首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
During human walking, plantar flexor activation in late stance helps to generate a stable and economical gait pattern. Because plantar flexor activation is highly mediated by proprioceptive feedback, the nervous system must modulate reflex pathways to meet the mechanical requirements of gait. The purpose of this study was to quantify ankle joint mechanical output of the plantar flexor stretch reflex response during a novel unexpected gait perturbation. We used a robotic ankle exoskeleton to mechanically amplify the ankle torque output resulting from soleus muscle activation. We recorded lower-body kinematics, ground reaction forces, and electromyography during steady-state walking and during randomly perturbed steps when the exoskeleton assistance was unexpectedly turned off. We also measured soleus Hoffmann- (H-) reflexes at late stance during the two conditions. Subjects reacted to the unexpectedly decreased exoskeleton assistance by greatly increasing soleus muscle activity about 60 ms after ankle angle deviated from the control condition (p<0.001). There were large differences in ankle kinematic and electromyography patterns for the perturbed and control steps, but the total ankle moment was almost identical for the two conditions (p=0.13). The ratio of soleus H-reflex amplitude to background electromyography was not significantly different between the two conditions (p=0.4). This is the first study to show that the nervous system chooses reflex responses during human walking such that invariant ankle joint moment patterns are maintained during perturbations. Our findings are particularly useful for the development of neuromusculoskeletal computer simulations of human walking that need to adjust reflex gains appropriately for biomechanical analyses.  相似文献   

2.
The purpose of this study was to investigate the relationships between the ankle joint angle and maximum isometric force of the toe flexor muscles. Toe flexor strength and electromyography activity of the foot muscles were measured in 12 healthy men at 6 different ankle joint angles with the knee joint at 90 deg in the sitting position. To measure the maximum isometric force of the toe flexor muscles, subjects exerted maximum force on a toe grip dynamometer while the activity levels of the intrinsic and extrinsic plantar muscles were measured. The relation between ankle joint angle and maximum isometric force of the toe flexor muscles was determined, and the isometric force exhibited a peak when the ankle joint was at 70–90 deg on average. From this optimal neutral position, the isometric force gradually decreased and reached its nadir in the plantar flexion position (i.e., 120 deg). The EMG activity of the abductor hallucis (intrinsic plantar muscle) and peroneus longus (extrinsic plantar muscle) did not differ at any ankle joint angles. The results of this study suggest that the force generation of toe flexor muscles is regulated at the ankle joint and that changes in the length-tension relations of the extrinsic plantar muscle could be a reason for the force-generating capacity at the metatarsophalangeal joint when the ankle joint angle is changed.  相似文献   

3.
Walking is a motor task requiring coordination of many muscles. Previous biomechanical studies, based primarily on analyses of the net ankle moment during stance, have concluded different functional roles for the plantar flexors. We hypothesize that some of the disparities in interpretation arise because of the effects of the uniarticular and biarticular muscles that comprise the plantar flexor group have not been separated. Furthermore, we believe that an accurate determination of muscle function requires quantification of the contributions of individual plantar flexor muscles to the energetics of individual body segments. In this study, we examined the individual contributions of the ankle plantar flexors (gastrocnemius (GAS); soleus (SOL)) to the body segment energetics using a musculoskeletal model and optimization framework to generate a forward dynamics simulation of normal walking at 1.5 m/s. At any instant in the gait cycle, the contribution of a muscle to support and forward progression was defined by its contribution to trunk vertical and horizontal acceleration, respectively, and its contribution to swing initiation by the mechanical energy it delivers to the leg in pre-swing (i.e., double-leg stance prior to toe-off). GAS and SOL were both found to provide trunk support during single-leg stance and pre-swing. In early single-leg stance, undergoing eccentric and isometric activity, they accelerate the trunk vertically but decelerate forward trunk progression. In mid single-leg stance, while isometric, GAS delivers energy to the leg while SOL decelerates it, and SOL delivers energy to the trunk while GAS decelerates it. In late single-leg stance through pre-swing, though GAS and SOL both undergo concentric activity and accelerate the trunk forward while decelerating the downward motion of the trunk (i.e., providing forward progression and support), they execute different energetic functions. The energy produced from SOL accelerates the trunk forward, whereas GAS delivers almost all its energy to accelerate the leg to initiate swing. Although GAS and SOL maintain or accelerate forward motion in mid single-leg stance through pre-swing, other muscles acting at the beginning of stance contribute comparably to forward progression. In summary, throughout single-leg stance both SOL and GAS provide vertical support, in mid single-leg stance SOL and GAS have opposite energetic effects on the leg and trunk to ensure support and forward progression of both the leg and trunk, and in pre-swing only GAS contributes to swing initiation.  相似文献   

