首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have cloned and characterized novel oxygenolytic ortho-dehalogenation (ohb) genes from 2-chlorobenzoate (2-CBA)- and 2,4-dichlorobenzoate (2,4-dCBA)-degrading Pseudomonas aeruginosa 142. Among 3,700 Escherichia coli recombinants, two clones, DH5αF′(pOD22) and DH5αF′(pOD33), converted 2-CBA to catechol and 2,4-dCBA and 2,5-dCBA to 4-chlorocatechol. A subclone of pOD33, plasmid pE43, containing the 3,687-bp minimized ohb DNA region conferred to P. putida PB2440 the ability to grow on 2-CBA as a sole carbon source. Strain PB2440(pE43) also oxidized but did not grow on 2,4-dCBA, 2,5-dCBA, or 2,6-dCBA. Terminal oxidoreductase ISPOHB structural genes ohbA and ohbB, which encode polypeptides with molecular masses of 20,253 Da (β-ISP) and 48,243 Da (α-ISP), respectively, were identified; these proteins are in accord with the 22- and 48-kDa (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) polypeptides synthesized in E. coli and P. aeruginosa parental strain 142. The ortho-halobenzoate 1,2-dioxygenase activity was manifested in the absence of ferredoxin and reductase genes, suggesting that the ISPOHB utilized electron transfer components provided by the heterologous hosts. ISPOHB formed a new phylogenetic cluster that includes aromatic oxygenases featuring atypical structural-functional organization and is distant from the other members of the family of primary aromatic oxygenases. A putative IclR-type regulatory gene (ohbR) was located upstream of the ohbAB genes. An open reading frame (ohbC) of unknown function that overlaps lengthwise with ohbB but is transcribed in the opposite direction was found. The ohbC gene codes for a 48,969-Da polypeptide, in accord with the 49-kDa protein detected in E. coli. The ohb genes are flanked by an IS1396-like sequence containing a putative gene for a 39,715-Da transposase A (tnpA) at positions 4731 to 5747 and a putative gene for a 45,247-Da DNA topoisomerase I/III (top) at positions 346 to 1563. The ohb DNA region is bordered by 14-bp imperfect inverted repeats at positions 56 to 69 and 5984 to 5997.  相似文献   

2.
Protein mass spectrometry and molecular cloning techniques were used to identify and characterize mobile o-halobenzoate oxygenase genes in Pseudomonas aeruginosa strain JB2 and Pseudomonas huttiensis strain D1. Proteins induced in strains JB2 and D1 by growth on 2-chlorobenzoate (2-CBa) were extracted from sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and analyzed by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Two bands gave significant matches to OhbB and OhbA, which have been reported to be the α and β subunits, respectively, of an ortho-1,2-halobenzoate dioxygenase of P. aeruginosa strain 142 (T. V. Tsoi, E. G. Plotnikova, J. R. Cole, W. F. Guerin, M. Bagdasarian, and J. M. Tiedje, Appl. Environ. Microbiol. 65:2151–2162, 1999). PCR and Southern hybridization experiments confirmed that ohbAB were present in strain JB2 and were transferred from strain JB2 to strain D1. While the sequences of ohbA from strains JB2, D1, and 142 were identical, the sequences of ohbB from strains JB2 and D1 were identical to each other but differed slightly from that of strain 142. PCR analyses and Southern hybridization analyses indicated that ohbAB were conserved in strains JB2 and D1 and in strain 142 but that the regions adjoining these genes were divergent. Expression of ohbAB in Escherichia coli resulted in conversion of o-chlorobenzoates to the corresponding (chloro)catechols with the following apparent affinity: 2-CBa ≈ 2,5-dichlorobenzoate > 2,3,5-trichlorobenzoate > 2,4-dichlorobenzoate. The activity of OhbABJB2 appeared to differ from that reported for OhbAB142 primarily in that a chlorine in the para position posed a greater impediment to catalysis with the former. Hybridization analysis of spontaneous 2-CBa mutants of strains JB2 and D1 verified that ohbAB were lost along with the genes, suggesting that all of the genes may be contained in the same mobile element. Strains JB2 and 142 originated from California and Russia, respectively. Thus, ohbAB and/or the mobile element on which they are carried may have a global distribution.  相似文献   

