共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic Sm and Sm-like proteins associate with RNA to form the core domain of ribonucleoprotein particles involved in pre-mRNA splicing and other processes. Recently, putative Sm proteins of unknown function have been identified in ARCHAEA: We show by immunoprecipitation experiments that the two Sm proteins present in Archaeoglobus fulgidus (AF-Sm1 and AF-Sm2) associate with RNase P RNA in vivo, suggesting a role in tRNA processing. The AF-Sm1 protein also interacts specifically with oligouridylate in vitro. We have solved the crystal structures of this protein and a complex with RNA. AF-Sm1 forms a seven-membered ring, with the RNA interacting inside the central cavity on one face of the doughnut-shaped complex. The bases are bound via stacking and specific hydrogen bonding contacts in pockets lined by residues highly conserved in archaeal and eukaryotic Sm proteins, while the phosphates remain solvent accessible. A comparison with the structures of human Sm protein dimers reveals closely related monomer folds and intersubunit contacts, indicating that the architecture of the Sm core domain and RNA binding have been conserved during evolution. 相似文献
2.
Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. 总被引:19,自引:0,他引:19
J L Sussman S R Holbrook R W Warrant G M Church S H Kim 《Journal of molecular biology》1978,123(4):607-630
3.
Piccirilli JA Koldobskaya Y 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1580):2918-2928
All models of the RNA world era invoke the presence of ribozymes that can catalyse RNA polymerization. The class I ligase ribozyme selected in vitro 15 years ago from a pool of random RNA sequences catalyses formation of a 3',5'-phosphodiester linkage analogous to a single step of RNA polymerization. Recently, the three-dimensional structure of the ligase was solved in complex with U1A RNA-binding protein and independently in complex with an antibody fragment. The RNA adopts a tripod arrangement and appears to use a two-metal ion mechanism similar to protein polymerases. Here, we discuss structural implications for engineering a true polymerase ribozyme and describe the use of the antibody framework both as a portable chaperone for crystallization of other RNAs and as a platform for exploring steps in evolution from the RNA world to the RNA-protein world. 相似文献
4.
E-64, 1-(L-trans-epoxysuccinylleucylamino)-4-guanidinobutane, is a potent and highly selective irreversible inhibitor of cysteine proteases. The crystal structure of a complex of actinidin and E-64 has been determined at 1.86-A resolution by using the difference Fourier method and refined to an R-factor of 14.5%. The electron density map clearly shows that the C2 atom of the E-64 epoxide ring is covalently bonded to the S atom of the active-site cysteine 25. The charged carboxyl group of E-64 forms four H-bonds with the protein and thus may play an important role in favorably positioning the inhibitor molecule for nucleophilic attack by the active-site thiolate anion. The interaction features between E-64 and actinidin are very similar to those seen in the papain-E-64 complex; however, the amino-4-guanidinobutane group orients differently. The crystals of the actinidin-E-64 complex diffracted much better than the papain-E-64 complex, and consequently the present study provides more precise geometrical information on the binding of the inhibitor. Moreover, this study provides yet another confirmation that the binding of E-64 is at the S subsites and not at the S' subsites as has been previously proposed. The original actinidin structure has been revised using the new cDNA sequence information. 相似文献
5.
Mammalian single-stranded DNA binding proteins and heterogeneous nuclear RNA proteins have common antigenic determinants. 总被引:4,自引:4,他引:4 下载免费PDF全文
Antibodies were raised in rabbit against a pure subset of calf thymus single-stranded DNA binding proteins (ssDBPs) and purified by affinity chromatography on antigen-Sepharose. In Western blot experiments these antibodies were shown to react to the same extent with the whole family of bovine ssDBPs, as well as with ssDBPs from HeLa cells. When used to stain total cell extracts from both calf thymus and HeLa cells the antibodies reacted only with bands corresponding to the ssDBPs and with a set of bands of higher molecular weight, whose electrophoretic pattern matched that of the 40S hnRNP core proteins. In effect we observed that purified 40S hnRNP core proteins from HeLa cells were strongly reactive with the antibodies. Moreover after partial tryptic digestion HeLa cells ssDBPs and hnRNPs produced immunoreactive fragments of the same molecular weight and isoelectric point. Extensive structural homologies can thus be evidenced between these two classes of proteins, which share the property of selective binding to single-stranded nucleic acids. 相似文献
6.