4.
One of the purposes of footwear is to assist locomotion, but some footwear types seem to restrict natural foot motion, which may affect the contribution of ankle plantar flexor muscles to propulsion. This study examined the effects of different footwear conditions on the activity of ankle plantar flexors during walking. Ten healthy habitually shod individuals walked overground in shoes, barefoot and in flip-flops while fine-wire electromyography (EMG) activity was recorded from flexor hallucis longus (FHL), soleus (SOL), and medial and lateral gastrocnemius (MG and LG) muscles. EMG signals were peak-normalised and analysed in the stance phase using Statistical Parametric Mapping (SPM). We found highly individual EMG patterns. Although walking with shoes required higher muscle activity for propulsion than walking barefoot or with flip-flops in most participants, this did not result in statistically significant differences in EMG amplitude between footwear conditions in any muscle (p > 0.05). Time to peak activity showed the lowest coefficient of variation in shod walking (3.5, 7.0, 8.0 and 3.4 for FHL, SOL, MG and LG, respectively). Future studies should clarify the sources and consequences of individual EMG responses to different footwear.  相似文献   

5.
We developed a powered ankle-foot orthosis that uses artificial pneumatic muscles to produce active plantar flexor torque. The purpose of this study was to quantify the mechanical performance of the orthosis during human walking. Three subjects walked at a range of speeds wearing ankle-foot orthoses with either one or two artificial muscles working in parallel. The orthosis produced similar total peak plantar flexor torque and network across speeds independent of the number of muscles used. The orthosis generated approximately 57% of the peak ankle plantar flexor torque during stance and performed approximately 70% of the positive plantar flexor work done during normal walking. Artificial muscle bandwidth and force-length properties were the two primary factors limiting torque production. The lack of peak force and work differences between single and double muscle conditions can be explained by force-length properties. Subjects altered their ankle kinematics between conditions resulting in changes in artificial muscle length. In the double muscle condition greater plantar flexion yielded shorter artificial muscles lengths and decreased muscle forces. This finding emphasizes the importance of human testing in the design and development of robotic exoskeleton devices for assisting human movement. The results of this study outline the mechanical performance limitations of an ankle-foot orthosis powered by artificial pneumatic muscles. This orthosis could be valuable for gait rehabilitation and for studies investigating neuromechanical control of human walking.  相似文献   

