首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sm and Sm-like (Lsm) proteins are core components of the ribonucleoprotein complexes essential to key nucleic acid processing events within the eukaryotic cell. They assemble as polyprotein ring scaffolds that have the capacity to bind RNA substrates and other necessary protein factors. The crystal structure of yeast Lsm3 reveals a new organisation of the L/Sm β-propeller ring, containing eight protein subunits. Little distortion of the characteristic L/Sm fold is required to form the octamer, indicating that the eukaryotic Lsm ring may be more pliable than previously thought. The homomeric Lsm3 octamer is found to successfully recruit Lsm6, Lsm2 and Lsm5 directly from yeast lysate. Our crystal structure shows the C-terminal tail of each Lsm3 subunit to be engaged in connections across rings through specific β-sheet interactions with elongated loops protruding from neighbouring octamers. While these loops are of distinct length for each Lsm protein and generally comprise low-complexity polar sequences, several Lsm C-termini comprise hydrophobic sequences suitable for β-sheet interactions. The Lsm3 structure thus provides evidence for protein-protein interactions likely utilised by the highly variable Lsm loops and termini in the recruitment of RNA processing factors to mixed Lsm ring scaffolds. Our coordinates also provide updated homology models for the active Lsm[1-7] and Lsm[2-8] heptameric rings.  相似文献   

2.
A group of seven Sm proteins forms a complex that binds to several RNAs in metazoans. All Sm proteins contain a sequence signature, the Sm domain, also found in two yeast Sm-like proteins associated with the U6 snRNA. We have performed database searches revealing the presence of 16 proteins carrying an Sm domain in the yeast genome. Analysis of this protein family confirmed that seven of its members, encoded by essential genes, are homologues of metazoan Sm proteins. Immunoprecipitation revealed that an evolutionarily related subgroup of seven Sm-like proteins is directly associated with the nuclear U6 and pre-RNase P RNAs. The corresponding genes are essential or required for normal vegetative growth. These proteins appear functionally important to stabilize U6 snRNA. The two last yeast Sm-like proteins were not found associated with RNA, and neither was essential for vegetative growth. To investigate whether U6-associated Sm-like protein function is widespread, we cloned several cDNAs encoding homologous human proteins. Two representative human proteins were shown to associate with U6 snRNA-containing complexes. We also identified archaeal proteins related to Sm and Sm-like proteins. Our results demonstrate that Sm and Sm-like proteins assemble in at least two functionally conserved complexes of deep evolutionary origin.  相似文献   

3.
The Escherichia coli host factor I, Hfq, binds to many small regulatory RNAs and is required for OxyS RNA repression of fhlA and rpoS mRNA translation. Here we report that Hfq is a bacterial homolog of the Sm and Sm-like proteins integral to RNA processing and mRNA degradation complexes in eukaryotic cells. Hfq exhibits the hallmark features of Sm and Sm-like proteins: the Sm1 sequence motif, a multisubunit ring structure (in this case a homomeric hexamer), and preferential binding to polyU. We also show that Hfq increases the OxyS RNA interaction with its target messages and propose that the enhancement of RNA-RNA pairing may be a general function of Hfq, Sm, and Sm-like proteins.  相似文献   

4.
Wu D  Jiang S  Bowler MW  Song H 《PloS one》2012,7(5):e36768
Sm-like (Lsm) proteins are ubiquitous and function in many aspects of RNA metabolism, including pre-mRNA splicing, nuclear RNA processing, mRNA decay and miRNA biogenesis. Here three crystal structures including Lsm3, Lsm4 and Lsm5/6/7 sub-complex from S. pombe are reported. These structures show that all the five individual Lsm subunits share a conserved Sm fold, and Lsm3, Lsm4, and Lsm5/6/7 form a heptamer, a trimer and a hexamer within the crystal lattice, respectively. Analytical ultracentrifugation indicates that Lsm3 and Lsm5/6/7 sub-complex exist in solution as a heptamer and a hexamer, respectively while Lsm4 undergoes a dynamic equilibrium between monomer and trimer in solution. RNA binding assays show that Lsm2/3 and Lsm5/6/7 bind to oligo(U) whereas no RNA binding is observed for Lsm3 and Lsm4. Analysis of the inter-subunit interactions in Lsm5/6/7 reveals the organization order among Lsm5, Lsm6 and Lsm7.  相似文献   

