首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the fish heart, ventricular and atrial muscles contain different isoforms of native myosin and myosin heavy chain (MyHC) but the significance of this diversity is still not known. We have analysed ventricular and atrial myocardium of six freshwater fish species (goldfish, roach, bream, rudd, perch and pike-perch) using histochemical staining for myofibrillar ATPase activity as well as non-denaturing and SDS gel electrophoreses for native myosin and MyHC content. In the range of fish species studied, the intensity of ATPase reaction was higher in the atrial myocardium than in the ventricular myocardium and the composition of native myosin isoforms differed between these two muscles. The MyHC content in the cardiac muscle showed some species-related differences. In the goldfish, both atrial and ventricular cardiac muscle contained electrophoretically similar MyHC. In the other fish species, however, the ventricular myocardium showed electrophoretically faster MyHC than that present in the atrial myocardium. These results indicate that there are consistent and characteristic species-related differences between the ventricular and atrial muscles at the level of ATPase staining and the type of MyHC expressed. The findings suggest that fish ventricular and atrial muscles may differ in their contractile properties.  相似文献   

2.
Summary Combined histochemical and biochemical analyses were performed on single fibers of rabbit soleus muscle. Histochemically, four fiber types (I, IC, IIC, IIA) were defined. Of these, types I and IIA were separate, histochemically homogeneous groups. A heterogeneous C fiber population exhibited a continuum of staining intensities between types I and IIA. Microelectrophoretic analyses of specific, histochemically defined fibers revealed that type I fibers contained exclusively HCI, whereas type IIA fibers contained only HCIIa. The C fibers were characterized by the coexistence of both heavy chains in varying ratios, type HC with a predominance of HCI and type IIC with a predominance of HCIIa. A direct correlation existed between the myosin heavy chain composition and the histochemical mATPase staining and was especially evident in the C fiber population with its variable HCI/HCIIa ratio. This correlation did not apply to the myosin light chain complement.  相似文献   

3.
Combined histochemical and biochemical analyses were performed on single fibers of rabbit soleus muscle. Histochemically, four fiber types (I, IC, IIC, IIA) were defined. Of these, types I and IIA were separate, histochemically homogeneous groups. A heterogeneous C fiber population exhibited a continuum of staining intensities between types I and IIA. Microelectrophoretic analyses of specific, histochemically defined fibers revealed that type I fibers contained exclusively HCI, whereas type IIA fibers contained only HCIIa. The C fibers were characterized by the coexistence of both heavy chains in varying ratios, type IC with a predominance of HCI and type IIC with a predominance of HCIIa. A direct correlation existed between the myosin heavy chain composition and the histochemical mATPase staining and was especially evident in the C fiber population with its variable HCI/HCIIa ratio. This correlation did not apply to the myosin light chain complement.  相似文献   

4.
Summary Single human muscle fibers were analysed using a combination of histochemical and biochemical techniques. Routine myofibrillar adenosine triphosphatase (mATPase) histochemistry revealed a continuum of staining intensities between the fast fiber types IIA and IIB (type IIAB fibers) after preincubation at pH 4.6. Electrophoretic analysis of single, histochemically-identified fibers demonstrated a correlation between the staining intensity and the myosin heavy chain (MHC) composition. All fibers classified as type I contained exclusively MHCI and all type IIA fibers contained only MHCIIa. Type IIAB fibers displayed variable amounts of both MHCIIa and MHCIIb; the greater the staining intensity of these fibers after preincubation at pH 4.6, the greater the percentage of MHCIIb. Those fibers histochemically classified as type IIB contained either entirely MHCIIb or, in addition to MHCIIb, a small amount of MHCIIa. These data establish a correlation between the mATPase activity and MHC content in single human muscle fibers.  相似文献   