6.
7.
Chronic experiments (12 weeks long) were carried out on two groups of pubertate-age Wistar rats. The sciatic nerve in one hindlimb was compressed, and complex analysis of the dynamics of functional reinnervation of the distal hindlimb muscles was performed. We used videorecording of images of the feet in the course of locomotion for estimation of the level of functional reinnervation of the toe extensors (the technique was modified in our laboratory) and a tensometric technique (measuring of the contraction force of the toe flexors and ankle extensors in the course of realization of the burrowing instinct by the animals). In the first group of animals (n = 21), we studied the dynamics of recovery of the force developed by the toe flexors and ankle extensors and of the functional sciatic index after sciatic nerve traumatization with no additional pharmacological influences. In the second group (n = 29), the same indices were analyzed, but after single injections of gamma-hydroxybutyrate (GHB) into animals before compression of the sciatic nerve and within early and late (3–4 and 14 weeks, respectively) terms after such intervention. Within the first week after compression, the smallest loss of activity was observed in the toe flexors, as compared with that in the toe and ankle extensors. Significant functional reinnervation of the ankle and toe extensors (to 52 and 87%, respectively) was observed on the 3rd to 7th weeks after the nerve injury. Functional reinnervation of the toe flexors was characterized by a relatively greater initial force of concentrations and more rapid recovery than those of the ankle and toe extensors. Practically complete recovery of the functions of the toe flexors was observed on the 10th week, while that of the ankle extensors was found on the 12th week. To make clearer possible reasons for differences between the processes of recovery of functions of the flexor and extensor muscles, we analyzed the effects of GHB on the contractile activity of these muscle groups within different time intervals after traumatization. In the second animal group, injection of GHB before operation resulted in drops of the muscle contraction force. After injury of the right sciatic nerve and injection of GHB on the 3rd posttraumatic week, recovery of the contraction force of all the examined muscles on the side of operation was more considerable. The functional loss of the muscle force in the left (intact) hindlimb in this case was 10 and 7% for the ankle extensors and toe flexors, respectively. Single injections of GHB within a late posttraumatic period resulted in a relative decrease in the contraction force of both flexors and extensors, and the functional loss was the greatest (35%) in the toe flexors.  相似文献   

8.
ABSTRACT: Bryanton, MA, Kennedy, MD, Carey, JP, and Chiu, LZF. Effect of squat depth and barbell load on relative muscular effort in squatting. J Strength Cond Res 26(10): 2820-2828, 2012-Resistance training is used to develop muscular strength and hypertrophy. Large muscle forces, in relation to the muscle's maximum force-generating ability, are required to elicit these adaptations. Previous biomechanical analyses of multi-joint resistance exercises provide estimates of muscle force but not relative muscular effort (RME). The purpose of this investigation was to determine the RME during the squat exercise. Specifically, the effects of barbell load and squat depth on hip extensor, knee extensor, and ankle plantar flexor RME were examined. Ten strength-trained women performed squats (50-90% 1 repetition maximum) in a motion analysis laboratory to determine hip extensor, knee extensor, and ankle plantar flexor net joint moment (NJM). Maximum isometric strength in relation to joint angle for these muscle groups was also determined. Relative muscular effect was determined as the ratio of NJM to maximum voluntary torque matched for joint angle. Barbell load and squat depth had significant interaction effects on hip extensor, knee extensor, and ankle plantar flexor RME (p < 0.05). Knee extensor RME increased with greater squat depth but not barbell load, whereas the opposite was found for the ankle plantar flexors. Both greater squat depth and barbell load increased hip extensor RME. These data suggest that training for the knee extensors can be performed with low relative intensities but require a deep squat depth. Heavier barbell loads are required to train the hip extensors and ankle plantar flexors. In designing resistance training programs with multi-joint exercises, how external factors influence RME of different muscle groups should be considered to meet training objectives.  相似文献   

9.
Isokinetic plantar flexion: experimental results and model calculations   总被引:1,自引:0,他引:1  
In isokinetic experiments on human subjects, conducted to determine moments that can be exerted about a joint at different angular velocities, joint rotation starts as soon as the moment increases above the resting level. This contraction history differs from the one in experiments on isolated muscle, where the force is allowed to increase to an isometric level before shortening is initiated. The purpose of the present study was to determine the influence of contraction history on plantar flexing moments found during maximal voluntary plantar flexion on an isokinetic dynamometer. In ten subjects, plantar flexing moments were measured as a function of ankle angle at different angular velocities. They were also calculated using a model of the muscle-tendon complex of the human triceps surae. The model incorporates elastic tendinous tissue in series with muscle fibers. The input of the model consists of time histories of active state (the force generating capacity of contractile elements) and shortening velocity of the muscle-tendon complex. Different time courses of active state were offered at fixed length of the muscle-tendon complex. The time course yielding a close match between the calculated rise of plantar flexing moment and the rise measured during fixed angle contractions was used to calculate moment-angle curves for isokinetic plantar flexion. The active state value reached when a peak occurred in calculated moment-angle curves was found to be lower if the angular velocity was made higher. Comparing measured and calculated results, it was concluded that moment-angular velocity diagrams determined in studies of isokinetic plantar flexion in human subjects reflect not only the influence of shortening velocity of contractile elements on the force which can be produced by plantar flexors.  相似文献   

