首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ovules cleared in benzyl benzoate-4 1/2 clearing fluid can be permanently mounted in Piccolyte or Permount by replacing the clearing fluid with absolute ethanol, upgrading the ovules in mixtures of ethanol and xylene (3:1, 2:2, 1:3, and xylene), and mounting them in either mountant under the supported coverglass of a Raj slide. Optical sagittal sections through the ovules resemble microtome sections in that the protoplasts are slightly shrunken away from the cell walls. The artifact is common in permanently mounted sections; fixation and paraffin infiltration are usually cited as the causes—its appearance in the whole-mounted ovules is caused by xylene. Although miscible with the clearing fluid, Euparal is the least satisfactory of the standard mountants for permanent preparations of cleared ovules and is best used with an equal quantity of clearing fluid for semipermanent preparations. A large quantity of Euparal in the mountant produces pronounced shrinkage. A method for permanently mounting cleared ovules with the clearing image unaltered employs a mountant which contains the ingredients of Spurr low viscosity embedding medium. Vinylcyclohexene dioxide (10 drops) is combined with diglycidyl ether of polypropylglycol (6 drops) and nonenyl succinic anhydride (26 drops). Ovules treated for 24 hr in benzyl benzoate-4 1/2 clearing fluid are passed through a graded series of clearing fluid-epoxy medium mixtures (3:1, 2:2, 1:3, and pure epoxy medium) at intervals of 15 minutes. One drop of dimethylaminoethanol, the cure accelerator, is then added to the epoxy medium and the ovules are mounted and covered immediately on a Raj slide. The preparation is cured in an oven at 60 C for 24 hr and observed with phase contrast or Nomarski interference optics.  相似文献   

2.
J M Herr 《Stain technology》1982,57(3):161-169
Ovules cleared in benzyl benzoate-4 1/2 clearing fluid can be permanently mounted in Piccolyte or Permount by replacing the cleaning fluid with absolute ethanol, upgrading the ovules in mixtures of ethanol and xylene (3:1, 2:2, 1:3, and xylene), and mounting them in either mountant under the supported coverglass of a Raj slide. Optical saggittal sections through the ovules resemble microtome sections in that the protoplasts are slightly shrunken away from the cell walls. The artifact is common in permanently mounted sections; fixation and paraffin infiltration are usually cited as the causes--its appearance in the whole-mounted ovules is caused by xylene. Although miscible with the clearing fluid, Euparal is the least satisfactory of the standard mountants for permanent preparations of cleared ovules and is best used with an equal quantity of clearing fluid for semipermanent preparations. A large quantity of Euparal in the mountant produces pronounced shrinkage. A method for permanently mounting cleared ovules with the clearing image unaltered employs a mountant which contains the ingredients of Spurr low viscosity embedding medium. Vinylcyclohexene dioxide (10 drops) is combined with diglycidyl ether of polypropylglycol (6 drops) and nonenyl succinic anhydride (26 drops). Ovules treated for 24 hr in benzyl benzoate-4 1/2 clearing fluid are passed through a graded series of clearing fluid-epoxy medium mixtures (3:1, 2:2, 1:3, and pure epoxy medium) at intervals of 14 minutes. One drop of dimethylaminoethanol, the cure accelerator, is then added to the epoxy medium and the ovules are mounted and covered immediately on a Raj slide. The preparation is cured in an oven at 60 C for 24 hr and observed with phase contrast or Nomarski interference optics.  相似文献   

3.
Nondissected ovaries of tuber-bearing Solanum sp. were stained with Mayer's hemalum, a positive stain for chromatin and nucleoli, and then optically cleared with methyl salicylate, a clearing agent. Clarity, resolution and contrast within the ovules dissected from ovaries were comparable to those of sectioned, paraffin embedded ovaries. Contrast within ovules greatly exceeded that of unstained and nonspecifically stained clearings, and eliminated the need of special optics, i.e., Nomarski interference-contrast optics, for optimal viewing and photography. Much less time and labor were required than for embedded specimens. Usefulness of the technique for cytogenetic and cytological research was verified by analyzing meiosis and other features of megasporogenesis and megagametogenesis in normal, and in two meiotic mutants, of Solanum. The results illustrate the usefulness of combined Mayer's hemalum staining and methyl salicylate clearing, and suggest additional stain-clearing agent combinations have potential for cytological and cytogenetic research. Preliminary results with other species suggest the technique may also be useful for classroom instruction.  相似文献   