5.
Single human muscle fibers were analysed using a combination of histochemical and biochemical techniques. Routine myofibrillar adenosine triphosphatase (mATPase) histochemistry revealed a continuum of staining intensities between the fast fiber types IIA and IIB (type IIAB fibers) after preincubation at pH 4.6. Electrophoretic analysis of single, histochemically-identified fibers demonstrated a correlation between the staining intensity and the myosin heavy chain (MHC) composition. All fibers classified as type I contained exclusively MHCI and all type IIA fibers contained only MHCIIa. Type IIAB fibers displayed variable amounts of both MHCIIa and MHCIIb; the greater the staining intensity of these fibers after preincubation at pH 4.6, the greater the percentage of MHCIIb. Those fibers histochemically classified as type IIB contained either entirely MHCIIb or, in addition to MHCIIb, a small amount of MHCIIa. These data establish a correlation between the mATPase activity and MHC content in single human muscle fibers.  相似文献   

6.
Orthodontic treatment leads to changes of the temporomandibular joint (TMJ). The extent and manner of alterations are not yet clarified completely. The non-invasive diagnostic methods do not provide any precise data about the extent of alterations. The aim of the present investigation was to analyse the TMJ cartilage after orthodontic treatment with non-invasive and invasive methods.

For the present investigation, twelve 10-week-old pigs including six control animals were used. Treatment was carried out with build-ups on the molars for sagittal advancement of the mandibulae. Magnetic resonance imaging (MRI) and determination of the Ca++ and Mg++ content were carried out 4 weeks after implantation of the build-ups. Tissue samples for ion determination were taken from the posterior area of the TMJ (condyle and fossa). During condylar growth a significant increase in cartilage volume and decrease of Ca++ and Mg++ content was observed. The newly formed tissue had a water content of 80–90%. On MR images of animals with build-ups this area was visible as a bright zone with increased signal intensity.

The determined stress potential of the condylar cartilage was reduced as a result of less functional stress in the posterior area accompanied by water intake. The newly formed cartilage matrix contained significantly less Ca++ and Mg++, and cannot be defined as permanently stable cartilage.  相似文献   


7.
In order to explain the mechanism of high meat quality in Laiwu pigs and investigate the relation between myosin heavy chains (MyHC) composition and meat quality, meat quality analysis was conducted and mRNA expression of MyHC I, IIa, IIx, IIb was quantified by real-time fluorescence PCR in longissimus muscle (LM) and semimembranous muscle of Laiwu pigs and Duroc. The result indicated that, compared with Duroc, mRNA expression of MyHC IIa, IIx in LM and semimembranous muscle of Laiwu pigs was significantly increased, mRNA expression of MyHC IIb was dramatically decreased. However, the expression of MyHC I was not significantly affected by breeds. The correlation between mRNA expression of MyHC I, IIa, IIx in LM and meat color, pH value, marbling, intramuscular fat content was positive, but shear value of LM was negative. The relation between MyHC IIb mRNA expression and marbling, intramuscular fat content was dramatically negative, whereas shear value was strikingly positive, as well as fiber diameter, but without reaching statistical significance. Therefore, the composition of MyHC I, IIa, IIx, IIb affected meat quality, furthermore, expression of MyHC I, IIa, IIx, IIb mRNA prominently influenced meat characteristics, especially edible quality of muscle, suggesting that mRNA expression level of MyHC I, IIa, IIx, IIb can exactly and impersonally estimate meat quality.  相似文献   

8.
9.
Two different HMM species of gizzard myosin were prepared under conditions such that the phosphorylation of light chain was fully maintained. They were different in the N-terminal structure of the heavy chain but not in the light chain composition. A significant decrease in the Mg2+-ATPase activity was observed in one class of HMM which was proteolytically cleaved intramolecularly at site 1, 5 K daltons from the masked N terminus. Another class of HMM without the cleavage at site 1 showed ATPase activity similar to that of myosin. The decrease in ATPase activity was not caused by denaturation since similar amounts of initial burst of Pi liberation were observed with both HMMs and myosin. Kinetic and substructure analyses of HMM revealed that the activity change depended solely on the cleavage at site 1. The N-terminal region of gizzard myosin heavy chain may thus have an important role in maintaining the active site structure.  相似文献   

