首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tetrachlorohydroquinone (TCHQ) and tetrachlorocatechol (TCC), two metabolites of the environmental mutagen and carcinogen pentachlorophenol, were tested without exogenous activation in V79 Chinese hamster cells for the induction of mutation at the hypoxanthine phosphoribosyl transferase (HPRT) locus to 6-thioguanine resistance (TGr) and at the Na/K-ATPase locus to ouabain resistance (OuaR). Treatment was for 24 h at 37 degrees C. TCHQ produced statistically significant increases in the frequency of TGr mutants. The lowest observed effective dose (LOED) was 20 microM, where the relative cloning efficiency was 63%. The relationship between the dose of TCHQ and the frequency of TGr mutants was approximately linear over the range of 0-60 microM with an estimated slope (+/- 95% confidence limits) of 1.1 +/- 0.3 mutants per 10(6) clonable cells per microM. At the highest tested dose of TCHQ, 60 microM, the relative cloning efficiency was reduced to 7%. In contrast to TCHQ, TCC was unable to induce TGr mutants at doses up to 120 microM. The relative cloning efficiency at this dose was 5%. Both TCHQ and TCC were unable to induce OuaR mutants. The results suggest that TCHQ is at least partly responsible for the genotoxic activity of pentachlorophenol. TCHQ can produce reactive oxygen species, which may cause large genetic damage such as deletions, resulting in mutation to TGr but not to OuaR.  相似文献   

2.
The mutational effects of ionising radiation at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus were studied in human peripheral blood G(0) phase lymphocytes irradiated in vitro with gamma rays. The presence of radiation induced mutants was assessed by selecting the HPRT mutants every week on the basis of 6-thioguanine resistance up to 1 month after irradiation. A dose-related increase of 14.25x10(-6) mutants/Gy was measured after an expression time of 7 days. After 2 weeks from culture starting the fraction of clonable cells in irradiated and control cell populations decreased, limiting the measurements of mutant frequency. The mutational spectrum of the HPRT gene was determined by PCR analyses in a total of 99 mutant clones derived from irradiated lymphocytes. The independent origin of mutant clones carrying the same mutation was assessed by analysing the TCR gamma gene rearrangements. The results showed a dose-related increase of deletion mutants up to 3Gy, whereas point mutation frequency increased only up to 2Gy. Two preferentially deleted regions were identified; one involving the HPRT exon 3, and another one the 3'-terminal and the 3'-flanking region of the gene. One complex mutation involving a non-contiguous deletion of exons 2-5 and 7/8 was observed among the mutants isolated after 3Gy irradiation.  相似文献   

3.
We have characterized the structural changes in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene of 14 UV-induced, 15 γ-ray-induced and 17 spontaneous mutants of human lymphoblastoid cells selected for 6-thioguanine (6TG) resistance. Southern blot analysis using the full-length HPRT cDNA as a probe revealed that 29% (5/17) of the spontaneous mutants contained detectable alterations in their restriction fragment patterns. Among the 15 mutants induced by γ rays, 7 (47%) had such alterations indicative of large deletions in the HPRT gene. In contrast, all 14 UV-induced mutants exhibited hybridization patterns indistinguishable from those of the wild-type cells. These results suggest that UV is likely to induce point mutations at the HPRT locus on the human chromosome and that the molecular mechanism of UV-induced mutation is quite different from that of ionizing radiation-induced mutation or spontaneous mutation in human cells.  相似文献   

4.
Somatic cells of whole Syrian hamster fetuses (gestation day 13) were isolated and tested by an in vivo/in vitro mutation assay for spontaneous mutation frequencies using independent 6-thioguanine (6-TG), diphtheria toxin (DT), and ouabain mutation selection systems. Optimum conditions were ascertained. For 6-TG mutants, a total of 21 mutants were found in cells from 24 litters on 1993 plates, for an overall mutant frequency of 1.8 x 10(-7) per viable cell with 12 positive litters. In all, 26 litters were tested using DT; 77 mutants were found in 840 plates, yielding an overall mutant frequency of 2.6 x 10(-7), with 20 positive litters. No correlations or familial effects were found among 23 litters tested for both DT and 6-TG. Of 14 litters which were tested for ouabain mutants, 4 were positive, with a total of 5 mutants found on 988 plates, for an overall mutant frequency of 7.6 x 10(-8). For 14 F344 rat fetuses, the overall 6-TG spontaneous mutation frequency was determined to be 1.6 x 10(-7). From the data, estimates of mutation rates were calculated. For mutation to 6-TG resistance the rate was 8.3 x 10(-8), for mutation to DT resistance the rate was 8.1 x 10(-8) and for ouabain, the spontaneous mutation rate was 5.7 x 10(-8). For F344 rat, the spontaneous mutation rate was 1.1 x 10(-7). Induced mutant frequencies after in utero exposure to 1 mmol/kg N-ethyl-N-nitrosourea (ENU) were 311, 135 and 200 times the spontaneous value for 6-TG, DT and ouabain, respectively, for Syrian hamster fetal cells and 125 times the spontaneous 6-TG value for fetal F344 rat cells. Both spontaneous mutation frequencies and underlying spontaneous mutation rates are low, consistent with the view that fetal cells exercise extremely tight control over DNA fidelity.  相似文献   