5.
A Sm-like protein complex that participates in mRNA degradation   总被引:22,自引:0,他引:22  
In eukaryotes, seven Sm proteins bind to the U1, U2, U4 and U5 spliceosomal snRNAs while seven Smlike proteins (Lsm2p-Lsm8p) are associated with U6 snRNA. Another yeast Sm-like protein, Lsm1p, does not interact with U6 snRNA. Surprisingly, using the tandem affinity purification (TAP) method, we identified Lsm1p among the subunits associated with Lsm3p. Coprecipitation experiments demonstrated that Lsm1p, together with Lsm2p-Lsm7p, forms a new seven-subunit complex. We purified the two related Sm-like protein complexes and identified the proteins recovered in the purified preparations by mass spectrometry. This confirmed the association of the Lsm2p-Lsm8p complex with U6 snRNA. In contrast, the Lsm1p-Lsm7p complex is associated with Pat1p and Xrn1p exoribonuclease, suggesting a role in mRNA degradation. Deletions of LSM1, 6, 7 and PAT1 genes increased the half-life of reporter mRNAs. Interestingly, accumulating mRNAs were capped, suggesting a block in mRNA decay at the decapping step. These results indicate the involvement of a new conserved Sm-like protein complex and a new factor, Pat1p, in mRNA degradation and suggest a physical connection between decapping and exonuclease trimming.  相似文献   

6.
Albrecht M  Lengauer T 《FEBS letters》2004,569(1-3):18-26
Sm and Sm-like proteins of the Lsm (like Sm) domain family are generally involved in essential RNA-processing tasks. While recent research has focused on the function and structure of small family members, little is known about Lsm domain proteins carrying additional domains. Using an integrative bioinformatics approach, we discovered five novel groups of Lsm domain proteins (Lsm12-16) with long C-terminal tails and investigated their functions. All of them are evolutionarily conserved in eukaryotes with an N-terminal Lsm domain to bind nucleic acids followed by as yet uncharacterized C-terminal domains and sequence motifs. Based on known yeast interaction partners, Lsm12-16 may play important roles in RNA metabolism. Particularly, Lsm12 is possibly involved in mRNA degradation or tRNA splicing, and Lsm13-16 in the regulation of the mitotic G2/M phase. Lsm16 proteins have an additional C-terminal YjeF_N domain of as yet unknown function. The identification of an additional methyltransferase domain at the C-terminus of one of the Lsm12 proteins also led to the recognition of three new groups of methyltransferases, presumably dependent on S-adenosyl-l-methionine. Further computational analyses revealed that some methyltransferases contain putative RNA-binding helix-turn-helix domains and zinc fingers.  相似文献   

7.
Sm-like (Lsm) proteins function in a variety of RNA-processing events. In yeast, the Lsm2-Lsm8 complex binds and stabilizes the spliceosomal U6 snRNA, whereas the Lsm1-Lsm7 complex functions in mRNA decay. Here we report that a third Lsm complex, consisting of Lsm2-Lsm7 proteins, associates with snR5, a box H/ACA snoRNA that functions to guide site-specific pseudouridylation of rRNA. Experiments in which the binding of Lsm proteins to snR5 was reconstituted in vitro reveal that the 3' end of snR5 is critical for Lsm protein recognition. Glycerol gradient sedimentation and sequential immunoprecipitation experiments suggest that the Lsm protein-snR5 complex is partly distinct from the complex formed by snR5 RNA with the box H/ACA proteins Gar1p and Nhp2p. Consistent with a separate complex, Lsm proteins are not required for the function of snR5 in pseudouridylation of rRNA. We demonstrate that in addition to their known nuclear and cytoplasmic locations, Lsm proteins are present in nucleoli. Taken together with previous findings that a small fraction of pre-RNase P RNA associates with Lsm2-Lsm7, our experiments suggest that an Lsm2-Lsm7 protein complex resides in nucleoli, contributing to the biogenesis or function of specific snoRNAs.  相似文献   