10.
  • 1.1. Polymorphism of native myosin and myosin heavy chain (MHC) of fish skeletal muscles was analysed by pyrophosphate and SDS-gel electrophoreses.
  • 2.2. Depending on the species, three or four myosin isoforms were detected in the white muscle, one or two isoforms in the pure red muscle, and four isomyosins were found in the red muscle composed of red and pink (intermediate) fibres.
  • 3.3. It is suggested that all main types of fish muscle fibre (red, intermediate and white) differ in myosin isoform content.
  • 4.4. Myosin heavy chain of the red muscle is a distinct protein from that of the white muscle. However, structural differences between these proteins vary among species.
  相似文献   

11.
 Myofibrillar ATPase (mATPase), succinate dehydrogenase (SDH) and α-glycerophosphate dehydrogenase (GPD) activities and cross-sectional area (CSA) were measured in fibres of rat medial gastrocnemius muscle using quantitative histochemistry. The same fibres were typed immunohistochemically using monoclonal antibodies specific to selected myosin heavy chain (MHC) isoforms. The values of mATPase, SDH, GPD and CSA formed a continuum, but significant differences in mean values were observed among fibre types of presumed homogeneous MHC content. Type I fibres had the lowest mATPase activity, followed in rank order by type IIA<type IID/X<type IIB. Type IIA fibres had the highest SDH activity, followed in rank order by type IID/X>type I>type IIB. The mean GPD activity was consistently ranked according to fibre type such that type IIB>type IID/X >type IIA>type I. Type IIA fibres were the smallest, type IIB fibres were the largest and types I and IID/X were of intermediate size. Significant interrelationships between mATPase, SDH, GPD and CSA values were found on a fibre-to-fibre basis. Consequently, discrimination of fibres according to their MHC content was possible on the basis of their mATPase, SDH, GPD and CSA profiles. These intrafibre interrelationships suggest that the MHC isoform is associated with phenotypic differences in contractile, metabolic and size properties of muscle fibre types. Accepted: 30 November 1998  相似文献   

12.
Myosin light chain kinase was partially purified from bovine adrenal medulla. A polypeptide of Mr 165,000 dalton was identified as kinase by using anti-gizzard myosin light chain kinase IgG on immunoreplica. Phosphorylation of medullary myosin was Ca2+- and calmodulin-dependent. The phosphorylated myosin was showed to enhance the actin-activated Mg2+-ATPase activity. In contrast, the myosin ATPase activity was dramatically decreased by dephosphorylation of myosin.  相似文献   

13.
It has been shown that in the absence of KCl, the actin-stimulated Mg2+-ATPase activity of rabbit skeletal myosin minifilaments with phosphorylated regulatory lights chains (LC2) exceeds 3-4-fold that of myosin minifilaments with dephosphorylated LC2. Addition of KCl leads to a decrease in the difference between the two ATPase activities. LC2 phosphorylation considerably increases the rate of ATPase reaction and only slightly decreases the affinity of myosin minifilaments for F-actin. It is suggested that the unusual effect of LC2 phosphorylation on the kinetic parameters of the actin-stimulated ATPase reaction of myosin minifilaments can be accounted for by its influence on the interaction between myosin heads which results in the ordered self-assembly of minifilaments.  相似文献   

14.
目的:探讨肌球蛋白轻链激酶(MLCK)钙调蛋白(CaM)结合位点突变体对肌球蛋白ATP酶活性的影响.方法:构建牛胃重组全长野生型MLCK CaM结合位点突变型蛋白(△CaM/MLCK);孔雀绿方法检测△CaM/MLCK对肌球蛋白的Mg2+-ATP酶活性的影响.结果:在无Ca2+/CaM存在时,随着△△CaM/MLCK浓度的增加,非磷酸化肌球蛋白的Mg2+-ATP酶活性明显增加;而磷酸化肌球蛋白的Mg2+-ATP酶活性明显降低.结论:△CaM/MLCK对肌球蛋白Mg2+-ATP酶活性的影响表明MLCK具有非激酶活性.  相似文献   