4.
Plastic sections 0.5 to 2 μm thick are routinely used for light microscopy. Although plastic sections have several advantages over paraffin or celloidin sections, a problem that is often encountered with plastic sections is wrinkling (Fig. 1). Wrinkling occurs during staining when sections dried on glass slides are covered with stain and heated to hasten the penetration of the stain. Mounted sections heated on glass slides, but not stained, ordinarily lack wrinkles, even when examined with phase contrast optics. Similarly, mounted sections covered with stain, but not heated, lack wrinkles; unfortunately, such sections fail to stain adequately. Unmounted sections floated on heated drops of stain also lack wrinkles (Millonig 1980). Thus, it is clear that wrinkling occurs only when mounted sections are covered with stain and heated.  相似文献   

5.
Using ovule clearing, more than 33,600 ovules of Rhododendron nuttallii T. W. Booth (Ericaceae) were examined for megagametophyte and early postfertilization stages at daily intervals from anthesis until 3 weeks after pollination. Pretreatments with amyloglucosidase to digest integumentary and gametophyte starch and Stockwell's bleach to remove tannins from the integumentary epidermis were necessary. Ovules were cleared by a combination or modifications of Heir's four-and-a-half or Stelly's hem-alum-methyl salicylate techniques and were observed using differential interference contrast optics. The method proved suitable for large-scale quantitative studies of ovule development and fertilization. A general protocol is suggested as a starting point for ovule clearing studies.  相似文献   

6.
Paraffin section thickness may be directly measured by re-embedding the sections wider consideration, cutting them again at right angles to the original plane of sectioning, and taking direct measurements with a filar micrometer after staining and mounting. Conditions and materials with which relatively un-distorted 3 and 5 μ sections were secured include (a) a hand-honed knife with a 23° facet bevel, set at a clearance angle of 7°, and (b) a hard paraffin (56-58°) embedding medium, preferably with 5% beeswax and 5% bayberry wax added. By taking direct measurements, it was found that bull testis tissue cut at a microtome setting of 10μ averaged 10.82 μ in thickness. Settings of 5 μ and 3 m resulted in sections averaging 5.25 and 3.31 μ in thickness respectively. Stages in sporogenesis of Onoclea sensibilis, Lewitsky fixed, were examined after sectioning at settings of 10, 5, and 3 μ to determine necessity for thin sections. For this material, it was indicated that mitochondrial preparations as thick as 10 μ were worthless, regardless of good fixation and proper staining. Three-micron sections give the best results.  相似文献   

7.
We have demonstrated that Herr's 41/2 clearing fluid, developed for use with plant tissues, can be successfully used for the microscopic examination of thick sections of normal and neoplastic mammalian tissues. Rat Novikoff hepatoma, rat liver, and human colon and skin samples were fixed in Bouin's, stained with iron hematoxylm, treated with Herr's 41/2 clearing fluid and examined by phase contrast miaoscopy. Tissue architecture and cytological detail were easily observed by focusing through tissue Sections as thick as 70μ. The method permits rapid microscopic examination of mammalian tissues and enables the investigator to detect readily morphological abnormalities within a tissue.  相似文献   

8.
Blocks of canine and porcine articular cartilage were stained en bloc with Weigert's iron hematoxylin or Harris' hematoxylin with or without eosin Y counterstaining and cleared in methyl salicylate. The morphology and three-dimensional relationships of chondrocytes were best demonstrated with Weigert's iron hematoxylin. The morphology of the cartilage and chondrocytes was superior to that in sections of routine hematoxylin and eosin stained, paraffin processed samples. The three-dimensional localization of intracellular lipids in individual and clones of chondrocytes was observed when cartilage samples were stained with oil red O and mounted directly in a water-based medium. Blocks of decalcified bone were stained en bloc with Weigert's iron hematoxylin and cleared with methyl salicylate. The three-dimensional orientation of osteocytes around osteonal canals, in circumferential lamellae, and in interstitial lamellae was demonstrated. The morphology of “cutting cones” in cortical bone also was observed.  相似文献   