5.
A pSV2gpt-transformed Chinese hamster ovary (CHO) cell line has been used to study mutation at the molecular level. This cell line, designated AS52, was constructed from a hypoxanthine-guanine phosphoribosyl transferase (HPRT)-deficient CHO cell line, and has been previously shown to contain a single, functional copy of the E. coli xanthine-guanine phosphoribosyl transferase (XPRT) gene (gpt) stably integrated into the Chinese hamster genome. In this study, conditions for its use in the study of mammalian cell mutagenesis have been stringently defined. The spontaneous mutation rate (2 X 10(-6)/cell division) and phenotypic expression time (7 days) of the gpt locus compare favorably with those of the hprt locus in wild-type CHO-K1-BH4 cells. While both cell lines exhibit similar cytotoxic responses to ethyl methanesulfonate (EMSO and ICR 191, significant differences in mutation induction were observed. Ratios of XPRT to HPRT mutants induced per unit dose of EMS and ICR 191 are 0.70 and 1.6, respectively. Southern blot hybridization analyses revealed that most XPRT mutant cell lines which arose following treatment with EMS (20/22) or ICR 191 (20/24) exhibited no alterations of the gpt locus detectable by this technique. Similar observations were made for the hprt locus in EMS-(21/21) and ICR 191-induced (22/22) HPRT mutants. In contrast, most spontaneous gpt mutants (14/23) contained deletions, while most spontaneous hprt mutants (18/23) exhibited no detectable alterations. Results of this study indicate that the AS52 cell line promises to be useful for future study of mutation in mammalian cells at the DNA sequence level.  相似文献   

6.
7.
Purified DNA from wild-type Chinese ovary (CHO) cells has been used to transform three hypoxanthine phosphoribosyltransferase (HPRT) deficient murine cell mutants to the enzyme positive state. Transformants appeared at an overall frequency of 5 x 10(-8) colonies/treated cell and expressed CHO HPRT activity as determined by electrophoresis. One gene recipient, B21, was a newly isolated mutant of LMTK- deficient in both HPRT and thymidine kinase (TK) activities. Transformation of B21 to HPRT+ occurred at 1/5 the frequency of transformation to TK+; the latter was, in turn, an order of magnitude lower than that found in the parental LMTK- cells, 3 x 10(-6). Thus both clonal and marker-specific factors play a role in determining transformability. The specific activity of HPRT in transformant extracts ranged from 0.5 to 5 times the CHO level. The rate of loss of the transformant HPRT+ phenotype, as measured by fluctuation analysis, was 10(-4)/cell/generation. While this value indicates stability compared to many gene transferents, it is much greater than the spontaneous mutation rate at the indigenous locus. The ability to transfer the gene for HPRT into cultured mammalian cells may prove useful for mutational and genetic mapping studies in this well-studied system.  相似文献   

8.
We have generated a new mutation assay system using HT1080 human fibrosarcoma cells, which consists of a combination of tetracycline-operator dependent GFP gene (TetO-EGFP) and tetracycline repressor (TetR) genes, where the expression of GFP gene is under strict control of TetR protein, and the TetR gene is located within the endogenous HPRT gene. In this system, any inactivating mutation at the TetR gene or large deletions including the gene itself results in high expression of GFP gene (>200-fold increase) in the cells, which can be readily scored not only by a flow cytometer but also under a fluorescent microscope. With this new cell line, we show that the spontaneous mutation rate at the TetR locus was 2.8-3.4×10(-6)/cell division, slightly lower than the rate at the endogenous HPRT gene of HT1080 cells, and has a dose response to X rays as a mutagen. We also isolated variant clones with elevated spontaneous mutation rate (i.e., genetically unstable cells) following X irradiation. Spontaneous GFP-positive mutants were predominantly base-change mutations at the TetR gene while those obtained after X irradiation often contained large deletions which spanned up to 6Mb. The results indicate that the bacterial TetR/TetO regulatory units work extremely well as a mutation detection system in human cells, and any part of the human genome may be tested for mutation sensitivity following targeted insertion of the TetR gene in a stably expressing gene.  相似文献   