3.
Cloning and expression of the aromatic ring dehalogenation genes in biphenyl-growing, polychlorinated biphenyl (PCB)-cometabolizing Comamonas testosteroni VP44 resulted in recombinant pathways allowing growth on ortho- and para-chlorobiphenyls (CBs) as a sole carbon source. The recombinant variants were constructed by transformation of strain VP44 with plasmids carrying specific genes for dehalogenation of chlorobenzoates (CBAs). Plasmid pE43 carries the Pseudomonas aeruginosa 142 ohb genes coding for the terminal oxygenase (ISPOHB) of the ortho-halobenzoate 1,2-dioxygenase, whereas plasmid pPC3 contains the Arthrobacter globiformis KZT1 fcb genes, which catalyze the hydrolytic para-dechlorination of 4-CBA. The parental strain, VP44, grew only on low concentrations of 2- and 4-CB by using the products from the fission of the nonchlorinated ring of the CBs (pentadiene) and accumulated stoichiometric amounts of the corresponding CBAs. The recombinant strains VP44(pPC3) and VP44(pE43) grew on, and completely dechlorinated high concentrations (up to 10 mM), of 4-CBA and 4-CB and 2-CBA and 2-CB, respectively. Cell protein yield corresponded to complete oxidation of both biphenyl rings, thus confirming mineralization of the CBs. Hence, the use of CBA dehalogenase genes appears to be an effective strategy for construction of organisms that will grow on at least some congeners important for remediation of PCBs.  相似文献   

4.
Two strains of Alcaligenes denitrificans, designated BRI 3010 and BRI 6011, were isolated from polychlorinated biphenyl (PCB)-contaminated soil using 2,5-dichlorobenzoic acid (2,5-DCBA) and 2,4-DCBA, respectively, as sole carbon and energy sources. Both strains degraded 2-chlorobenzoic acid (2-CBA), 2,3-DCBA, and 2,5-DCBA, and were unable to degrade 2,6-DCBA. BRI 6011 alone degraded 2,4-DCBA. Growth of BRI 6011 in yeast extract and 2,6-DCBA induced pyrocatechase activity, but 2,6-DCBA was not degraded, suggesting the importance of an unsubstituted carbon six of the aromatic ring. Metabolism of the chlorinated substrates resulted in the stoichiometric release of chloride, and degradation proceeded by intradiol cleavage of the aromatic ring. Growth of both strains on 2,5-DCBA induced pyrocatechase activities with catechol and chlorocatechols as substrates. In contrast to dichlorobenzoic acids, growth on 2-CBA, benzoic acid, mono- and dihydroxybenzoic acids induced a pyrocatechase activity against catechol only. Although 2,4-DCBA was a more potent inducer of both pyrocatechase activities, its utilization by BRI 6011 was inhibited by 2,5-DCBA. Specific uptake rates using resting cells were highest with 2-CBA, except when the resting cells had been previously grown on 2,5-DCBA, in which case 2,5-DCBA was the preferred substrate. The higher rates of 2,5-DCBA uptake obtained by growth on that substrate, suggested the existence of a separately induced uptake system for 2,5-DCBA.  相似文献   