Y Zhao D Jeruzalmi I Moarefi L Leighton R Lasken J Kuriyan 《Structure (London, England : 1993)》1999,7(10):1189-1199
BACKGROUND: Members of the Pol II family of DNA polymerases are responsible for chromosomal replication in eukaryotes, and carry out highly processive DNA replication when attached to ring-shaped processivity clamps. The sequences of Pol II polymerases are distinct from those of members of the well-studied Pol I family of DNA polymerases. The DNA polymerase from the archaebacterium Desulfurococcus strain Tok (D. Tok Pol) is a member of the Pol II family that retains catalytic activity at elevated temperatures. RESULTS: The crystal structure of D. Tok Pol has been determined at 2.4 A resolution. The architecture of this Pol II type DNA polymerase resembles that of the DNA polymerase from the bacteriophage RB69, with which it shares less than approximately 20% sequence identity. As in RB69, the central catalytic region of the DNA polymerase is located within the 'palm' subdomain and is strikingly similar in structure to the corresponding regions of Pol I type DNA polymerases. The structural scaffold that surrounds the catalytic core in D. Tok Pol is unrelated in structure to that of Pol I type polymerases. The 3'-5' proofreading exonuclease domain of D. Tok Pol resembles the corresponding domains of RB69 Pol and Pol I type DNA polymerases. The exonuclease domain in D. Tok Pol is located in the same position relative to the polymerase domain as seen in RB69, and on the opposite side of the palm subdomain compared to its location in Pol I type polymerases. The N-terminal domain of D. Tok Pol has structural similarity to RNA-binding domains. Sequence alignments suggest that this domain is conserved in the eukaryotic DNA polymerases delta and epsilon. CONCLUSIONS: The structure of D. Tok Pol confirms that the modes of binding of the template and extrusion of newly synthesized duplex DNA are likely to be similar in both Pol II and Pol I type DNA polymerases. However, the mechanism by which the newly synthesized product transits in and out of the proofreading exonuclease domain has to be quite different. The discovery of a domain that seems to be an RNA-binding module raises the possibility that Pol II family members interact with RNA. 相似文献
7.
Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. 总被引:18,自引:0,他引:18
The structural features of yeast phenylalanine transfer RNA are analyzed and documented in detail, based on atomic co-ordinates obtained from an extensive crystallographic refinement of the crystal structure of the molecule at 2.7 Å resolution (see preceding paper). We describe here: the relative orientation and the helicity of the base-paired stems; more definitive assignments of tertiary hydrogen bonds involving bases, riboses and phosphates; binding sites for magnesium hydrates, spermine and water; iriter-molecular contacts and base-stacking; flexibility of the molecule; conformational analysis of nucleotides in the structure. Among the more noteworthy features are a considerable irregularity in the helicity of the base-paired stems, a greater flexibility in the anticodon and aminoacyl acceptor arms, and a “coupling” among several conformational angles. The functional implications of these structural features are also discussed. 相似文献
8.
9.
The Sm proteins are conserved in all three domains of life and are always associated with U-rich RNA sequences. Their proposed function is to mediate RNA-RNA interactions. We present here the crystal structures of Pyrococcus abyssi Sm protein (PA-Sm1) and its complex with a uridine heptamer. The overall structure of the protein complex, a heptameric ring with a central cavity, is similar to that proposed for the eukaryotic Sm core complex and found for other archaeal Sm proteins. RNA molecules bind to the protein at two different sites. They interact specifically inside the ring with three highly conserved residues, defining the uridine-binding pocket. In addition, nucleotides also interact on the surface formed by the N-terminal alpha-helix as well as a conserved aromatic residue in beta-strand 2 of the PA-Sm1 protein. The mutation of this conserved aromatic residue shows the importance of this second site for the discrimination between RNA sequences. Given the high structural homology between archaeal and eukaryotic Sm proteins, the PA-Sm1.RNA complex provides a model for how the small nuclear RNA contacts the Sm proteins in the Sm core. In addition, it suggests how Sm proteins might exert their function as modulators of RNA-RNA interactions. 相似文献
10.
Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA 总被引:13,自引:0,他引:13
Sarafianos SG Das K Tantillo C Clark AD Ding J Whitcomb JM Boyer PL Hughes SH Arnold E 《The EMBO journal》2001,20(6):1449-1461
11.
Seiji N. Sugiman-Marangos John K. Peel Yoni M. Weiss Rodolfo Ghirlando Murray S. Junop 《Nucleic acids research》2013,41(21):9934-9944
The ability of Deinococcus radiodurans to recover from extensive DNA damage is due in part to its ability to efficiently repair its genome, even following severe fragmentation by hundreds of double-strand breaks. The single-strand annealing pathway plays an important role early during the recovery process, making use of a protein, DdrB, shown to greatly stimulate ssDNA annealing. Here, we report the structure of DdrB bound to ssDNA to 2.3 Å. Pentameric DdrB was found to assemble into higher-order structures that coat ssDNA. To gain further mechanistic insight into the protein''s function, a number of point mutants were generated altering both DNA binding and higher order oligomerization. This work not only identifies higher-order DdrB associations but also suggests the presence of an extended DNA binding surface running along the ‘top’ surface of a DdrB pentamer and continuing down between two individual subunits of the ring structure. Together this work sheds new insight into possible mechanisms for DdrB function in which higher-order assemblies of DdrB pentamers assist in the pairing of complementary ssDNA using an extended DNA binding surface. 相似文献
12.
13.
14.
L Chen R Durley B J Poliks K Hamada Z Chen F S Mathews V L Davidson Y Satow E Huizinga F M Vellieux 《Biochemistry》1992,31(21):4959-4964
The crystal structure of the complex between the quinoprotein methylamine dehydrogenase (MADH) and the type I blue copper protein amicyanin, both from Paracoccus denitrificans, has been determined at 2.5-A resolution using molecular replacement. The search model was MADH from Thiobacillus versutus. The amicyanin could be located in an averaged electron density difference map and the model improved by refinement and model building procedures. Nine beta-strands are observed within the amicyanin molecule. The copper atom is located between three antiparallel strands and is about 2.5 A below the protein surface. The major intermolecular interactions occur between amicyanin and the light subunit of MADH where the interface is largely hydrophobic. The copper atom of amicyanin and the redox cofactor of MADH are about 9.4 A apart. One of the copper ligands, His 95, lies between the two redox centers and may facilitate electron transfer between them. 相似文献
15.
B L Sibanda S E Critchlow J Begun X Y Pei S P Jackson T L Blundell L Pellegrini 《Nature structural biology》2001,8(12):1015-1019
A complex of two proteins, Xrcc4 and DNA ligase IV, plays a fundamental role in DNA non-homologous end joining (NHEJ), a cellular function required for double-strand break repair and V(D)J recombination. Here we report the crystal structure of human Xrcc4 bound to a polypeptide that corresponds to the DNA ligase IV sequence linking its two BRCA1 C-terminal (BRCT) domains. In the complex, a single ligase chain binds asymmetrically to an Xrcc4 dimer. The helical tails of Xrcc4 undergo a substantial conformational change relative to the uncomplexed protein, forming a coiled coil that unwinds upon ligase binding, leading to a flat interaction surface. A buried network of charged hydrogen bonds surrounded by extensive hydrophobic contacts explains the observed tightness of the interaction. The strong conservation of residues at the interface between the two proteins provides evidence that the observed mode of interaction has been maintained in NHEJ throughout evolution. 相似文献
16.
Molecular structure of RNA polymerase and its complex with DNA 总被引:1,自引:0,他引:1
17.
Both myosin mRNA (26 S) and globin mRNA (9 S) have been bound to activated Sepharose 4B. The affinity of initiation factors derived from native 40 S ribosomal subunits from embryonic chick muscle for these messengers has been determined. Although both messengers bind the major components of the muscle factor preparation with the same affinity, some differences are noted in the minor components. There is an enrichment of components which bind myosin mRNA with a high affinity when the 15–18 S initiation factor complex is prepared from initiating 40 S ribosomal subunits found on myosin synthesizing polysomes rather than from total cellular factor preparations. The proteins which have a high binding affinity to myosin mRNA also have a discriminating effect when added to a wheat germ system containing myosin and globin mRNA. This is demonstrated by the fact that the synthesis of myosin heavy chain is specifically stimulated and the number of ribosomes found on myosin mRNA increase five to seven-fold; whereas neither the synthesis of globin nor the number of ribosomes associated with globin mRNA is increased. The components of an impure reticulocyte eukaryotic initiation factor 3 prepared in a similar manner as the muscle factor, do not bind myosin mRNA with the same high affinity, and these fractions separated on the myosin mRNA affinity column did not show a discriminatory effect. These results suggest that specific components of muscle 15–18 S initiation factor preparations have a higher binding affinity for myosin mRNA than globin mRNA and that these proteins may be those factors previously reported to be present which discriminate between mRNAs. 相似文献
18.
