首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calmodulin (CaM) has been shown to suppress basal G protein coupling and attenuate agonist-stimulated G protein coupling of the mu-opioid receptor (OP(3)) through direct interaction with the third intracellular (i3) loop of the receptor. Here we have investigated the role of CaM in regulating changes in OP(3)-G protein coupling during morphine treatment, shown to result in CaM release from plasma membranes. Basal and agonist-stimulated G protein coupling by OP(3) was measured before and after morphine pretreatment by incorporation of guanosine 5'-O-(3-[(35)S]thiotriphosphate) into membranes, obtained from HEK 293 cells transfected with human OP(3) cDNA. The opioid antagonist beta-chlornaltrexamine fully suppressed basal G protein coupling of OP(3), providing a direct measure of basal signaling. Pretreatment of the cells with morphine enhanced basal G protein coupling (sensitization). In contrast, agonist-stimulated coupling was diminished (desensitization), resulting in a substantially flattened morphine dose-response curve. To test whether CaM is involved in these changes, we constructed OP(3)-i3 loop mutants with reduced affinity for CaM (K273A, R275A, and K273A/R275A). Basal signaling of these mutant OP(3) receptors was higher than that of the wild-type receptor and, moreover, unaffected by morphine pretreatment, whereas desensitization to agonist stimulation was only slightly attenuated. Therefore, CaM-OP(3) interactions appear to play only a minor role in the desensitization of OP(3). In contrast, release of CaM from the plasma membrane appears to enhance the inherent basal G protein coupling of OP(3), thereby resolving the paradox that OP(3) displays both desensitization and sensitization during morphine treatment.  相似文献   

2.
The mu opioid receptor, MOR, displays spontaneous agonist-independent (basal) G protein coupling in vitro. To determine whether basal MOR signaling contributes to narcotic dependence, antagonists were tested for intrinsic effects on basal MOR signaling in vitro and in vivo, before and after morphine pretreatment. Intrinsic effects of MOR ligands were tested by measuring GTPgammaS binding to cell membranes and cAMP levels in intact cells. beta-CNA, C-CAM, BNTX, and nalmefene were identified as inverse agonists (suppressing basal MOR signaling). Naloxone and naltrexone were neutral antagonists (not affecting basal signaling) in untreated cells, whereas inverse agonistic effects became apparent only after morphine pretreatment. In contrast, 6alpha- and 6beta-naltrexol and -naloxol, and 6beta-naltrexamine were neutral antagonists regardless of morphine pretreatment. In an acute and chronic mouse model of morphine-induced dependence, 6beta-naltrexol caused significantly reduced withdrawal jumping compared to naloxone and naltrexone, at doses effective in blocking morphine antinociception. This supports the hypothesis that naloxone-induced withdrawal symptoms result at least in part from suppression of basal signaling activity of MOR in morphine-dependent animals. Neutral antagonists have promise in treatment of narcotic addiction.  相似文献   

3.
Calmodulin binding to G protein-coupling domain of opioid receptors.   总被引:5,自引:0,他引:5  
The ubiquitous intracellular Ca(2+) sensor calmodulin (CaM) regulates numerous proteins involved in cellular signaling of G protein-coupled receptors, but most known interactions between GPCRs and CaM occur downstream of the receptor. Using a sequence-based motif search, we have identified the third intracellular loop of the opioid receptor family as a possible direct contact point for interaction with CaM, in addition to its established role in G protein activation. Peptides derived from the third intracellular loop of the mu-opioid (OP(3)) receptor strongly bound CaM and were able to reduce binding interactions observed between CaM and immunopurified OP(3) receptor. Functionally, CaM reduced basal and agonist-stimulated (35)S-labeled guanosine 5'-3-O-(thio)triphosphate incorporation, a measure of G protein activation, in membranes containing recombinant OP(3) receptor. Changes in CaM membrane levels as a result of overexpression or antisense CaM suppression inversely affected basal and agonist-induced G protein activation. The ability of CaM to abolish high affinity binding sites of an agonist at OP(3) further supports the hypothesis of a direct interaction between CaM and opioid receptors. An OP(3) receptor mutant with a Lys(273) --> Ala substitution (K273A-OP(3)), an amino acid predicted to play a critical role in CaM binding based on motif structure, was found to be unaffected by changes in CaM levels but coupled more efficiently to G proteins than the wild-type receptor. Stimulation of both the OP(1) (delta-opioid) and OP(3) wild-type receptors, but not the K273A-OP(3) mutant, induced release of CaM from the plasma membrane. These results suggest that CaM directly competes with G proteins for binding to opioid receptors and that CaM may itself serve as an independent second messenger molecule that is released upon receptor stimulation.  相似文献   