10.
Traditional Hill-type muscle models, parameterized using high-quality experimental data, are often “too weak” to reproduce the joint torques generated by healthy adults during rapid, high force tasks. This study investigated whether the failure of these models to account for different types of motor units contributes to this apparent weakness; if so, muscle-driven simulations may rely on excessively high muscle excitations to generate a given force. We ran a series of forward simulations that reproduced measured ankle mechanics during cycling at five cadences ranging from 60 to 140 RPM. We generated both “nominal” simulations, in which an abstract ankle model was actuated by a 1-element Hill-type plantar flexor with a single contractile element (CE), and “test” simulations, in which the same model was actuated by a 2-element plantar flexor with two CEs that accounted for the force-generating properties of slower and faster motor units. We varied the total excitation applied to the 2-element plantar flexor between 60 and 105% of the excitation from each nominal simulation, and we varied the amount distributed to each CE between 0 and 100% of the total. Within this test space, we identified the excitation level and distribution, at each cadence, that best reproduced the plantar flexor forces generated in the nominal simulations. Our comparisons revealed that the 2-element model required substantially less total excitation than the 1-element model to generate comparable forces, especially at higher cadences. For instance, at 140 RPM, the required excitation was reduced by 23%. These results suggest that a 2-element model, in which contractile properties are “tuned” to represent slower and faster motor units, can increase the apparent strength and perhaps improve the fidelity of simulations of tasks with varying mechanical demands.  相似文献   

11.
Although the soleus muscle comprises only 6% of the ankle plantar flexor mass in the rat, a major role in stance and walking has been ascribed to it. The purpose of this study was to determine if removal of the soleus muscle would result in adaptations in the remaining gastrocnemius and plantaris muscles due to the new demands for force production imposed on them during stance or walking. A second purpose was to determine whether the mass or the fiber type of the muscle(s) removed was a more important determinant of compensatory adaptations. Male Sprague-Dawley rats underwent bilateral removal of soleus muscle, plantaris muscle, or both muscles. For comparison, compensatory hypertrophy was induced in soleus and plantaris muscles by gastrocnemius muscle ablation. After forty days, synergist muscles remaining intact were removed. Mass, and oxidative, glycolytic, and contractile enzyme activities were determined. Despite its role in stance and slow walking, removal of the soleus muscle did not elicit a measurable alteration in muscle mass, or in citrate synthase, lactate dehydrogenase, or myofibrillar ATPase activity in gastrocnemius or plantaris muscles. Similarly, removal of the plantaris muscle, or soleus and plantaris muscles, had no effect on the gastrocnemius muscle, suggesting that this muscle was able to easily meet the new demands placed on it. These results suggest that amount of muscle mass removed, rather than fiber type, is the most important stimulus for compensatory hypertrophy. They also suggest that slow-twitch motor units in the gastrocnemius muscle play an important role during stance and locomotion in the intact animal.  相似文献   