9.
The Thy- mutants of Chinese hamster ovary cells have a 5- to 10-fold elevated pool of deoxycytidine 5'-triphosphate (dCTP) and are auxotrophic for thymidine as an apparent consequence of a single mutation. thy is also a mutator gene, elevating the spontaneous rate of mutation 5- to 200-fold for at least two genetic markers. Previous experiments suggested that this mutator activity was caused by the elevated pool of dCTP in Thy- cells. To test this, the dCTP and deoxythymidine 5'-triphosphate (dTTP) pools were manipulated by altering the external concentration of thymidine in the growth medium. The rate of mutation at one genetic locus, ouabain resistance, was directly related to cellular dCTP content. At the highest level of dCTP the rate in one Thy- strain was approximately 200 times that of wild-type cells. However, the relationship between dCTP content and the rate of mutation at the ouabain locus was different for two mutator strains and wild-type cells. The rate of mutation at a second locus, thioguanine resistance, was increased approximately 10-fold over wild type regardless of the dCTP-dTTP pools. These experiments suggest that the mutator activity of thy is clearly related to dCTP content, but the dCTP level alone does not appear to be the cause of the mutator.  相似文献   

10.
B P Kopnin  A V Gudkov 《Genetika》1983,19(6):864-871
DNA-mediated transfer of colchicine-resistance from Djungarian hamster DM5/7 cell line, 750-fold resistant to the drug, was studied. The resistance to colchicine of DM5/7 cells is due to amplification of the genes, possibly coding for the polypeptide p22. Both high-molecular weight DNA (presumably, chromosomal DNA) and low-molecular weight DNA (presumably, extrachromosomal DNA) effectively transferred the colchicine-resistance to Djungarian hamster and mouse cells. DNA of sensitive to colchicine but resistant to ouabain mouse cells CAK-143OuaR was not capable to transfer colchicine-resistance, but effectively transferred ouabain-resistance connected with a mutation in Na+/K+-dependent ATP-ase locus. The differences in genetic transformation with amplified p22 genes and mutant Na+/K+-dependent ATP-ase genes were revealed. All cells of 3 colchicine-resistant transformants of DM-15 cells and all 10 spontaneously derived resistant clones contain the additional chromosome 4. The role of trisomy 4 in the development of colchicine-resistance in DM-15 cells is discussed.  相似文献   

11.
M L Kuo  J K Lin 《Mutation research》1989,212(2):231-239
The induction of DNA single-strand breaks in C3H10T1/2 mouse fibroblasts and Chinese hamster ovary (CHO) cells by N-nitroso-N-2-fluorenylacetamide (N-NO-2-FAA) was demonstrated by the alkaline elution technique. Without metabolic activating system (i.e., rat liver S9 fraction), N-NO-2-FAA exhibits more direct and strong damaging effects on DNA than its parent compound, 2-FAA, at equal concentration in both cell lines. To compare the DNA-damaging potency of N-NO-2-FAA with other well-known carcinogens, such as benzo[a]pyrene, 2-nitrofluorene, and N-methyl-N'-nitrosoguanidine (MNNG), the order of potency is as follows: MNNG (5 microM) greater than N-NO-2-FAA (150 microM) greater than benzo[a]pyrene (20 microM) at equitoxic concentrations, LD37, in the same cell system. Another parallel experiment indicated that N-NO-2-FAA could disrupt the superhelicity of circular plasmid DNA (pBR 322) at a dose range of 0.1-50 mM; however, a complete conversion to form III linear DNA was found at the highest concentration (50 mM). After treatment with various concentrations of N-NO-2-FAA, ouabain resistance (ouar) was induced in C3H10T1/2 cells, while both ouar and 6-thioguanine resistance (6-TGr) were induced in CHO cells. The mutation frequency in the Na+/K+-ATPase locus in CHO cells (1.5 X 10(-6) mutants/microM) is higher than that in C3H10T1/2 cells (1.0 X 10(-6) mutants/microM). The maximal mutation frequency at the Na+/K+-ATPase gene locus was attained with 30 min of exposure in C3H10T1/2 cells, whereas the mutation frequency in CHO cells continued to increase up to 80 min of treatment. Similarly, the maximal mutation frequency at the HPRT locus also continued to increase up to 80 min of treatment. Finally, a linear plot of alkali-labile lesions versus 6-TGr mutations was obtained; but the same relationship was not observed in the case of ouar mutation.  相似文献   