4.
Phosphorylation of the MAPK isoform ERK by G protein-coupled receptors involves multiple signaling pathways. One of these pathways entails growth factor receptor transactivation followed by ERK activation. This study demonstrates that a similar signaling pathway is used by the mu-opioid receptor (MOR) expressed in HEK293 cells and involves calmodulin (CaM). Stimulation of MOR resulted in both epidermal growth factor receptor (EGFR) and ERK phosphorylation. Data obtained with inhibitors of EGFR Tyr kinase and membrane metalloproteases support an intermediate role of EGFR activation, involving release of endogenous membrane-bound epidermal growth factor. Previous studies had demonstrated a role for CaM in opioid signaling based on direct CaM binding to MOR. To test whether CaM contributes to EGFR transactivation and ERK phosphorylation by MOR, we compared wild-type MOR with mutant K273A MOR, which binds CaM poorly, but couples normally to G proteins. Stimulation of K273A MOR with [D-Ala(2),MePhe(4),Gly-ol(5)]enkephalin (10-100 nm) resulted in significantly reduced ERK phosphorylation. Furthermore, wild-type MOR stimulated EGFR Tyr phosphorylation 3-fold more than K273A MOR, indicating that direct CaM-MOR interaction plays a key role in the transactivation process. Inhibitors of CaM and protein kinase C also attenuated [D-Ala(2),MePhe(4),Gly-ol(5)]enkephalin-induced EGFR transactivation in wild-type (but not mutant) MOR-expressing cells. This novel pathway of EGFR transactivation may be shared by other G protein-coupled receptors shown to interact with CaM.  相似文献   

5.
We have developed a quantitative assay of calmodulin (CaM) binding to S-Tag labeled peptides derived from G-protein coupled receptor (GPCR) sequences. CaM binding of peptides derived from the third intracellular loop (i3) of mu opioid receptor (MOR) was confirmed and the CaM-binding motif refined. A MORi3 peptide with a Lys > Ala substitution--shown to reduce CaM-binding of intact MOR--bound fivefold less avidly than the wild-type peptide. Screening peptides derived from i3 loops of other GPCR families confirmed 5HT1A, and identified muscarinic receptor 3, and melanocortin receptor 1, as proteins carrying CaM-binding domains. The use of S-Tag labeling can serve for rapid screening of putative CaM-binding domains in GPCRs.  相似文献   

6.
Sadée W  Wang D  Bilsky EJ 《Life sciences》2005,76(13):1427-1437
The mu opioid receptor (MOR, OPRM)--the principal receptor involved in narcotic addiction--has been shown to display basal (spontaneous, constitutive) signaling activity. Interaction with other signaling proteins, such as calmodulin, regulates basal MOR activity. Providing a mechanism for long-lasting regulation, basal MOR activity potentially plays a key role in addiction, in combination with gene regulation and synaptic remodeling. Recent results support a link to physical dependence--one of the main manifestations of addiction to drugs of abuse. The prototypical opioid antagonists, naloxone and naltrexone, were shown to act as inverse agonists in the morphine-dependent state (i.e., they suppress basal MOR signaling) and thereby appear to elicit or contribute to precipitated withdrawal. This affords the opportunity to explore therapeutic applications for neutral antagonists (blocking agonists at MOR without affecting basal activity) with reduced adverse effects. Neutral antagonists are promising drug candidates in the treatment of addiction and overdose, and of peripheral adverse effects of narcotic analgesics.  相似文献   