9.
An improved method is described in which tissue areas can be initially identified in thick sections by light microscopy and isolated for subsequent ultrathin sections and observation by electron microscopy. This is achieved by embedding in hard Epon which can be sectioned at 25-150 μm on a sliding microtome after softening the blockface by applying a 60-70 C tacking iron to its surface immediately before each section is taken. The thick sections are then mounted on plastic slides to enable light microscopic selection of areas to be observed by electron microscopy. The selected areas are remounted on faced Epon blanks and resectioned at less than 50 nm. This technique makes it possible to obtain thick sections while maintaining an Epon hard enough for good serial ultrathin sections.  相似文献   

10.
The simple, efficient method described here for the study of ovule and megagametophyte development in angiosperms provides for the extension of investigation beyond the limits imposed by the traditional but arduous section technique. Excised pistils previously fixed in FPA50 and stored in 70 % ethanol are placed in a clearing fluid composed of lactic acid (85 %), chloral hydrate, phenol, clove oil, and xylene (2:2:2:2:1, by weight). After 24 hr, ovules dissected from the ovularies are transferred with some of the fluid to a slide, covered so that the cover glass is supported laterally by two permanently affixed covers, and examined with phase contrast optics. The unique action of the clearing fluid permits the study of cellular structure with the phase oil objective focused at any focal plane within the ovule. Downward focusing thus reveals a series of optical sections in the sagittal, frontal, or transverse plane depending on the orientation of the ovule. Orientation can be altered by a slight shifting of the cover glass on the lateral support mounts. The ovules become quite fragile in the clearing fluid. Pressure applied to the cover glass gradually breaks the ovule apart without disrupting the structural integrity of individual cells. This squash procedure provides for extending observations to cytological features of megasporocytes, megaspores, and megagametophytes previously identified in intact ovules. The new method is applied here to the study of ovule development in two unrelated species, Cassia abbreviata Oliver var. granitica Bak. f. (Leguminosae) and Ludwigia uruguayensis (Camb.) Hara. (Onagraceae). For best results, the ovules of Ludwigia must be pretreated in lactic acid (85 %) for 24 hr prior to application of the clearing fluid. Other methods for pretreatment likely will be required as the technique is applied to a wider range of flowering plant species.  相似文献   

11.
For a detailed study of the developing chick retina a technique has been developed using glycol methacrylate embedding and a hematoxylin toluidine blue-phloxinate stain. After removal of the vitreous body, one half-segment of the eye is dehydrated through graded ethyl alcohols to 95%, infiltrated and embedded in glycol methacrylate, and sectioned at 2 μm. The sections are stained in alum hematoxylin and then in a mixture containing toluidine blue-phloxinate from a stock solution of the dye that has matured for 2-3 weeks. Differentiation is not required and there is only slight staining of the plastic matrix. The quality and clarity of the sections contrasts markedly with that of similarly stained 5 μm paraffin wax sections of the retina. This technique has also been applied to skin, spinal cord, dorsal root ganglia, pancreas and small intestine. The stained sections from these tissues have proved very useful in revealing structural components.  相似文献   

12.
宁夏枸杞胚珠孚尔根染色后经透明用激光扫描共聚焦显微镜直接观察各发育时期胚珠内部结构。结果显示,用孚尔根染色后,枸杞大孢子发生和雌配子体发育的各个阶段都可在激光共聚焦显微镜下清楚呈现。此种方法克服了胚囊因深埋在胚珠体细胞组织中而难以观察的问题。与经典的切片方法相比,该法可对胚珠整体进行观察,操作简单、可在较短时间内大规模地检测胚囊发育状况。  相似文献   