15.
  • 1.1. The effect of functional overload produced by tenotomy of synergistic gastrocnemius muscle on the expression of myosin heavy chain (MHC) isoforms in the plantaris and soleus muscles of the rat was studied using gradient sodium dodecyl sulfate-acrylamide gel electrophoresis.
  • 2.2. Five weeks tenotomy, the plantaris and soleus muscle weights induced by tenotomy of the gastrocnemius muscle were 44.3% (P < 0.005) and 37.4% (P < 0.005), respectively, heavier than the contralateral control muscles.
  • 3.3. Although four types of MHC isoforms were observed in both control and experimental plantaris, the percentage of MHC isoforms in the control and experimental muscles differed; the hypertrophied plantaris muscle contained more HCI (P < 0.05), HCIIa and HCIId (P < 0.05) and less HCIIb (P < 0.05) than the control muscle.
  • 4.4. The control soleus muscle contained two MHC isofonns, HCI and HCIIa. However, there was only a single HCI isoform in the hypertrophied soleus muscle.
  • 5.5. These results indicate that overloading a skeletal muscle by removing its synergists produces not only the muscle hypertrophy but also the changes in the expression of MHC isofonns.
  相似文献   

16.
In this study we compared the immunohistochemically quantified fiber type area with the myosin heavy chain (MyHC) contents of a bundle of fibers from a human masticatory muscle. The total cross-sectional areas were determined immunohistochemically for the three major fiber types (I, IIA, and IIX) in bundles of fibers (n=42) taken from the anterior and posterior belly of the human digastric muscle (n=7). The relative MyHC contents of the same fiber bundles were determined electrophoretically (MyHC-I, -IIA, and -IIX; anterior, 32%, 35%, and 33%; posterior, 39%, 42%, and 19%) and compared with the immunohistochemical data (MyHC-I, -IIA, and -IIX; anterior, 32%, 31%, and 37%; posterior, 39%, 45%, and 15%). No significant differences were seen in the mean fiber type distribution between the two techniques; the correlation coefficient ranged from 0.71 to 0.96. The correlation coefficient was higher for MyHC type I and MyHC type IIX than for MyHC type IIA. The MyHC contents of single fibers taken from the posterior belly indicated that many fibers in this belly co-express MyHC-IIA and MyHC-IIX. Despite the presence of these hybrid fibers, the correspondence between both methods was relatively large.  相似文献   

17.
We tested the hypothesis that slowing of shortening velocity generated by type IIB fibers from hindlimb-unweighted (HU) rats resulted from a reduced ATPase activity and/or a reduction in the relative content of myosin light chain 3f isoform content (MLC3f). After 2, 3, and 4 wk of HU, maximal unloaded shortening velocity (Vo) of single permeabilized semimembranosus muscle fibers was determined by the slack test. Subsequently, the myosin heavy chain and the relative content of MLC were determined by SDS-PAGE. The ratio of MLC3f to MLC2f was determined by densitometric analysis. In addition, myofibrils were prepared from permeabilized fibers (soleus and semimembranosus muscles) and assayed for resting myosin ATPase and Ca2+-activated myosin ATPase. After HU, Vo declined by 28–40% and the MLC3f/MLC2f ratio decreased by 32 to 48%. A significant correlation between the relative amount of MLC3f and Vo was found (r = 0.48, P < 0.05). Resting myosin ATPase rates were not different between myofibrils prepared from corresponding muscles of control and HU rats (P = 0.86). Ca2+-activated myosin ATPase activities also were not different between myofibrils prepared from corresponding muscles of control and HU rats (P = 0.13). These data suggest that the slowing of maximal unloaded shortening velocity in type IIB fibers with HU is, at least in part, due to a relative change in the essential light chain composition, a decrease in the relative amount of MLC3f and most likely a concomitant increase in MLC1f. However, this reduction in Vo is independent of myosin ATPase activity. unloading shortening velocity; myosin light chain 3f  相似文献   