7.
In this work, the site saturation mutagenesis of tyrosine 195, tyrosine 260 and glutamine 265 in the cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase for maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G). Specifically, the site-saturation mutagenesis of three sites—tyrosine 195, tyrosine 260, and glutamine 265—was performed, and it was found that the resulting mutants (containing the mutations Y195S [tyrosine → serine], Y260R [tyrosine → arginine], and Q265K [glutamine → lysine]) produced higher AA-2G yields than the wild type and the other mutant CGTases when maltodextrin was used as the glycosyl donor. Furthermore, double and triple mutations were introduced, and four mutants (containing Y195S/Y260R, Y195S/Q265K, Y260R/Q265K, and Y260R/Q265K/Y195S) were obtained and evaluated for the capacity to produce AA-2G. The Y260R/Q265K/Y195S triple mutant produced the highest titer of AA-2G at 1.92 g/liter, which was 60% higher than that (1.20 g/liter) produced by the wild-type CGTase. The kinetics analysis of AA-2G synthesis by the mutant CGTases confirmed the enhanced maltodextrin specificity, and it was also found that compared with the wild-type CGTase, all seven mutants had lower cyclization activities and higher hydrolysis and disproportionation activities. Finally, the mechanism responsible for the enhanced substrate specificity was explored by structure modeling, which indicated that the enhancement of maltodextrin specificity may be related to the changes of hydrogen bonding interactions between the side chain of residue at the three positions (195, 260, and 265) and the substrate sugars. This work adds to our understanding of the synthesis of AA-2G and makes the Y260R/Q265K/Y195S mutant a good starting point for further development by protein engineering.  相似文献   

8.
Large scale sequencing of the human mu-opioid receptor (hMOR) gene has revealed polymorphic mutations that occur within the coding region. We have investigated whether the mutations N40D in the extracellular N-terminal region, N152D in the third transmembrane domain, and R265H and S268P in the third intracellular loop alter functional properties of the receptor expressed in mammalian cells. The N152D receptor was produced at low densities. Binding affinities of structurally diverse opioids (morphine, diprenorphine, DAMGO and CTOP) and the main endogenous opioid peptides (beta-endorphin, [Met]enkephalin, and dynorphin A) were not markedly changed in mutant receptors (<3-fold). Receptor signaling was strongly impaired in the S268P mutant, with a reduction of efficacy and potency of several agonists (DAMGO, beta-endorphin, and morphine) in two distinct functional assays. Signaling at N40D and R265H mutants was highly similar to wild type, and none of the mutations induced detectable constitutive activity. DAMGO-induced down-regulation of receptor-binding sites, following 20 h of treatment, was identical in wild-type and mutant receptors. Our data show that natural sequence variations in hMOR gene have little influence on ligand binding or receptor down-regulation but could otherwise modify receptor density and signaling. Importantly, the S268P mutation represents a loss-of-function mutation for the human mu-opioid receptor, which may have an incidence on opioid-regulated behaviors or drug addiction in vivo.  相似文献   

9.
Ultra-low-dose opioid antagonists enhance opioid analgesia and reduce analgesic tolerance and dependence by preventing a G protein coupling switch (Gi/o to Gs) by the mu opioid receptor (MOR), although the binding site of such ultra-low-dose opioid antagonists was previously unknown. Here we show that with approximately 200-fold higher affinity than for the mu opioid receptor, naloxone binds a pentapeptide segment of the scaffolding protein filamin A, known to interact with the mu opioid receptor, to disrupt its chronic opioid-induced Gs coupling. Naloxone binding to filamin A is demonstrated by the absence of [(3)H]-and FITC-naloxone binding in the melanoma M2 cell line that does not contain filamin or MOR, contrasting with strong [(3)H]naloxone binding to its filamin A-transfected subclone A7 or to immunopurified filamin A. Naloxone binding to A7 cells was displaced by naltrexone but not by morphine, indicating a target distinct from opioid receptors and perhaps unique to naloxone and its analogs. The intracellular location of this binding site was confirmed by FITC-NLX binding in intact A7 cells. Overlapping peptide fragments from c-terminal filamin A revealed filamin A(2561-2565) as the binding site, and an alanine scan of this pentapeptide revealed an essential mid-point lysine. Finally, in organotypic striatal slice cultures, peptide fragments containing filamin A(2561-2565) abolished the prevention by 10 pM naloxone of both the chronic morphine-induced mu opioid receptor-Gs coupling and the downstream cAMP excitatory signal. These results establish filamin A as the target for ultra-low-dose opioid antagonists previously shown to enhance opioid analgesia and to prevent opioid tolerance and dependence.  相似文献   