13.
An improved method for identifying murine mesenchymal cells in chimeric tissues or heterotransplants using Hoechst dye 33258 is described. Following fixation in formalin-saline, tissues are embedded in JB-4 plastic Sections 3 μm thick are then stained in a 10 μg/ml solution of Hoechst 33258 in Hanks' balanced salt solution for 5-10 min at 4 C. After rinsing, the sections are coverslipped using a modified polyvinyl alcohol mounting medium. This approach offers several advantages over existing techniques: 1) uniform section thickness is more easily obtained than with paraffin or cryostat microtomy, thereby allowing improved resolution and more reliable identification of mesenchymal cells with small nuclei such as skeletal muscle myocytes or fibroblasts, 2) the preparations are stable over long periods and can be repeatedly viewed or photographed, and 3) calcified tissues can be examined without prior decalcification. An example is shown of species identification using rat chondrosarcoma cells grown in nude mice.  相似文献   

14.
A technic is described for producing critically stained preparations of phloem tissue. The preparations promise to be relatively stable. Sections of fixed unembedded or of embedded (paraffin or celloidin) phloem, cambium, and xylem are (1) stained in Foster's tannic acid-ferric chloride combination; (2) treated with 1% NaHCOg in 25% or 50% ethyl alcohol for 30 minutes; (3) stained in a saturated solution of lacmoid (made alkaline by adding a few ml. of 1% NaHCO3 in 25% alcohol) for 12 to 18 hours; (4) dehydrated and cleared in a series composed of 1% solution of NaHCOs in 50% ethyl alcohol, 80%, 95%, and absolute alcohol, equal proportions of absolute alcohol, clove oil, and xylene, and finally pure xylene; and (5) mounted in a neutral resin. Callose and lignified secondary walls are blue or blue-green in color, cellulose walls and stainable protoplasmic contents are generally light brown. The technic has been successful with sections from 5 to 40μ in thickness, and the staining has been satisfactory for both color and black and white photomicrography.  相似文献   

15.
利用常规石蜡制片技术、荧光显微技术、光镜细胞化学技术、电子显微镜技术对青阳参大孢子发生、雌配子体形成过程进行了详细观察。结果显示,青阳参为边缘胎座,胚珠倒生、短珠柄,单珠被,薄珠心型,珠心细胞含有大量的淀粉粒、线粒体和内质网等;大孢子孢原细胞起源于下表皮并直接行使大孢子母细胞的功能;合点端的大孢子分裂形成8-核胚囊;蓼型胚囊;成熟胚囊中有大量淀粉粒;珠孔受精;胚乳在早期发育阶段以游离核形式存在,约在16~32核的阶段细胞壁形成,通常情况下胚乳核的分裂比合子的分裂早,成熟胚乳细胞单核、形状不规则,没有胚乳吸器;胚的发育经过原胚、球型胚和心型胚阶段,茄型;成熟的种子具有种毛,位于珠孔端的珠被表皮细胞是种毛长出的区域,种子中含有大量的脂肪。  相似文献   

16.
Ovaries and ovules of Oryza sativa and Zea mays were collected between 9-30 and 10-30 AM, fixed in formalin-acetic-alcohol, stained in Delafield's hematoxylin for 2-4 hr, dehydrated through graded ethanol, counterstained for 3-4 hr either in light green, orange G or fast green (0.05-0.1%) at the 1:1 alcohol-xylene stage and embedded. A few ovaries were hydrolysed in 1 N HCI for 25 min at 60 C, stained in leuco basic fuchsin for 60-90 min, rinsed 3 times with a mixture of: 10% Na2S2O5, 1; N HC1, 1; and distilled water, 18; washed repeatedly in distilled water, dehydrated through graded ethanol, counter-stained for 3-4 hr either with light or fast green (0.05-0.1%) at the 1:1 alcohol-xylene stage and embedded. Microtome sections were cut, ribbons mounted, dried, paraffin removed with xylene, and mounted in balsam. Uniformly stained preparations resulted and the dilute stains gave vivid color contrasts. Large numbers of ovules and ovaries can be processed in a short time, and reliable percentages of viable embryo sacs in normal, sterile and semisterile plants obtained.  相似文献   