8.
A E Mayes  L Verdone  P Legrain    J D Beggs 《The EMBO journal》1999,18(15):4321-4331
Seven Sm proteins associate with U1, U2, U4 and U5 spliceosomal snRNAs and influence snRNP biogenesis. Here we describe a novel set of Sm-like (Lsm) proteins in Saccharomyces cerevisiae that interact with each other and with U6 snRNA. Seven Lsm proteins co-immunoprecipitate with the previously characterized Lsm4p (Uss1p) and interact with each other in two-hybrid analyses. Free U6 and U4/U6 duplexed RNAs co-immunoprecipitate with seven of the Lsm proteins that are essential for the stable accumulation of U6 snRNA. Analyses of U4/U6 di-snRNPs and U4/U6.U5 tri-snRNPs in Lsm-depleted strains suggest that Lsm proteins may play a role in facilitating conformational rearrangements of the U6 snRNP in the association-dissociation cycle of spliceosome complexes. Thus, Lsm proteins form a complex that differs from the canonical Sm complex in its RNA association(s) and function. We discuss the possible existence and functions of alternative Lsm complexes, including the likelihood that they are involved in processes other than pre-mRNA splicing.  相似文献   

9.
Over the last five years Sm-like (Lsm) proteins have emerged as important players in many aspects of RNA metabolism, including splicing, nuclear RNA processing and messenger RNA decay. However, their precise function in these pathways remains somewhat obscure. In contrast, the role of the bacterial Lsm protein Hfq, which bears striking similarities in both structure and function to Lsm proteins, is much better characterized. In this perspective, we have highlighted several functions that Hfq shares with Lsm proteins and put forward hypotheses based on parallels between the two that might further the understanding of Lsm function.  相似文献   

10.
RNA interference of Sm proteins in Trypanosoma brucei demonstrated that the stability of the small nuclear RNAs (U1, U2, U4, U5) and the spliced leader RNA, but not U6 RNA, were affected upon Sm depletion (Mandelboim, M., Barth, S., Biton, M., Liang, X. H., and Michaeli, S. (2003) J. Biol. Chem. 278, 51469-51478), suggesting that Lsm proteins that bind and stabilize U6 RNA in other eukaryotes should exist in trypanosomes. In this study, we identified seven Lsm proteins (Lsm2p to Lsm8p) and examined the function of Lsm3p and Lsm8p by RNA interference silencing. Both Lsm proteins were found to be essential for U6 stability and mRNA decay. Silencing was lethal, and cis- and trans-splicing were inhibited. Importantly, silencing also affected the level of U4.U6 and the U4.U6/U5 tri-small nuclear ribonucleoprotein complexes. The presence of Lsm proteins in trypanosomes that diverged early in the eukaryotic lineage suggests that these proteins are highly conserved in both structure and function among eukaryotes. Interestingly, however, Lsm1p that is specific to the mRNA decay complex was not identified in the genome data base of any kinetoplastidae, and the Lsm8p that in other eukaryotes exclusively functions in U6 stability was found to function in trypanosomes also in mRNA decay. These data therefore suggest that in trypanosomes only a single Lsm complex may exist.  相似文献   

11.
Proteins of the Lsm family, including eukaryotic Sm proteins and bacterial Hfq, are key players in RNA metabolism. Little is known about the archaeal homologues of these proteins. Therefore, we characterized the Lsm protein from the haloarchaeon Haloferax volcanii using in vitro and in vivo approaches. H. volcanii encodes a single Lsm protein, which belongs to the Lsm1 subfamily. The lsm gene is co-transcribed and overlaps with the gene for the ribosomal protein L37e. Northern blot analysis shows that the lsm gene is differentially transcribed. The Lsm protein forms homoheptameric complexes and has a copy number of 4000 molecules/cell. In vitro analyses using electrophoretic mobility shift assays and ultrasoft mass spectrometry (laser-induced liquid bead ion desorption) showed a complex formation of the recombinant Lsm protein with oligo(U)-RNA, tRNAs, and an small RNA. Co-immunoprecipitation with a FLAG-tagged Lsm protein produced in vivo confirmed that the protein binds to small RNAs. Furthermore, the co-immunoprecipitation revealed several protein interaction partners, suggesting its involvement in different cellular pathways. The deletion of the lsm gene is viable, resulting in a pleiotropic phenotype, indicating that the haloarchaeal Lsm is involved in many cellular processes, which is in congruence with the number of protein interaction partners.  相似文献   