10.
The 5-hydroxytryptamine2A (5-HT2A) receptor is a G(q/11)-coupled serotonin receptor that activates phospholipase C and increases diacylglycerol formation. In this report, we demonstrated that calmodulin (CaM) co-immunoprecipitates with the 5-HT2A receptor in NIH-3T3 fibroblasts in an agonist-dependent manner and that the receptor contains two putative CaM binding regions. The putative CaM binding regions of the 5-HT2A receptor are localized to the second intracellular loop and carboxyl terminus. In an in vitro binding assay peptides encompassing the putative second intracellular loop (i2) and carboxyl-terminal (ct) CaM binding regions bound CaM in a Ca2+-dependent manner. The i2 peptide bound with apparent higher affinity and shifted the mobility of CaM in a nondenaturing gel shift assay. Fluorescence emission spectral analyses of dansyl-CaM showed apparent K(D) values of 65 +/- 30 nM for the i2 peptide and 168 +/- 38 nM for the ct peptide. The ct CaM-binding domain overlaps with a putative protein kinase C (PKC) site, which was readily phosphorylated by PKC in vitro. CaM binding and phosphorylation of the ct peptide were found to be antagonistic, suggesting a putative role for CaM in the regulation of 5-HT2A receptor phosphorylation and desensitization. Finally, we showed that CaM decreases 5-HT2A receptor-mediated [35S]GTPgammaS binding to NIH-3T3 cell membranes, supporting a possible role for CaM in regulating receptor-G protein coupling. These data indicate that the serotonin 5-HT2A receptor contains two high affinity CaM-binding domains that may play important roles in signaling and function.  相似文献   

11.
G protein-coupled receptors (GPCRs) are seven-transmembrane (TM) helical proteins that bind extracellular molecules and transduce signals by coupling to heterotrimeric G proteins in the cytoplasm. The human D4 dopamine receptor is a particularly interesting GPCR because the polypeptide loop linking TM helices 5 and 6 (loop i3) may contain from 2 to 10 similar direct hexadecapeptide repeats. The precise role of loop i3 in D4 receptor function is not known. To clarify the role of loop i3 in G protein coupling, we constructed synthetic genes for the three main D4 receptor variants. D4-2, D4-4, and D4-7 receptors contain 2, 4, and 7 imperfect hexadecapeptide repeats in loop i3, respectively. We expressed and characterized the synthetic genes and found no significant effect of the D4 receptor polymorphisms on antagonist or agonist binding. We developed a cell-based assay where activated D4 receptors coupled to a Pertussis toxin-sensitive pathway to increase intracellular calcium concentration. Studies using receptor mutants showed that the regions of loop i3 near TM helices 5 and 6 were required for G protein coupling. The hexadecapeptide repeats were not required for G protein-mediated calcium flux. Cell membranes containing expressed D4 receptors and receptor mutants were reconstituted with purified recombinant G protein alpha subunits. The results show that each D4 receptor variant is capable of coupling to several G(i)alpha subtypes. Furthermore, there is no evidence of any quantitative difference in G protein coupling related to the number of hexadecapeptide repeats in loop i3. Thus, loop i3 is required for D4 receptors to activate G proteins. However, the polymorphic region of the loop does not appear to affect the specificity or efficiency of G(i)alpha coupling.  相似文献   