12.
Walking is a complex dynamic task that requires the regulation of whole-body angular momentum to maintain dynamic balance while performing walking subtasks such as propelling the body forward and accelerating the leg into swing. In human walking, the primary mechanism to regulate angular momentum is muscle force generation. Muscles accelerate body segments and generate ground reaction forces that alter angular momentum about the body’s center-of-mass to restore and maintain dynamic stability. In addition, gravity contributes to whole-body angular momentum through its contribution to the ground reaction forces. The purpose of this study was to generate a muscle-actuated forward dynamics simulation of normal walking to quantify how individual muscles and gravity contribute to whole-body angular momentum in the sagittal plane. In early stance, the uniarticular hip and knee extensors (GMAX and VAS), biarticular hamstrings (HAM) and ankle dorsiflexors (TA) generated backward angular momentum while the ankle plantar flexors (SOL and GAS) generated forward momentum. In late stance, SOL and GAS were the primary contributors and generated angular momentum in opposite directions. SOL generated primarily forward angular momentum while GAS generated backward angular momentum. The difference between muscles was due to their relative contributions to the horizontal and vertical ground reaction forces. Gravity contributed to the body’s angular momentum in early stance and to a lesser extent in late stance, which was counteracted primarily by the plantar flexors. These results may provide insight into balance and movement disorders and provide a basis for developing locomotor therapies that target specific muscle groups.  相似文献   

13.
Power output and work in different muscle groups during ergometer cycling   总被引:1,自引:0,他引:1  
The aim of this study was to calculate the magnitude of the instantaneous muscular power output at the hip, knee and ankle joints during ergometer cycling. Six healthy subjects pedalled a weight-braked bicycle ergometer at 120 watts (W) and 60 revolutions per minute (rpm). The subjects were filmed with a cine camera, and pedal reaction forces were recorded from a force transducer mounted in the pedal. The muscular work at the hip, knee and ankle joint was calculated using a model based upon dynamic mechanics described elsewhere. The mean peak concentric power output was, for the hip extensors, 74.4 W, hip flexors, 18.0 W, knee extensors, 110.1 W, knee flexors, 30.0 W and ankle plantar flexors, 59.4 W. At the ankle joint, energy absorption through eccentric plantar flexor action was observed, with a mean peak power of 11.4 W and negative work of 3.4 J for each limb and complete pedal revolution. The energy production relationships between the different major muscle groups were computed and the contributions to the total positive work were: hip extensors, 27%; hip flexors, 4%; knee extensors, 39%; knee flexors, 10%; and ankle plantar flexors 20%.  相似文献   

14.
It is unclear if skeletal muscles act mechanically as independent actuators. The purpose of the present study was to investigate force transmission from soleus (SO) muscle for physiological lengths as well as relative positions in the intact cat hindlimb. We hypothesized that force transmission from SO fibers will be affected by length changes of its two-joint synergists. Ankle plantar flexor moment on excitation of the SO was measured for various knee angles (70-140 degrees ). This involved substantial length changes of gastrocnemius and plantaris muscles. Ankle angle was kept constant (80 degrees -90 degrees ). However, SO ankle moment was not significantly affected by changes in knee angle; neither were half-relaxation time and the maximal rate of relaxation (P > 0.05). Following tenotomy, SO ankle moment decreased substantially (55 +/- 16%) but did not reach zero, indicating force transmission via connective tissues to the Achilles tendon (i.e., epimuscular myofascial force transmission). During contraction SO muscle shortened to a much greater extent than in the intact case (16.0 +/- 0.6 vs. 1.0 +/- 0.1 mm), which resulted in a major position shift relative to its synergists. If the SO was moved back to its position corresponding to the intact condition, SO ankle moment approached zero, and most muscle force was exerted at the distal SO tendon. Our results also suggested that in vivo the lumped intact tissues linking SO to its synergists are slack or are operating on the toe region of the stress-strain curve. Thus, within the experimental conditions of the present study, the intact cat soleus muscle appears to act mechanically as an independent actuator.  相似文献   