12.
This paper (1) presents an analysis of published data on the molecular nature of spontaneously arising and radiation-induced mutations in mammalian somatic cell systems and (2) examines whether the molecular nature and mechanisms of origin of radiation-induced mutations, in mammalian in vivo and in vitro systems, as currently understood, are consistent with expectations based on the biophysical and microdosimetric properties of ionizing radiation. Depending on the test system (CHO cells, human T lymphocytes and human lymphoid cell line TK6), 80-97% of spontaneous HPRT mutations show normal Southern patterns; the remainder is due to gross changes, predominantly partial (intragenic) deletions. Total gene deletions at the HPRT locus are rare except in the TK6 cell line. At the APRT locus in CHO cells, 80-97% of spontaneous mutations are due to base-pair changes, the remainder being, mostly, partial deletions. The latter can extend upstream in the 5' direction but not beyond the APRT gene in the 3' direction. At the human HLA-A locus (T lymphocytes), the percentage of mutations with normal Southern patterns is lower than that for HPRT, and in the range of 50-60%. At the HLA-A locus, mitotic recombination contributes substantially to the mutation spectrum (approximately 30% of mutations recovered) and this is likely to be true of the TK locus in the TK6 cell line as well. With a few exceptions, most of the radiation-induced mutations show altered Southern patterns and are consistent with their being deletions and/or other gross changes (HPRT, 70-90% (CHO); 50-85% (TK6); 50-75% (T lymphocytes); TK, 60-80% (TK6); HLA-A, 80% (T lymphocytes); DHFR, 100% (CHO]. The exceptions are APRT mutations in CHO cells (16-20% of mutants with deletions or other changes) and HPRT mutations in T lymphocytes from A-bomb survivors (15-25%); the latter finding is consistent with the occurrence of in vivo selection against HPRT mutant cells. In cases of HPRT intragenic deletions analyzed (CHO cells and V79 Chinese hamster cells), there is evidence for a non-random distribution of breakpoints. The spontaneous mutation frequencies vary widely, from about 0.04/10(6) cells (sickle cell mutations at the human HBB locus) to 30.8/10(6) cells (HLA-A mutations in T lymphocytes) and are dependent on the locus, the system employed and a number of other factors. Those for the other loci fall between these limits.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
An improved method to select mutator mutants was developed. By this new method, mutator mutants were isolated efficiently, and 7 mutants were obtained from cultured mouse FM3A cells. These mutator mutants have an elevated rate of spontaneous mutation at 3 genetic loci (resistance to ouabain, blasticidin S, and tunicamycin). The sensitivity of these mutants to aphidicolin and arabinofuranosylcytosine was the same as in the wild-type cells. Determination of the size of the cellular dNTP pool revealed that there was no large imbalance in the precursor pool in the mutator mutants. These results suggested that the mutator character may be due to alteration in some factor(s) correlated directly to DNA replication. Also, there was no change in the sensitivity of all these mutator mutants to DNA damaging agents.  相似文献   

14.
Summary Under selective growth conditions a revertant of mouse cells, defective in hypoxanthine phosphoribosyltransferase activity (HPRT, EC-No. 2.4.2.8), was isolated, which contained an electrophoretically abnormal form of HPRT activity. The specific HPRT activity in crude extracts of the revertant cells is about 30% of the level determined in normal wild type cells. The variant HPRT reacts with antiserum against normal mouse HPRT but the rate of heat inactivation of the variant activity is different from the wild type form. By isozyme and karyotype analyses of somatic cell hybrids between the revertant mouse cells and Chinese hamster cells we found that the abnormal HPRT activity is coded for by the mouse X-chromosome as expected for a mutation in the structural HPRT gene.DNA has been purified from the abnormal HPRT revertant cells and incubated with mouse A9 cells (HPRT-). After growth in selective medium one clone was isolated which expressed the electrophoretically abnormal form of HPRT. Six clones showed the normal form of HPRT due to reversion of the defective HRRT locus in A9 cells. This result indicates DNA-mediated transfer of the mouse HPRT gene at a frequency of about 0.5×10-7. A similar frequency has been found for transfer of the variant HPRT locus via isolated metaphase chromosomes to A9 recipient cells. When placed in non-selective media the DNA-mediated transferent cells gradually lost their ability to express the HPRT transgenome at a rate of about 6% per average cell generation.  相似文献   