18.
Although the association between hypothyroidism and obstructive sleep apnea is well established, the effect of thyroid hormone deficiency on contractile proteins in pharyngeal dilator muscles responsible for maintaining upper airway patency is unknown. In the present study, the effects of hypothyroidism on myosin heavy chain (MHC) expression were examined in the sternohyoid, geniohyoid, and genioglossus muscles of adult rats (n = 20). The relative proportions of MHC isoforms present were determined using MHC-specific monoclonal antibodies and oligonucleotide probes. All control muscles showed a paucity of type I MHC fibers, with greater than 90% of fibers containing fast-twitch type II MHCs. In the genioglossus muscle, a population of non-IIa non-IIb fast-twitch type II fibers (putatively identified as type IIx MHC fibers) were detected. Hypothyroidism induced significant changes in MHC expression in all muscles studied. In the sternohyoid, type I fibers increased from 6.2 to 16.9%, whereas type IIa fibers increased from 25.9 to 30.7%. Type I fibers in the geniohyoid increased from 1.2 to 12.8%, whereas type IIa fibers increased from 34.1 to 42.7%. The genioglossus showed the smallest relative increase in type I expression but the greatest induction of type IIa MHC. None of the muscles examined demonstrated reinduction of embryonic or neonatal MHC in response to thyroid hormone deficiency. In summary, hypothyroidism alters the MHC profile of pharyngeal dilators in a muscle-specific manner. These changes may play a role in the pathogenesis of obstructive apnea in hypothyroid patients.  相似文献   

19.
We show that specific mutations in the head of the thick filament molecule myosin heavy chain prevent a degenerative muscle syndrome resulting from the hdp2 mutation in the thin filament protein troponin I. One mutation deletes eight residues from the actin binding loop of myosin, while a second affects a residue at the base of this loop. Two other mutations affect amino acids near the site of nucleotide entry and exit in the motor domain. We document the degree of phenotypic rescue each suppressor permits and show that other point mutations in myosin, as well as null mutations, fail to suppress the hdp2 phenotype. We discuss mechanisms by which the hdp2 phenotypes are suppressed and conclude that the specific residues we identified in myosin are important in regulating thick and thin filament interactions. This in vivo approach to dissecting the contractile cycle defines novel molecular processes that may be difficult to uncover by biochemical and structural analysis. Our study illustrates how expression of genetic defects are dependent upon genetic background, and therefore could have implications for understanding gene interactions in human disease.  相似文献   

20.
Innervation has been generally accepted to be a major factor involved in both triggering and maintaining the expression of slow myosin heavy chain (MHC-1) in skeletal muscle. However, previous findings from our laboratory have suggested that, in the mouse, this is not always the case (30). Based on these results, we hypothesized that neurotomy would not markedly reduced the expression of MHC-1 protein in the mouse soleus muscles. In addition, other cellular, biochemical, and functional parameters were also studied in these denervated soleus muscles to complete our study. Our results show that denervation reduced neither the relative amount of MHC-1 protein, nor the percentage of muscle fibers expressing MHC-1 protein (P > 0.05). The fact that MHC-1 protein did not respond to muscle inactivity was confirmed in three different mouse strains (129/SV, C57BL/6, and CD1). In contrast, all of the other histological, biochemical, and functional muscle parameters were markedly altered by denervation. Cross-sectional area (CSA) of muscle fibers, maximal tetanic isometric force, maximal velocity of shortening, maximal power, and citrate synthase activity were all reduced in denervated muscles compared with innervated muscles (P < 0.05). Contraction and one-half relaxation times of the twitch were also increased by denervation (P < 0.05). Addition of tenotomy to denervation had no further effect on the relative expression of MHC-1 protein (P > 0.05), despite a greater reduction in CSA and citrate synthase activity (P < 0.05). In conclusion, a deficit in neural input leads to marked atrophy and reduction in performance in mouse soleus muscles. However, the maintenance of the relative expression of slow MHC protein is independent of neuromuscular activity in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号