5.
The courses of uptake of benzoic acid (BA) and its 2-chloro-(2-CBA), 2,4-dichloro- (2,4-DCBA), 2,5-dichloro- (2,5-DCBA),and 2,3,6-trichloro- (2,3,6-TCBA) derivatives, all containing14C in the carboxyl group, have been investigated, employingstem segments of Pisum sativum, Gossypium hirsutum, and Avenasativa. From comparisons of the rates of accumulation by segmetns ofdifferent length it is conclueded that for each compound uptakeproceeds largely or wholly via the cut surfaces. The initial uptake of BA and 2-CBA by segments of Pisum is depressedas the pH of the solution is raised from 4 to 6.5, but the fallis less rapid than the decrease in the proportion of undissociatedmolecules. For all three species, BA and 2-CBA, which induced no extensiongrowth, were accumulated at a more or less constant rate. Bycontrast, the course of uptake of 2,3,6-TCBA, a powerful auxin,exhibited marked deviations from a linear pattern, especiallyin Avena where uptake became negative between four and six hours.This loss of radioactivity from the tissues was due to the netegress of 2,3,6-TCBA itself into the external solution. In Avenathe two dichloro-benzoic acids (2,4-DCBA and 2,5-DCBA) haveintermediate trens: net accumulation declined almost to zerobut subsequently recovered and proceeded at a rapid rate. These findings are discussed in relation to prior studies ofthe uptake of substituted phenoxyacetic acids and the conceptsof Type 1 and Type 2 accumulation. It is proposed that accumulationof BA and 2-CBA is largely governed by a stable Type 2 processwhile the initial uptake of the powerful auxins, 2,3,6-TCBAand 2,5-DCBA proceeds via an unstable system, similar or identicalto Type 1 accumulation.  相似文献   

6.
From long-term chemostat experiments, variants ofPseudomonas aeruginosa JB2 were obtained which exhibited altered properties with respect to the metabolism of 2,5-dichlorobenzoic acid (2,5-DBA). Thus, unlike the original strain JB2-WT, strain JB2-var1 is able to grow in continuous culture on 2,5-DBA as the sole limiting carbon and energy source. Yet, at a dilution rate of 0.07 h–1 and a dissolved oxygen concentration of 12 µM, even with this strain no steady states with 2,5-DBA alone could be established in continuous cultures. Yet another strain was obtained after prolonged continuous growth of JB2-var1 in the chemostat. It has improved 2,5-DBA degrading capabilities which become apparent only during growth in continuous culture: a lower apparent K m for 2,5-DBA and lowered steady-state residual concentrations of 2,5 DBA. Although with this strain steady states were obtained at oxygen concentrations as low as 11 µM, at further lowered concentrations this was no longer possible. In C-limited continuous cultures of JB2-var1 or JB2-var2, addition of benzoic acid (BA) to the feed reduced the amounts of 2,5-DBA degraded, which was most apparent at low oxygen concentrations (< 30 µM). At higher dissolved oxygen concentrations the addition of BA resulted in increasing cell-densities but did not affect the residual steady state concentration of 2,5-DBA. Indeed, whole cell suspensions from chemostat cultures grown on BA plus 2,5-DBA did show a lower apparent affinity for 2,5-DBA than those from cultures grown on 2,5-DBA alone. These results indicate that in environments with low oxygen concentrations and alternative, more easily degradable, substrates the degradation rates of chloroaromatic compounds by aerobic organisms may be negatively affected.Abbreviations BA benzoic acid - 2,5-DBA 2,5-dichlorobenzoic acid - QO 2 max maximum specific respiration rate  相似文献   

7.
Strain B51 capable of degrading polychlorinated biphenyls (PCB) was isolated from soil contaminated with wastes from the chemical industry. Based on its morphological and chemotaxonomic characteristics, the strain was identified as a Microbacterium sp. Experiments with washed cells showed that strain B51 is able to degrade ortho- and para-substituted mono-, di-, and trichlorinated biphenyls (MCB, DCB, and TCB, respectively). Unlike the known PCB degraders, Microbacterium sp. B51 is able to oxidize the ortho-chlorinated ring of 2,2-DCB and 2,4-DCB and the para-chlorinated ring of 4.4-DCB. The degradation of 2,4-DCB and 4,4-DCB was associated with the accumulation of 4-chlorobenzoic acid (4-CBA) in the medium in amounts comprising 80–90% of the theoretical yield. The strain was able to utilize 2-MCB, 2,2-DCB, and their intermediate 2-CBA and to oxidize the mono(ortho)-chlorinated ring of 2,4,2-TCB and the di(ortho-para)-chlorinated ring of 2,4,4-TCB. A mixed culture of Microbacterium sp. B51 and the 4-CBA-degrading bacterium Arthrobacter sp. H5 was found to grow well on 1 g/l 2,4-DCB as the sole source of carbon and energy.  相似文献   