15.
Two UV sensitive DNA-repair-deficient mutants of Chinese hamster ovary cells (43-3B and 27-1) have been characterized. The sensitivity of these mutants to a broad spectrum of DNA-damaging agents: UV254nm, 4-nitroquinoline-1-oxide (4NQO), X-rays, bleomycin, ethylnitrosourea (ENU), ethyl methanesulphonate (EMS), methyl methanesulphonate (MMS) and mitomycin C (MMC) has been determined. Both mutants were not sensitive to X-rays and bleomycin. 43-3B was found to be sensitive to 4NQO, MMC and slightly sensitive to alkylating agents. 27-1 was sensitive only to alkylating agents. The results suggest the existence of two repair pathways for UV-induced cytotoxicity: one pathway which is also used for the removal of 4NQO and MMC adducts and a second pathway which is also used for the removal of alkyl adducts. Parallel to the toxicity, the induction of mutations at the HPRT and Na+/K+-ATPase loci was determined. The increased cytotoxicity to UV, MMC and 4NQO in 43-3B cells and the increased cytotoxicity to UV in 27-1 cells correlated with increased mutability. It was observed that the increase in mutation induction at the HPRT locus was higher than that at the Na+/K+-ATPase locus. As only point mutations give rise to viable mutants at the Na+/K+-ATPase locus the lower mutability at this locus suggests that defective excision repair increases the chance for deletions. Despite an increased cytotoxicity to ENU in 27-1 cells the mutation induction by ENU was the same in 27-1 and wild-type cells at both loci, which suggests that the mutations are mainly induced by directly miscoding adducts (e.g. O-6 alkylguanine), which cannot be removed by CHO cells. As EMS and MMS treatment of 27-1 cells caused an increase in mutation induction at the HPRT locus and a decrease at the Na+/K+-ATPase locus it indicates that these agents induce a substantial fraction of other mutagenic lesions, which can be repaired by wild-type cells. This suggests that O-6 alkylation is not the only mutagenic lesion after treatment with alkylating agents.  相似文献   

16.
A highly tumorigenic subdiploid cell line, BP6T, derived in our laboratory from Syrian hamster embryo (SHE) cells, is amenable to studies of somatic mutation in vitro. Cellular and biochemical characterization of clonally derived BP6T cells resistant to 6-thioguanine (TGr) or ouabain (Ouar) demonstrated these mutants to be similar qualitatively to mutants of SHE cells characterized previously (Barrett et al., 1978). BP6T TGr mutants resistant to 6-thioguanine are cross-resistant to 8-azaguanine, lack HPRT activity, exhibit a low frequency of reversion and arise spontaneously at a rate of 5 × 10−7 mutants per cell per generation. BP6T Ouar mutants were shown to be highly resistant to ouabain-mediated inhibition of 86Rb influx, indicating an alteration in the Na+/K+ ATPase. These studies on the BP6T cell line provide the experimental basis for a comparative study of the mutagenic responses of normal, diploid SHE cells versus those of related, but transformed aneuploid cells. Highly synchronized cultures of these 2 cells were mutagenized by pulse treatment with BrdU during different periods of S phase, followed immediately by near-UV irradiation. The induced mutation frequencies so obtained provided information about the temporal order of replication of genes encoding HPRT and Na+/K+ ATPase in both SHE and BP6T cells. The temporal pattern of replication of Na+/K+ ATPase gene loci is similar in both cell types, but the temporal order of replication of the HPRT gene is significantly different between SHE and BP6T cells (mid-late S phase, versus early S phase, resp.). This observed difference emphasizes the caution required in the study of mutagenesis and DNA replication using transformed, aneuploid cells under the assumption that the underlying mechanisms are the same for normal, diploid cells.  相似文献   