12.
Regulator of G protein signaling protein 4 (RGS4) acts as a GTPase accelerating protein to modulate μ- and δ- opioid receptor (MOR and DOR, respectively) signaling. In turn, exposure to MOR agonists leads to changes in RGS4 at the mRNA and/or protein level. Here we have used human neuroblastoma SH-SY5Y cells that endogenously express MOR, DOR, and RGS4 to study opioid-mediated down-regulation of RGS4. Overnight treatment of SH-SY5Y cells with the MOR agonist DAMGO or the DOR agonist DPDPE decreased RGS4 protein by ~60% accompanied by a profound loss of opioid receptors but with no change in RGS4 mRNA. The decrease in RGS4 protein was prevented by the pretreatment with pertussis toxin or the opioid antagonist naloxone. The agonist-induced down-regulation of RGS4 proteins was completely blocked by treatment with the proteasome inhibitors MG132 or lactacystin or high concentrations of leupeptin, indicating involvement of ubiquitin-proteasome and lysosomal degradation. Polyubiquitinated RGS4 protein was observed in the presence of MG132 or the specific proteasome inhibitor lactacystin and promoted by opioid agonist. The loss of opioid receptors was not prevented by MG132, demonstrating a different degradation pathway. RGS4 is a GTPase accelerating protein for both Gα(i/o) and Gα(q) proteins. After overnight treatment with DAMGO to reduce RGS4 protein, signaling at the Gα(i/o)-coupled DOR and the Gα(q)-coupled M(3) muscarinic receptor (M(3)R) was increased but not signaling of the α(2) adrenergic receptor or bradykinin BK(2) receptor, suggesting the development of cross-talk between the DOR and M(3)R involving RGS4.  相似文献   

13.
We previously demonstrated that chronic morphine induces a change in G protein coupling by the mu opioid receptor (MOR) from Gi/o to Gs, concurrent with the instatement of an interaction between Gβγ and adenylyl cyclase types II and IV. These two signaling changes confer excitatory effects on the cell in place of the typical inhibition by opioids and are associated with morphine tolerance and dependence. Both signaling changes and these behavioral manifestations of chronic morphine are attenuated by cotreatment with ultra‐low‐dose naloxone. In the present work, using striatum from chronic morphine‐treated rats, we isotyped the Gβ within Gs and Go heterotrimers that coupled to MOR and compared these to the Gβ isotype of the Gβγ that interacted with adenylyl cyclase II or IV after chronic morphine treatment. Isotyping results show that chronic morphine causes a Gs heterotrimer associated with MOR to release its Gβγ to interact with adenylyl cyclase. These data suggest that the switch to Gs coupling by MOR in response to chronic morphine, which is attenuated by ultra‐low‐dose opioid antagonist cotreatment, leads to a two‐pronged stimulation of adenylyl cyclase utilizing both Gα and Gβγ subunits of the Gs protein novel to this receptor. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

14.
The binding of Ca2+(4).calmodulin (CaM) to rabbit skeletal muscle myosin light chain kinase (MLCK) is required for expression of the enzyme's activity. While both MLCK and CaM were stable at 30 degrees C, their complex was not. The binding of CaM to MLCK resulted in a time- and temperature-dependent inactivation that reflected an intrinsic instability of the complex. Separation of the components of the inactive complex yielded functional CaM, but catalytically inert MLCK, indicating that the site of the inactivating event was confined to MLCK. The behavior of proteolytic fragments further localized this event to the C-terminal 60% of the 603-residue protein. Changes in the tryptophan fluorescence and proteolytic susceptibility of MLCK-CaM indicated that a conformational change accompanied, and thus may have caused, inactivation. Substrates protected against inactivation, as did millimolar concentrations of Mg2+, Mn2+, and Ca2+. These metals appeared to bind to a site on MLCK distinct from that which recognized Mg2+.ATP. A proteolytic fragment of MLCK lacking the ability to bind CaM, C beta 35 (residues 255-584; Edelman, A. M., Takio, K., Blumenthal, D. K., Hansen, R. S., Walsh, K. A., Titani, K., and Krebs, E. G. (1985) J. Biol. Chem. 260, 11275-11285), was unstable at 30 degrees C, whereas a similar fragment which does bind CaM, T beta 40 (residues 236-595; Edelman, A. M., Takio, K., Blumenthal, D. K., Hansen, R. S., Walsh, K. A., Titani, K., and Krebs, E. (1985) J. Biol. Chem. 260, 11275-11285), was unstable only when CaM was bound.  相似文献   