8.
Chlorobenzoates (CBA) arise as intermediates during the degradation of polychlorinated biphenyls (PCBs) and some chlorinated herbicides. Since PCBs were produced as complex mixtures, a range of mono-, di-, and possibly trichloro-substituted benzoates would be formed. Chlorobenzoate degradation has been proposed to be one of the rate-limiting steps in the overall PCB-degradation process. Three hybrid bacteria constructed to have the ability to completely mineralise 2-, 3-, or 4-monochlorobiphenyl respectively, have been studied to establish the range of mono- and diCBAs that can be utilised. The three strains were able to mineralise one or more of the following CBAs: 2-, 3-, and 4-monochlorobenzoate and 3,5-dichlorobenzoate. No utilisation of 2,3-, 2,5-, 2,6-, or 3,4-diCBA was observed, and only a low concentration (0.11 mM) of 2,4-diCBA was mineralised. When the strain with the widest substrate range (Burkholderia cepacia JHR22) was simultaneously supplied with two CBAs, one that it could utilise plus one that it was unable to utilise, inhibitory effects were observed. The utilisation of 2-CBA (2.5 mM) by this strain was inhibited by 2,3-CBA (200 M) and 3,4-CBA (50 M). Although 2,5-CBA and 2,6-CBA were not utilised as carbon sources by strain JHR22, they did not inhibit 2-CBA utilisation at the concentrations studied, whereas 2,4-CBA was co-metabolised with 2-CBA. The utilisation of 2-, 3-, and 4-chlorobiphenyl by strain JHR22 was also inhibited by the presence of 2,3- or 3,4-diCBA. We conclude that the effect of the formation of toxic intermediates is an important consideration when designing remediation strategies.Abbreviations PCB Polychlorinated biphenyl - CBA Chlorobenzoate  相似文献   

9.
Both glial and neuronal cells maintained in primary culture were found to accumulate [3H]GABA by an efficient high-affinity uptake system (apparentK m=9 M,V max=0.018 and 0.584 nmol/mg/min, respectively) which required sodium ions and was inhibited by 1 mM ouabain. Strychnine and parachloromercuriphenylsulfonate (pCS) (both at 1 mM) also strongly inhibited uptake of [3H]GABA, but metabolic inhibitors (2,4-dinitrophenol, potassium cyanide, and malonate) were without effect. Only three structural analogs of GABA (nipecotate, -alanine, and 2,4-diaminobutyrate) inhibited uptake of [3H]GABA, while several other compounds with structural similarities to GABA (e.g. glycine,l-proline, and taurine) did not interact with the system. The kinetic studies indicated presence of a second uptake (K m=92 M,V max=0.124 nmol/mg/min) in the primary cultures containing predominantly glioblasts. On the other hand, only one of the neuronal cell lines transformed by simian virus SV40 appeared to accumulate [3H]GABA against a concentration gradient. ApparentK m of this uptake was relatively high (819 M), and it was only weakly inhibited by 1 mM ouabain and 1 mM pCS. The structural specificity also differed from that of the uptake observed in the primary cultures. Significantly, none of the nontransformed continuous cell lines of either tumoral (glioma, C6; neuroblastoma, Ml; MINN) or normal (NN; I6) origin actively accumulated [3H]GABA. It is suggested that for the neurochemical studies related to GABA and requiring homogeneous cell populations, the primary cultures offer a better experimental model than the continuous cell lines.  相似文献   

10.
Summary A 2-chlorobenzoic acid (2-CBA) utilizing strain ofPseudomonas aeruginosa (B16) has been isolated from soil by enrichment with 2-CBA. The trait for utilization of 2-CBA as sole source of carbon and energy was lost spontaneously and by treatment with growth-limiting concentration of mitomycin C. Genes coding for 2-CBA catabolism are transferrable to 2-CBA variants through conjugation.
Code plasmidique conjugué du métabolisme de l'acide 2-chlorobenzoïque
Résumé Une souche dePseudomonas aeruginosa (B16) utilisant l'acide 2-chlorobenzoïque (2-CBA) a été isolée du sol par enrichissement sur le 2-CBA. L'aptitude à utiliser le 2-CBA comme seule source de carbone et d'énergie a été perdue spontanément et par traitement avec une concentration limitant la croissance de mitomycine-C. Les gènes codant pour le catabolisme du 2-CBA sont transférables aux variants 2-CBA par conjugaison.
  相似文献   