12.
The 3′ cleavage generating non-polyadenylated animal histone mRNAs depends on the base pairing between U7 snRNA and a conserved histone pre-mRNA downstream element. This interaction is enhanced by a 100 kDa zinc finger protein (ZFP100) that forms a bridge between an RNA hairpin element upstream of the processing site and the U7 small nuclear ribonucleoprotein (snRNP). The N-terminus of Lsm11, a U7-specific Sm-like protein, was shown to be crucial for histone RNA processing and to bind ZFP100. By further analysing these two functions of Lsm11, we find that Lsm11 and ZFP100 can undergo two interactions, i.e. between the Lsm11 N-terminus and the zinc finger repeats of ZFP100, and between the N-terminus of ZFP100 and the Sm domain of Lsm11, respectively. Both interactions are not specific for the two proteins in vitro, but the second interaction is sufficient for a specific recognition of the U7 snRNP by ZFP100 in cell extracts. Furthermore, clustered point mutations in three phylogenetically conserved regions of the Lsm11 N-terminus impair or abolish histone RNA processing. As these mutations have no effect on the two interactions with ZFP100, these protein regions must play other roles in histone RNA processing, e.g. by contacting the pre-mRNA or additional processing factors.  相似文献   

13.
Pannone BK  Kim SD  Noe DA  Wolin SL 《Genetics》2001,158(1):187-196
The U6 small nuclear ribonucleoprotein is a critical component of the eukaryotic spliceosome. The first protein that binds the U6 snRNA is the La protein, an abundant phosphoprotein that binds the 3' end of many nascent small RNAs. A complex of seven Sm-like proteins, Lsm2-Lsm8, also binds the 3' end of U6 snRNA. A mutation within the Sm motif of Lsm8p causes Saccharomyces cerevisiae cells to require the La protein Lhp1p to stabilize nascent U6 snRNA. Here we describe functional interactions between Lhp1p, the Lsm proteins, and U6 snRNA. LSM2 and LSM4, but not other LSM genes, act as allele-specific, low-copy suppressors of mutations in Lsm8p. Overexpression of LSM2 in the lsm8 mutant strain increases the levels of both Lsm8p and U6 snRNPs. In the presence of extra U6 snRNA genes, LSM8 becomes dispensable for growth, suggesting that the only essential function of LSM8 is in U6 RNA biogenesis or function. Furthermore, deletions of LSM5, LSM6, or LSM7 cause LHP1 to become required for growth. Our experiments are consistent with a model in which Lsm2p and Lsm4p contact Lsm8p in the Lsm2-Lsm8 ring and suggest that Lhp1p acts redundantly with the entire Lsm2-Lsm8 complex to stabilize nascent U6 snRNA.  相似文献   

14.
The spinal muscular atrophy disease gene product (SMN) is crucial for small nuclear ribonuclear protein (snRNP) biogenesis in the cytoplasm and plays a role in pre-mRNA splicing in the nucleus. SMN oligomers interact avidly with the snRNP core proteins SmB, -D1, and -D3. We have delineated the specific sequences in the Sm proteins that mediate their interaction with SMN. We show that unique carboxyl-terminal arginine- and glycine-rich domains comprising the last 29 amino acids of SmD1 and the last 32 amino acids of SmD3 are necessary and sufficient for SMN binding. Interestingly, SMN also interacts with at least two of the U6-associated Sm-like (Lsm) proteins, Lsm4 and Lsm6. Furthermore, the carboxyl-terminal arginine- and glycine-rich domain of Lsm4 directly interacts with SMN. This suggests that SMN also functions in the assembly of the U6 snRNP in the nucleus and in the assembly of other Lsm-containing complexes. These findings demonstrate that arginine- and glycine-rich domains are necessary and sufficient for SMN interaction, and they expand further the range of targets of the SMN protein.  相似文献   

15.
The Sm/Lsm proteins associate with small nuclear RNA to form the core of small nuclear ribonucleoproteins, required for processes as diverse as pre-mRNA splicing, mRNA degradation and telomere formation. The Lsm proteins from archaea are likely to represent the ancestral Sm/Lsm domain. Here, we present the crystal structure of the Lsm alpha protein from the thermophilic archaeon Methanobacterium thermoautotrophicum at 2.0 A resolution. The Lsm alpha protein crystallizes as a heptameric ring comprised of seven identical subunits interacting via beta-strand pairing and hydrophobic interactions. The heptamer can be viewed as a propeller-like structure in which each blade consists of a seven-stranded antiparallel beta-sheet formed from neighbouring subunits. There are seven slots on the inner surface of the heptamer ring, each of which is lined by Asp, Asn and Arg residues that are highly conserved in the Sm/Lsm sequences. These conserved slots are likely to form the RNA-binding site. In archaea, the gene encoding Lsm alpha is located next to the L37e ribosomal protein gene in a putative operon, suggesting a role for the Lsm alpha complex in ribosome function or biogenesis.  相似文献   