15.
We investigated how varying seat tube angle (STA) and hand position affect muscle kinematics and activation patterns during cycling in order to better understand how triathlon-specific bike geometries might mitigate the biomechanical challenges associated with the bike-to-run transition. Whole body motion and lower extremity muscle activities were recorded from 14 triathletes during a series of cycling and treadmill running trials. A total of nine cycling trials were conducted in three hand positions (aero, drops, hoods) and at three STAs (73°, 76°, 79°). Participants also ran on a treadmill at 80, 90, and 100% of their 10-km triathlon race pace. Compared with cycling, running necessitated significantly longer peak musculotendon lengths from the uniarticular hip flexors, knee extensors, ankle plantar flexors and the biarticular hamstrings, rectus femoris, and gastrocnemius muscles. Running also involved significantly longer periods of active muscle lengthening from the quadriceps and ankle plantar flexors. During cycling, increasing the STA alone had no affect on muscle kinematics but did induce significantly greater rectus femoris activity during the upstroke of the crank cycle. Increasing hip extension by varying the hand position induced an increase in hamstring muscle activity, and moved the operating lengths of the uniarticular hip flexor and extensor muscles slightly closer to those seen during running. These combined changes in muscle kinematics and coordination could potentially contribute to the improved running performances that have been previously observed immediately after cycling on a triathlon-specific bicycle.  相似文献   

16.
Recent studies have revealed that the stretch reflex responses of both ankle flexor and extensor muscles are coaugmented in the early stance phase of human walking, suggesting that these coaugmented reflex responses contribute to secure foot stabilization around the heel strike. To test whether the reflex responses mediated by the stretch reflex pathway are actually induced in both the ankle flexor and extensor muscles when the supportive surface is suddenly destabilized, we investigated the electromyographic (EMG) responses induced after a sudden drop of the supportive surface at the early stance phase of human walking. While subjects walked on a walkway, the specially designed movable supportive surface was unexpectedly dropped 10 mm during the early stance phase. The results showed that short-latency reflex EMG responses after the impact of the drop (<50 ms) were consistently observed in both the ankle flexor and extensor muscles in the perturbed leg. Of particular interest was that a distinct response appeared in the tibialis anterior muscle, although this muscle showed little background EMG activity during the stance phase. These results indicated that the reflex activities in the ankle muscles certainly acted when the supportive surface was unexpectedly destabilized just after the heel strike during walking. These reflex responses were most probably mediated by the facilitated stretch reflex pathways of the ankle muscles at the early stance phase and were suggested to be relevant to secure stabilization around the ankle joint during human walking.  相似文献   

17.
The ankle plantar flexor muscles, gastrocnemius (Gas) and soleus (Sol), have been shown to play important roles in providing body support and forward propulsion during human walking. However, there has been disagreement about the relative contributions of Gas and Sol to these functional tasks. In this study, using independent manipulations of body weight and body mass, we examined the relative contribution of the individual plantar flexors to support and propulsion. We hypothesized that Gas and Sol contribute to body support, whereas Sol is the primary contributor to forward trunk propulsion. We tested this hypothesis by measuring muscle activity while experimentally manipulating body weight and mass by 1) decreasing body weight using a weight support system, 2) increasing body mass alone using a combination of equal added trunk load and weight support, and 3) increasing trunk loads (increasing body weight and mass). The rationale for this study was that muscles that provide body support would be sensitive to changes in body weight, whereas muscles that provide forward propulsion would be sensitive to changes in body mass. Gas activity increased with added loads and decreased with weight support but showed only a small increase relative to control trials when mass alone was increased. Sol activity showed a similar increase with added loads and with added mass alone and decreased in early stance with weight support. Therefore, we accepted the hypothesis that Sol and Gas contribute to body support, whereas Sol is the primary contributor to forward trunk propulsion.  相似文献   