11.
12.
In contrast to the degradation of penta-and hexachlorobiphenyls in chemostat cultures, the metabolism of PCBs by Alcaligenes sp. JB1 was shown to be restricted to PCBs with up to four chlorine substituents in resting-cell assays. Among these, the PCB congeners containing ortho chlorine substituents on both phenyl rings were found to be least degraded. Monochloro-benzoates and dichlorobenzoates were detected as metabolites. Resting cell assays with chlorobenzoates showed that JB1 could metabolize all three monochlorobenzoates and dichlorobenzoates containing only meta and para chlorine substituents, but not dichlorobenzoates possessing an ortho chlorine substituent. In enzyme activity assays, meta cleaving 2,3-dihydroxybiphenyl 1,2-dioxygenase and catechol 2,3-dioxygenase activities were constitutive, whereas benzoate dioxygenase and ortho cleaving catechol 1,2-dioxygenase activities were induced by their substrates. No activity was found for pyrocatechase II, the enzyme that is specific for chlorocatechols. The data suggest that complete mineralization of PCBs with three or more chlorine substituents by Alcaligenes sp. JB1 is unlikely.Abbreviations PCB polychlorinated biphenyls - CBA chlorobenzoate - D di - Tr tri - Te tetra - Pe penta- - H hexa  相似文献   

13.
A bacterial isolate, Pseudomonas aeruginosa 3mT, exhibited the ability to degrade high concentrations of 3-chlorobenzoate (3-CBA, 8 g l-1) and 4-chlorobenzoate (4-CBA 12 g l-1) (Ajithkumar 1998). In this study, by delineating the initial biochemical steps involved in the degradation of these compounds, we investigated how this strain can do so well. Resting cells, permeabilised cells as well as cell-free extracts failed to dechlorinate both 3-CBA and 4-CBA under anaerobic conditions, whereas the former two readily degraded both compounds under aerobic conditions. Accumulation of any intermediary metabolite was not observed during growth as well as reaction with resting cells under highly aerated conditions. However, on modification of reaction conditions, 3-chlorocatechol (3-CC) and 4-chlorocatechol (4-CC) accumulated in 3-CBA and 4-CBA flasks, respectively. Fairly high titres of pyrocatechase II (chlorocatechol 1,2-dioxygenase) activity were obtained in extracts of cells grown on 3-CBA and 4-CBA. Meta-pyrocatechase (catechol 2,3-dioxygenase) activity against4-CC and catechol, but not against 3-CC, was also detected in low titres. Accumulation of small amounts of 2-chloro-5-hydroxy muconic semialdehyde, the meta-cleavage product of 4-CC, was detected in the medium, when 4-CBA concentration was 4 mM or greater, indicating the presence of a minor meta-pathway in strain 3mT. However, 3-CBA exclusively, and more than 99% of 4-CBA were degraded through the formation of the respective chlorocatechol, via a modified ortho-pathway. This defies the traditional view that the microbes that follow chlorocatechol pathways are not very good degraders of chlorobenzoates. 4-Hydroxybenzoatewas readily (and 3-hydroxybenzoate to a lesser extent) degraded by the strain, through the formation of protocatechuate and gentisate, respectively, as intermediary dihydroxy metabolites.  相似文献   