16.
The Sm and Sm-like proteins are widely distributed among bacteria, archaea and eukarya. They participate in many processes related to RNA-processing and regulation of gene expression. While the function of the bacterial Lsm protein Hfq and eukaryotic Sm/Lsm proteins is rather well studied, the role of Lsm proteins in Archaea is investigated poorly. In this work, the RNA-binding ability of an archaeal Hfq-like protein from Methanococcus jannaschii has been studied by X-ray crystallography, anisotropy fluorescence and surface plasmon resonance. It has been found that MjaHfq preserves the proximal RNA-binding site that usually recognizes uridine-rich sequences. Distal adenine-binding and lateral RNA-binding sites show considerable structural changes as compared to bacterial Hfq. MjaHfq did not bind mononucleotides at these sites and would not recognize single-stranded RNA as its bacterial homologues. Nevertheless, MjaHfq possesses affinity to poly(A) RNA that seems to bind at the unstructured positive-charged N-terminal tail of the protein.  相似文献   

17.
Retrotransposition of the budding yeast long terminal repeat retrotransposon Ty3 is activated during mating. In this study, proteins that associate with Ty3 Gag3 capsid protein during virus-like particle (VLP) assembly were identified by mass spectrometry and screened for roles in mating-stimulated retrotransposition. Components of RNA processing bodies including DEAD box helicases Dhh1/DDX6 and Ded1/DDX3, Sm-like protein Lsm1, decapping protein Dcp2, and 5’ to 3’ exonuclease Xrn1 were among the proteins identified. These proteins associated with Ty3 proteins and RNA, and were required for formation of Ty3 VLP retrosome assembly factories and for retrotransposition. Specifically, Dhh1/DDX6 was required for normal levels of Ty3 genomic RNA, and Lsm1 and Xrn1 were required for association of Ty3 protein and RNA into retrosomes. This role for components of RNA processing bodies in promoting VLP assembly and retrotransposition during mating in a yeast that lacks RNA interference, contrasts with roles proposed for orthologous components in animal germ cell ribonucleoprotein granules in turnover and epigenetic suppression of retrotransposon RNAs.  相似文献   

18.
U7 snRNPs were isolated from HeLa cells by biochemical fractionation, followed by affinity purification with a biotinylated oligonucleotide complementary to U7 snRNA. Purified U7 snRNPs lack the Sm proteins D1 and D2, but contain additional polypeptides of 14, 50 and 70 kDa. Microsequencing identified the 14 kDa polypeptide as a new Sm-like protein related to Sm D1 and D3. Like U7 snRNA, this protein, named Lsm10, is enriched in Cajal bodies of the cell nucleus. Its incorporation into U7 snRNPs is largely dictated by the special Sm binding site of U7 snRNA. This novel type of Sm complex, composed of both conventional Sm proteins and the Sm-like Lsm10, is most likely to be important for U7 snRNP function and subcellular localization.  相似文献   

19.
Characterization of U6 snRNA-protein interactions   总被引:17,自引:10,他引:7       下载免费PDF全文
Through a combination of in vitro snRNP reconstitution, photocross-linking and immunoprecipitation techniques, we have investigated the interaction of proteins with the spliceosomal U6 snRNA in U6 snRNPs, U4/U6 di-snRNPs and U4/U6.U5 tri-snRNPs. Of the seven Lsm (Sm-like) proteins that associate specifically with this spliceosomal snRNA, three were shown to contact the RNA directly, and to maintain contact as the U6 RNA is incorporated into tri-snRNPs. In tri-snRNPs, the U5 snRNP protein Prp8 contacts position 54 of U6, which is in the conserved region that contributes to the formation of the catalytic core of the spliceosome. Other tri-snRNP-specific contacts were also detected, indicating the dynamic nature of protein interactions with this important snRNA. The uridine-rich extreme 3' end of U6 RNA was shown to be essential but not sufficient for the association of the Lsm proteins. Interestingly, the Lsm proteins associate efficiently with the 3' half of U6, which contains the 3' stem-loop and uridine-rich 3' end, suggesting that the Lsm and Sm proteins may recognize similar features in RNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号