18.
We used a lower limb robotic exoskeleton controlled by the wearer's muscle activity to study human locomotor adaptation to disrupted muscular coordination. Ten healthy subjects walked while wearing a pneumatically powered ankle exoskeleton on one limb that effectively increased plantar flexor strength of the soleus muscle. Soleus electromyography amplitude controlled plantar flexion assistance from the exoskeleton in real time. We hypothesized that subjects' gait kinematics would be initially distorted by the added exoskeleton power, but that subjects would reduce soleus muscle recruitment with practice to return to gait kinematics more similar to normal. We also examined the ability of subjects to recall their adapted motor pattern for exoskeleton walking by testing subjects on two separate sessions, 3 days apart. The mechanical power added by the exoskeleton greatly perturbed ankle joint movements at first, causing subjects to walk with significantly increased plantar flexion during stance. With practice, subjects reduced soleus recruitment by approximately 35% and learned to use the exoskeleton to perform almost exclusively positive work about the ankle. Subjects demonstrated the ability to retain the adapted locomotor pattern between testing sessions as evidenced by similar muscle activity, kinematic and kinetic patterns between the end of the first test day and the beginning of the second. These results demonstrate that robotic exoskeletons controlled by muscle activity could be useful tools for testing neural mechanisms of human locomotor adaptation.  相似文献   

19.
To better understand the role of the ankle plantar flexor muscles in stair negotiation, we examined the effects of manipulation of kinematic and kinetic constraints on the behavior of the gastrocnemius medialis (GM) muscle during stair ascent. Ten subjects ascended a four-step staircase at four different step-heights (changing the kinematic constraints): standard (17 cm), 50% decreased, 50% increased and 75% increased. At the standard height, subjects also ascended the stairs wearing a weighted jacket, adding 20% of their body mass (changing the kinetic constraints). During stair ascent, kinematics and kinetics of the lower legs were determined using motion capture and ground reaction force measurements. The GM muscle fascicle length was measured during the task with ultrasonography. The amount of GM muscle fascicle shortening increased with step-height, coinciding with an increase in ankle joint moment. The increase in body mass resulted in an increased ankle joint moment, but the amount of GM muscle fascicle shortening during the lift-off phase did not increase, instead, the fascicles were shorter over the whole stride cycle. Increasing demands of stair ascent, by increasing step-height or body mass, requires higher joint moments. The increased ankle joint moment with increasing demands is, at least in part, produced by the increase in GM muscle fascicle shortening.  相似文献   

20.
We identified biomechanical variables indicative of lower extremity dysfunction, distinct from age-related gait adaptations, and examined interrelationships among these variables to better understand the neuromuscular adaptations in gait. Sagittal plane ankle, knee, and hip peak angles, moments, and powers and spatiotemporal parameters were acquired during preferred-speed gait in 120 subjects: 45 healthy young, 37 healthy elders, and 38 elders with functional limitations due to lower extremity musculoskeletal pathology, primarily arthritis. Multiple analysis of covariance with discriminate analysis, adjusted for gait speed, was used to identify the variables discriminating groups. Correlation analysis was used to explore interrelationships among these variables within each group. Healthy elders were discriminated (sensitivity 76%, specificity 82%) from young adults via decreased late-stance ankle plantar flexion angle, increased late-stance knee power absorption, and early-stance hip extensor power generation. Disabled elders were discriminated (sensitivity 74%, specificity 73%) from healthy elders via decreased late-stance ankle plantar flexor moment and power generation, increased early-stance ankle dorsiflexor moment, and late-stance hip flexor moment and power absorption. Relationships among variables showed a higher degree of coupling for the disabled elders compared with the healthy groups, suggesting a reduced ability to alter motor strategies. Our data suggest that, beyond age-related changes, elders with lower extremity dysfunction rely excessively on passive action of hip flexors to provide propulsion in late stance and contralateral ankle dorsiflexors to enhance stability. These findings support a growing body of evidence that gait changes with age and disablement have a neuromuscular basis, which may be informative in a motor control framework for physical therapy interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号