14.
If segments from the mesocotyls of Avena sativa are first keptin buffer then the initial rates of uptake of radioactive 2,3,6-trichlorobenzoicacid (2,3,6-TCBA) and 2,4- and 2,5-dichlorobenzoic acids (2,4-DCBAand 2,5-DCBA) are less than those of freshly excised segments.No such effect of pretreatment is found for benzoic acid orfor 2-chlorobenzoic acid (2-CBA). Uptake of 2,3,6-TCBA normallybecomes negative between two and six hours after excision, andthis phase of net loss is prevented by the addition of streptomycin,which also offsets the decline in the rates of uptake of 2,5-DCBAand 2,4-DCBA. In contrast, streptomycin inhibits accumulationof 2-CBA. From a comparison of these results with similar andprior findings for substituted phenoxyacetic acids, it is concludedthat the initial uptake of 2,3,6-TCBA, 2,5-DCBA, and 2,4-DCBAis governed by an unstable accumulatory system (Type 1), whosebreakdown can result either in a phase of net loss during thecourse of uptake, or in a decline in uptake following pretreatment. Net loss of 2,3,6-TCBA is also prevented by synthalin (decamethylenediguanidine dihydrochloride), cetyl trimethyl ammonium bromide(CTAB) and by 2,3,5-triiodobenzoic acid (TIBA). During pretreatment,the presence of streptomycin, synthalin or TIBA prevents a fallin the subsequent uptake of 2,3,6-TCBA, while the addition ofCTAB causes a dramatic increase in uptake. We have proposed for Type 1 accumulation a biochemical mechanismcapable of accounting for the unstable nature of the accumulationand for the protective action of the compounds with cationicnitrogen groups, such as streptomycin, synthalin, and CTAB.  相似文献   

15.
Protein mass spectrometry and molecular cloning techniques were used to identify and characterize mobile o-halobenzoate oxygenase genes in Pseudomonas aeruginosa strain JB2 and Pseudomonas huttiensis strain D1. Proteins induced in strains JB2 and D1 by growth on 2-chlorobenzoate (2-CBa) were extracted from sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Two bands gave significant matches to OhbB and OhbA, which have been reported to be the alpha and beta subunits, respectively, of an ortho-1,2-halobenzoate dioxygenase of P. aeruginosa strain 142 (T. V. Tsoi, E. G. Plotnikova, J. R. Cole, W. F. Guerin, M. Bagdasarian, and J. M. Tiedje, Appl. Environ. Microbiol. 65:2151-2162, 1999). PCR and Southern hybridization experiments confirmed that ohbAB were present in strain JB2 and were transferred from strain JB2 to strain D1. While the sequences of ohbA from strains JB2, D1, and 142 were identical, the sequences of ohbB from strains JB2 and D1 were identical to each other but differed slightly from that of strain 142. PCR analyses and Southern hybridization analyses indicated that ohbAB were conserved in strains JB2 and D1 and in strain 142 but that the regions adjoining these genes were divergent. Expression of ohbAB in Escherichia coli resulted in conversion of o-chlorobenzoates to the corresponding (chloro)catechols with the following apparent affinity: 2-CBa approximately 2,5-dichlorobenzoate > 2,3,5-trichlorobenzoate > 2,4-dichlorobenzoate. The activity of OhbAB(JB2) appeared to differ from that reported for OhbAB(142) primarily in that a chlorine in the para position posed a greater impediment to catalysis with the former. Hybridization analysis of spontaneous 2-CBa(-) mutants of strains JB2 and D1 verified that ohbAB were lost along with the genes, suggesting that all of the genes may be contained in the same mobile element. Strains JB2 and 142 originated from California and Russia, respectively. Thus, ohbAB and/or the mobile element on which they are carried may have a global distribution.  相似文献   

16.
Pseudomonas paucimobilis Q1 originally isolated as biphenyl degrading organism (Furukawa et al. 1983), was shown to grow with naphthalene. After growth with biphenyl or naphthalene the strain synthesized the same enzyme for the ring cleavage of 2,3-dihydroxybiphenyl or 1,2-dihydroxynaphthalene. The enzyme, although characterized as 2,3-dihydroxybiphenyl dioxygenase (Taira et al. 1988), exhibited considerably higher relative activity with 1,2-dihydroxynaphthalene. These results demonstrate that this enzyme can function both in the naphthalene and biphenyl degradative pathway.Abbreviations DHBP dihydroxybiphenyl - DHBPDO 2,3-dihydroxybiphenyl dioxygenase - DHDHNDH 1,2-dihydroxy-1,2-dihydronaphthalene dehydrogenase - DHN 1,2-dihydroxynaphthalene - DHNDO 1,2-dihydroxynaphthalene dioxygenase - HBP cis-2-hydroxybenzalpyruvate - HOPDA 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate - PCB polychlorinated biphenyl - 2NS naphthalene-2-sulfonic acid  相似文献   