17.
Defective ecotropic and amphotropic retroviral vectors containing the cDNA for human hypoxanthine phosphoribosyltransferase (HPRT) were developed for efficient gene transfer and high-level cellular expression of HPRT. Helper cell clones which produced a high viral titer were generated by a simplified method which minimizes cell culture. We used the pZIP-NeoSV(X) vector containing a human hprt cDNA. Viral titers (1 X 10(3) to 5 X 10(4)/ml) of defective SVX HPRT B, a vector containing both the hprt and neo genes, were increased 3- to 10-fold by cocultivation of the ecotropic psi 2 and amphotropic PA-12 helper cells. Higher viral titers (8 X 10(5) to 7.5 X 10(6] were obtained when nonproducer NIH 3T3 cells or psi 2 cells carrying a single copy of SVX HPRT B were either transfected or infected by Moloney leukemia virus. The SVX HPRT B defective virus partially corrected the HPRT deficiency (4 to 56% of normal) of cultured rodent and human Lesch-Nyhan cells. However, instability of HPRT expression was detected in several infected clones. In these unstable variants, both retention and loss of the SVX HPRT B sequences were observed. In the former category, cells which became HPRT- (6-thioguanine resistant [6TGr]) also became G418s, indicative of a cis-acting down regulation of expression. Both hypoxanthine-aminopterin-thymidine resistance (HATr) and G418r could be regained by counterselection in hypoxanthine-aminopterin-thymidine. In vitro mouse bone marrow experiments indicated low-level expression of the neo gene in in vitro CFU assays. Individual CFU were isolated and pooled, and the human hprt gene was shown to be expressed. These studies demonstrated the applicability of vectors like SVX HPRT B for high-titer production of defective retroviruses required for hematopoietic gene transfer and expression.  相似文献   

18.
X-irradiation induces forward mutations from 8-azaguanine sensitvity to resistance in Chinese hamster cells in culture. At this locus the number of induced mutations increases non-linearly with X-ray exposure. The mutation rate increase from 4.2·10−7 per locus per R with 200 R to 1.8·10−6 per locus per R with 1200 R. Several factors including cell density markedly influence the mutational yield. Reversion tests using specific chemical mutagens on 72 randomly isolated, azaguanine-resistant mutants suggest that both point mutations and chromosome deletions might have occurred in the hamster cells after exposure to ionizing radiation.  相似文献   

19.
In HeLa cells two different types of mutants resistant to the cardiac glycoside ouabain (OuaR mutants) or erythrophleum alkaloid cassaine (CasR mutants) have been obtained. One type of mutants resistant to these compounds (designated as group A) are highly resistant (between 50 and 2000-fold) to various cardiac glycosides and their genins such as ouabain, oleandrin, digitoxin, digitoxigenin, strophanthidin, convallatoxin, gitoxin, gitoxigenin, gitaloxin, bufalin, and digoxigenin, but exhibit no cross-resistance to SC4453, a digoxin analog which contains a pyridazine ring in place of the lactone ring in the C-17 position. The second type of mutants (group B) exhibit cross-resistance to all of the cardiac glycosides including SC4453, but their level of resistance is at least 5-10-fold less than that of group A mutants. Interestingly, both groups of mutants exhibited similar degree of cross-resistance towards digoxin and actodigin (AY22241), indicating some differences in their behavior from other cardiac glycosides. Both classes of mutants exhibit no cross-resistance to a wide variety of other structurally and functionally related compounds, e.g. sanguinarine nitrate, ethacrynic acid, penicillic acid, veratridine, harmaline hydrochloride, 5,5'-diphenylhydantoin, quindonium bromide, methyl quinolizinum bromide, estradiol 17 beta-acetate, 21-acetoxy-pregnenolone, vanadium pentoxide, digitonin, and adriamycin, indicating that the genetic lesions in both groups of mutants are specific for cardiac glycosides. This inference is supported by the observation that both group A and B mutants show reduced binding of [3H]ouabain. In group A mutants, a part of the Na+/K+-ATPase activity is highly resistant to inhibition by ouabain, indicating that the genetic lesion in these mutants directly affects Na+/K+-ATPase. In contrast, the Na+/K+-ATPase from the group B mutants showed similar resistance towards ouabain and SC4453 as observed for the parental HeLa cells, indicating that these mutants are affected in a cellular component, other than Na+/K+-ATPase, which is involved in the interaction of cardiac glycosides with the cells. The lack of cross-resistance of the group A mutants to SC4453 and normal sensitivity of their Na+/K+-ATPase to this compound provides strong evidence that the mechanism of interaction of SC4453 with Na+/K+-ATPase differs from that of other cardiac glycosides.  相似文献   

20.
The restriction endonuclease Alu I induces chromosomal aberrations and mutations in the hypoxanthine phosphoribosyltransferase (HPRT) locus as measured by 6-thioguanine resistance (TGr) in V79 hamster cells. Alu I does not induce mutations in the Na+/K+ ATPase locus as measured by ouabain resistance (OUAr). The data are interpreted to mean that most if not all Alu I-induced TGr mutations represent chromosomal aberrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号