15.
16.
VanScyoc WS  Newman RA  Sorensen BR  Shea MA 《Biochemistry》2006,45(48):14311-14324
Calmodulin (CaM) is an essential, eukaryotic protein comprised of two highly homologous domains (N and C). CaM binds four calcium ions cooperatively, regulating a wide array of target proteins. A genetic screen of Paramecia by Kung [Kung, C. et al. (1992) Cell Calcium 13, 413-425] demonstrated that the domains of CaM have separable physiological roles: "under-reactive" mutations affecting calcium-dependent sodium currents mapped to the N-domain, while "over-reactive" mutations affecting calcium-dependent potassium currents localized to the C-domain of CaM. To determine whether and how these mutations affected intrinsic calcium-binding properties of CaM domains, phenylalanine fluorescence was used to monitor calcium binding to sites I and II (N-domain) and tyrosine fluorescence was used to monitor sites III and IV (C-domain). To explore interdomain interactions, binding properties of each full-length mutant were compared to those of its corresponding domain fragments. The calcium-binding properties of six under-reactive mutants (V35I/D50N, G40E, G40E/D50N, D50G, E54K, and G59S) and one over-reactive mutant (M145V) were indistinguishable from those of wild-type CaM, despite their deleterious physiological effects on ion-channel regulation. Four over-reactive mutants (D95G, S101F, E104K, and H135R) significantly decreased the calcium affinity of the C-domain. Of these, one (E104K) also increased the calcium affinity of the N-domain, demonstrating that the magnitude and direction of wild-type interdomain coupling had been perturbed. This suggests that, while some of these mutations alter calcium-binding directly, others probably alter CaM-channel association or calcium-triggered conformational change in the context of a ternary complex with the affected ion channel.  相似文献   

17.
Receptor desensitization by G-protein receptor kinases (GRK) and arrestins is likely to be an important component underlying the development of tolerance to opioid drugs. Reconstitution of this process in Xenopus oocytes revealed distinct differences in the kinetics of GRK and arrestin regulation of the closely related opioid receptors mu (MOR), delta (DOR), and kappa (KOR). We demonstrated that under identical conditions, GRK and arrestin-dependent desensitization of MOR proceeds dramatically slower than that of DOR. Furthermore, GRK3 phosphorylation sites required for opioid receptor desensitization also greatly differ. The determinants for DOR and KOR desensitization reside in the carboxyl-terminal tail, whereas MOR depends on Thr-180 in the second intracellular loop. Although this later finding might indicate an inefficient phosphorylation of MOR Thr-180, increasing the amount of arrestin expressed greatly increased the rate of MOR desensitization to a rate comparable with that of DOR. Similarly, coexpression of a constitutively active arrestin 2(R169E) with MOR and DOR desensitized both receptors in an agonist-dependent, GRK-independent manner at rates that were indistinguishable. Together, these data suggest that it is the activation of arrestin, rather than its binding, that is the rate-limiting step in MOR desensitization. In addition, mutation of Thr-161 in DOR, homologous to MOR Thr-180, significantly inhibited the faster desensitization of DOR. These results suggest that DOR desensitization involves phosphorylation of both the carboxyl-terminal tail and the second intracellular loop that together leads to a more efficient activation of arrestin and thus faster desensitization.  相似文献   

18.
He L  Whistler JL 《PloS one》2011,6(5):e19372
It is well known that the mu-opioid receptor (MOR) plays an important role in the rewarding properties of ethanol. However, it is less clear how chronic ethanol consumption affects MOR signaling. Here, we demonstrate that rats with prolonged voluntary ethanol consumption develop antinociceptive tolerance to opioids. Signaling through the MOR is controlled at many levels, including via the process of endocytosis. Importantly, agonists at the MOR that promote receptor endocytosis, such as the endogenous peptides enkephalin and β-endorphin, show a reduced propensity to promote antinociceptive tolerance than do agonists, like morphine, which do not promote receptor endocytosis. These observations led us to examine whether chronic ethanol consumption produced opioid tolerance by interfering with MOR endocytosis. Indeed, here we show that chronic ethanol consumption inhibits the endocytosis of MOR in response to opioid peptide. This loss of endocytosis was accompanied by a dramatic decrease in G protein coupled receptor kinase 2 (GRK2) protein levels after chronic drinking, suggesting that loss of this component of the trafficking machinery could be a mechanism by which endocytosis is lost. We also found that MOR coupling to G-protein was decreased in ethanol-drinking rats, providing a functional explanation for loss of opioid antinociception. Together, these results suggest that chronic ethanol drinking alters the ability of MOR to endocytose in response to opioid peptides, and consequently, promotes tolerance to the effects of opioids.  相似文献   