17.
This is a staining technique for histopathologic evaluation of tissue reaction in the environs of acid-fast tubercle bacilli (avian and bovine) in sections. Fresh tissue is fixed in 10% neutral formalin and processed in the usual manner for embedding in paraffin. Sections are cut approximately 6 μ. thick, dewaxed, hydrated, and stained with Harris' hematoxylin. They are rinsed in tap water, differentiated in add alcohol, washed in tap water, given a distilled water rinse and stained at 20-30° C in a 1% solution of new fuchsin in 5% phenol. Each slide is then handled individually by placing it directly into a saturated aqueous solution of Li2CO3 and agitated gently for a few seconds. This is followed by differentiation with 5% glacial acetic acid in absolute or 95% ethyl alcohol until the color stops running. Two rinses in absolute or 95% ethyl alcohol follow. The sections are then counterstained in the color add of eosin Y prepared according to the method of Schleicher (Stain Techn., 28, 119-23, 1953) and used as an 0.025% solution in absolute alcohol. Following passage through 2 changes of absolute alcohol, the sections are cleared in xylene, then mounted in Permount or similar synthetic resin. The add-fast barilli are emphasized by their bright retractile red color within a contrasting background of hematoxylin and eosin.  相似文献   

18.
The fluorescent chitinase technique is based on the specific affinity of the enzyme for its substrate and applicable when an enzyme can be coupled with a fluorescent dye. Fluorescent chitinase specifically stained chitinous structures in several fungi and an insect, but failed to stain other polysaccharides in bacterial and algal cell walls. Freezing-microtome sections of Drosophila and fungal mycelia 6 μ thick were fixed in acetone for 5 min, then stained and mounted in fluorescent chitinase. Staining of smears of unsectioned fungal material required 5 min in absolute acetone, 5 min in 95% ethanol-1 N aqueous acetic acid (1:1), 10 min in 0.2 M phosphate buffer, PH 5.7, 1 sec in enzyme-dye conjugate, and 10 min in carbonate-bicarbonate buffer (0.2 M, pH 10.7, for chitinase-FITC; pH 7.6, for chitinase-LRBC). Preparations are viewed microscopically with ultraviolet light.  相似文献   

19.
Dicrocoelium dendriticum and Fasciola hepatica were killed in the extended condition without anesthetization by dropping them into 40% acetic acid or into aceto-orcein. By using aceto-orcein (La Cour, 1941), killing, fixing and staining were accomplished simultaneously: staining time 24 hr or more. Whole mounts were made by dehydrating, clearing and mounting in Canada balsam, or testes or the upper part of the uterus could be removed for squash preparations after as long as 2 mo in the fixing and staining fluid. For Feulgen staining, living specimens were placed in 40% acetic acid for 10—15 min and then transferred to either Gilson's fluid, for sections, or to acetic-ethanol (1:3) for squashes. Hydrolysis was either by 10% perchloric acid at 25°C for 12 hr or in 12V HCl at 60° for 10 min. The time for Feulgen staining (De Tomasi, 1936) was 1.5-4.0 hr. Squashes were made from testes and uterus in the same manner as after aceto-orcein or sections obtained after embedding in paraffin.  相似文献   

20.
Frozen sections, 25-50 /j. thick, of formalin-fixed nervous tissues are mounted following the Albrecht gelatin technic. Paraffin sections, 15 p., are deparaffinized and transferred to absolute ethanol. The slides are then coated with celloidin. Both frozen and paraffin sections subsequently follow the same steps: absolute ethanol-chloroform (equal parts) for at least 20 min, 95% ethanol, 70% ethanol (1-3 min), then rinsed in distilled water. Sections are stained in Cresylechtviolett (Chroma) 0.5% aqueous solution containing 4 drops of glacial acetic acid per 100 ml, rinsed in distilled water, agitated in 70% ethanol until excess stain leaves the slide, and rinsed in 95% ethanol. Sections are then dehydrated in absolute ethanol, followed by butanol, cleared in xylene, and enclosed in permount.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号