliber of pulmonary arteries that are embolized (i.e., the size of the emboli). Experimental verification of these theoretical findings is necessary before the conclusions can be extended to the interpretation of venous occlusion experiments in the lung.  相似文献   

19.
Adiponectin (APN) is an adipose tissue-derived factor with anti-inflammatory and vascular protective properties whose levels paradoxically decrease with increasing body fat. In this study, APN's role in the early development of ALI to LPS was investigated. Intratracheal LPS elicited an exaggerated systemic inflammatory response in APN-deficient (APN(-/-)) mice compared with wild-type (wt) littermates. Increased lung injury and inflammation were observed in APN(-/-) mice as early as 4 h after delivery of LPS. Targeted gene expression profiling performed on immune and endothelial cells isolated from lung digests 4 h after LPS administration showed increased proinflammatory gene expression (e.g., IL-6) only in endothelial cells of APN(-/-) mice when compared with wt mice. Direct effects on lung endothelium were demonstrated by APN's ability to inhibit LPS-induced IL-6 production in primary human endothelial cells in culture. Furthermore, T-cadherin-deficient mice that have significantly reduced lung airspace APN but high serum APN levels had pulmonary inflammatory responses after intratracheal LPS that were similar to those of wt mice. These findings indicate the importance of serum APN in modulating LPS-induced ALI and suggest that conditions leading to hypoadiponectinemia (e.g., obesity) predispose to development of ALI through exaggerated inflammatory response in pulmonary vascular endothelium.  相似文献   

20.
Biosynthesis of beta-lactam antibiotics by fungi and actinomycetes is markedly affected by compounds containing nitrogen. The different processes employed by the spectrum of microbes capable of making these valuable compounds are affected differently by particular compounds. Ammonium ions, except at very low concentrations, exert negative effects via nitrogen metabolite repression, sometimes involving the nitrogen regulatory gene nre. Certain amino acids are precursors or inducers, whereas others are involved in repression and, in certain cases, as inhibitors of biosynthetic enzymes and of enzymes supplying precursors. The most important amino acids from the viewpoint of regulation are lysine, methionine, glutamate and valine. Surprisingly, diamines such as diaminopropane, putrescine and cadaverine induce cephamycin production by actinomycetes. In addition to penicillins and cephalosporins made by fungi and cephamycins made by actinomycetes, other beta-lactams are made by actinomycetes and unicellular bacteria. These include clavams (e.g., clavulanic acid), carbapenems (e.g., thienamycin), nocardicins and monobactams. Here also, amino acids are precursors and inhibitors, but only little is known about regulation. In the case of the simplest carbapenem made by unicellular bacteria, i.e., 1-carba-2-em-3-carboxylic acid, quorum sensors containing homoserine lactone are inducers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号