19.
P Huang  J Li  C Chen  I Visiers  H Weinstein  L Y Liu-Chen 《Biochemistry》2001,40(45):13501-13509
Mutations within the "X1BBX2X3B" motif or its variants in the junction of the third intracellular (i3) loop and the sixth transmembrane domain (TM6) have been shown to lead to constitutive activation of several G protein-coupled receptors (GPCRs). In this study, T6.34(279) at the X3 locus of the rat mu opioid receptor was mutated to Lys and Asp, and the mutants were examined for binding and signaling properties. The T6.34(279)K mutant was poorly expressed, and pretreatment with naloxone greatly enhanced its expression. This construct exhibited properties identified previously with constitutive activation: (1) compared with the wild type, it produced much higher agonist-independent [35S]GTPgammaS binding, which was abolished by pertussis toxin treatment; (2) it displayed an enhanced affinity for the agonist DAMGO similar to that of the high-affinity state of the wild type, which was not altered by GTPgammaS, while having unchanged affinity for the antagonist diprenorphine. The T6.34(279)K mutant displayed a higher intracellular receptor pool than the wild type. Naloxone inhibited the basal [35S]GTPgammaS binding of the T6.34(279)K mutant, demonstrating inverse agonist activity at this mutant receptor. In contrast, the T6.34(279)D substitution did not increase basal [35S]GTPgammaS binding, greatly reduced agonist-promoted [35S]GTPgammaS binding, and markedly decreased affinity for DAMGO. Thus, the T6.34(279)D mutant adopts conformations corresponding to inactive states of the receptor. The results were interpreted in the structural context of a model for the mu opioid receptor that incorporates the information from the crystal structure of rhodopsin. The interaction of T6.34(279) with R3.50(165) in the mu opioid receptor is considered to stabilize the inactive conformations. The T6.34(279)K substitution would then disrupt this interaction and support agonist-free activation, while T6.34(279)D mutation should strengthen this interaction which keeps the receptor in inactive states. T6.34(279) may, in addition, interact with the neighboring R6.35(280) to help constrain the receptor in inactive states, and T6.34(279)K and T6.34(279)D mutations would affect this interaction by disrupting or strengthening it, respectively. To the best of our knowledge, the results presented here represent the first structurally rationalized demonstration that mutations of this locus can lead to dramatically different properties of a GPCR.  相似文献   

20.
We previously demonstrated that chronic morphine induces a change in G protein coupling by the mu opioid receptor (MOR) from Gi/o to Gs, concurrent with the instatement of an interaction between Gbetagamma and adenylyl cyclase types II and IV. These two signaling changes confer excitatory effects on the cell in place of the typical inhibition by opioids and are associated with morphine tolerance and dependence. Both signaling changes and these behavioral manifestations of chronic morphine are attenuated by cotreatment with ultra-low-dose naloxone. In the present work, using striatum from chronic morphine-treated rats, we isotyped the Gbeta within Gs and Go heterotrimers that coupled to MOR and compared these to the Gbeta isotype of the Gbetagamma that interacted with adenylyl cyclase II or IV after chronic morphine treatment. Isotyping results show that chronic morphine causes a Gs heterotrimer associated with MOR to release its Gbetagamma to interact with adenylyl cyclase. These data suggest that the switch to Gs coupling by MOR in response to chronic morphine, which is attenuated by ultra-low-dose opioid antagonist cotreatment, leads to a two-pronged stimulation of adenylyl cyclase utilizing both Galpha and Gbetagamma subunits of the Gs protein novel to this receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号