19.
Antibodies to DNA are characteristic of the autoimmune disease systemic lupus erythematosus (SLE) and they also serve as models for the study of protein-DNA recognition. Anti-DNA antibodies often play an important role in disease pathogenesis by mediating kidney damage via antibody-DNA immune complex formation. The structural underpinnings of anti-DNA antibody pathogenicity and antibody-DNA recognition, however, are not well understood, due in part to the lack of direct, experimental three-dimensional structural information on antibody-DNA complexes. To address these issues for anti-single-stranded DNA antibodies, we have determined the 2.1 A crystal structure of a recombinant Fab (DNA-1) in complex with dT5. DNA-1 was previously isolated from a bacteriophage Fab display library from the immunoglobulin repertoire of an SLE-prone mouse. The structure shows that DNA-1 binds oligo(dT) primarily by sandwiching thymine bases between Tyr side-chains, which allows the bases to make sequence-specific hydrogen bonds. The critical stacking Tyr residues are L32, L49, H100, and H100A, while His L91 and Asn L50 contribute hydrogen bonds. Comparison of the DNA-1 structure to other anti-nucleic acid Fab structures reveals a common ssDNA recognition module consisting of Tyr L32, a hydrogen bonding residue at position L91, and an aromatic side-chain from the tip of complementarity determining region H3. The structure also provides a framework for interpreting previously determined thermodynamics data, and this analysis suggests that hydrophobic desolvation might underlie the observed negative enthalpy of binding. Finally, Arg side-chains from complementarity determining region H3 appear to play a novel role in DNA-1. Rather than forming ion pairs with dT5, Arg contributes to oligo(dT) recognition by helping to maintain the structural integrity of the combining site. This result is significant because antibody pathogenicity is thought to be correlated to the Arg content of anti-DNA antibody hypervariable loops. 相似文献
20.
DNA primase isolated from the yeast DNA primase-DNA polymerase complex. Immunoaffinity purification and analysis of RNA primer synthesis 总被引:2,自引:0,他引:2
We have utilized immunoaffinity chromatography as a means of efficiently isolating a stable yeast DNA primase from the DNA primase-DNA polymerase complex, allowing identification of the polypeptides associated with this DNA primase activity and comparison of its enzymatic properties with those of the larger protein complex. A mouse monoclonal antibody specifically recognizing the DNA polymerase subunit was used to purify the complex. Stable DNA primase was subsequently separated from the complex in high yield. The highly purified protein fraction which bound to the DNA polymerase antibody column consisted of polypeptides with apparent molecular masses of 180, 86, 70, 58, 49, and 47 kDa. DNA primase activity eluted with a fraction containing only the 58-, 49-, and 47-kDa polypeptides. Partial chemical cleavage analysis of these three proteins demonstrated that the 49- and 47-kDa polypeptides are structurally related while the 58-kDa protein is unrelated to the other two. A DNA primase inhibitory monoclonal antibody was able to inhibit the activity of the purified DNA primase as well as the activity of the enzyme in the larger complex. In immunoprecipitation experiments, all three polypeptides were found in the immune complex. Thus, these three polypeptides are sufficient for DNA primase activity. In reactions using ribonucleotide substrates and natural as well as synthetic DNA templates, the purified DNA primase exhibited the same precise synthesis of unit length oligomers as did the larger protein complex and was able to extend these RNA oligomers by one additional unit length. An examination of the effects of deoxynucleotides on these DNA primase-catalyzed reactions revealed that the yeast DNA primase is an RNA-polymerizing enzyme and lacks significant DNA-polymerizing activity under the conditions tested. 相似文献