17.
Two novel 3-chlorobenzoate-degrading bacteria were previously isolated from an aquifer in which no such bacteria could be enriched prior to the introduction of the 3-chlorobenzoate-degrading strain, Pseudomonas sp. B13. To understand the origin of 3-chlorobenzoate-degrading genes in the two novel isolates, the 16S ribosomal RNA, clcD (dienelactone hydrolase) and clcA (chlorocatechol oxygenase) genes from these bacteria were amplified and sequenced. The partial 16S rRNA gene sequences and REP-PCR patterns showed that these two novel isolates were identical but differed from strain B13. Phylogenetic analyses revealed that the novel isolates were closely related to Alcaligenes eutrophus in the beta subclass of the Proteobacteria, whereas strain B13 was related to Pseudomonas aeruginosa and P. mendocina in the gamma subclass of the Proteobacteria. In contrast, the clcD and clcA gene sequences were identical on strain B13 and these two isolates, indicating that the 3-chlorobenzoate-degrading genes were transferred from strain B13 to these isolates. What cannot be established is when this transfer occurred.  相似文献   

18.
The influence of bacterial hemoglobin, VHb, on dechlorinationand degradation of 2-chlorobenzoate (2-CBA) by recombinantBurkholderia sp. under variable oxygen availability with an initial dissolved oxygenconcentration of 0.27 mM-0.72 mM was investigated in batch and continuous culture. Abilityto express VHb was provided to recombinant Burkholderia by transformationwith the VHb gene, vgb, on plasmid pSC160. 100% of 0.5 mM CBA was degraded incultures with 85% and 70% of total volume as headspace air in closed reactorsby both wild type and recombinant Burkholderia. The recombinant cultures were able todechlorinate and degrade 100% of the 2-CBA in less than 48 hours at 30 °Ccompared to more than 120 hours for wild type cultures. The rate and extent of CBAdegradation by recombinant cultures with 40% of total volume as headspace air was higher than thoseachieved by wild type cells at the end of the 168 hours of incubation period, 98and 73%, respectively. The chloride released: CBA degraded molar ratio for cultures with 40%of total volume headspace air was nearly stoichiometric (molar ratio = 1.0) for recombinantstrains, whereas it was non-stoichiometric (molar ratio = 0.24)for wild type cells. The results suggest a suicidal meta-pathway for wild type cells and a complete dechlorinationand degradation pathway for recombinant cells under hypoxic conditions.The degradation and dechlorination ability of both types of cells was alsoinvestigated in continuous reactor studies by varying the dilution rate under hypoxicconditions. Regarding potential of the recombinant strain for 2-CBA degradation in eitheropen ecosystems or closed bioreactor bioremediation systems, the stability of the plasmidcontaining vgb in the recombinant cells was also studied; the plasmid was100% stable at 0.025 h-1 dilution rate (1.7 d hydraulic retention time),even after one month.  相似文献   

19.
The Gram-negative strain S1, isolated from activated sludge, metabolized 4-chloro-2-methylphenol by an inducible pathway via a modifiedortho-cleavage route as indicated by a transiently secreted intermediate, identified as 2-methyl-4-carboxymethylenebut-2-en-4-olide by gas chromatography/mass spectrometry. Beside 4-chloro-2-methylphenol only 2,4-dichlorophenol and 4-chlorophenol were totally degraded, without an accumulation of intermediates. The chlorinated phenols tested induced activities of 2,4-dichlorophenol hydroxylase and catechol 1,2-dioxygenase type II. Phenol itself appeared to be degraded more efficiently via a separate, inducibleortho-cleavage pathway. The strain was characterized with respect to its physiological and chemotaxonomic properties. The fatty acid profile, the presence of spermidine as main polyamine, and of ubiquinone Q-10 allowed the allocation of the strain into the -2 subclass of theProteobacteria. Ochrobactrum anthropi was indicated by fatty acid analysis as the most similar organism, however, differences in a number of physiological features (e.g. absence of nitrate reduction) and pattern of soluble proteins distinguished strain S1 from this species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号