首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The character and extent of population differentiation in chum salmon Oncorhynchus keta from Sakhalin and Iturup were comparatively studied with 10 microsatellite and 12 allozyme markers. It was demonstrated with the example of allozyme polymorphism at the EstD locus that the effect of an individual locus with one major allele is capable of distorting the total picture of population differentiation. Multiallelic microsatellites were more efficient in revealing the genetic structure of chum salmon populations at the levels of differences between regional populations and between the stocks of individual rivers of the same region.  相似文献   

2.
Variability at eight microsatellite loci was examined in five populations of chum salmon Oncorhynchus keta Walbaum from Sakhalin hatcheries. The population of Kalinino hatchery had the lowest heterozygosity and the lowest average number of alleles per locus. The populations examined exhibited significant differentiation, θST = 0.026 on average per locus. The maximum genetic differences were found between the populations of the Kalinino and the Ado-Tymovo hatcheries; the latter differs from the remaining populations also by the highest number and high frequencies of specific alleles. The genetic features of the Taranai hatchery population, observed at microsatellite loci, reflect its “mixed” origin.  相似文献   

3.
Variability at ten microsatellite loci was examined in wild and hatchery populations of chum salmon (Oncorhynchus keta Walbaum) from the Sakhalin Island and Southern Kuril Islands, Iturup and Kunashir. Substantial genetic differences between Sakhalin and South Kurils chum salmon (the differentiation reached 6.0%) were revealed. Statistically significant differences between chum salmon from Iturup and those from Kunashir were demonstrated, as well as between the chum salmon populations from different rivers within the islands. It was shown that in different types of population comparisons, different marker sets were most informative.  相似文献   

4.
The estimates of genetic diversity in populations of chum salmon Oncorhynchus keta from different regions of Sakhalin Island, Iturup Island, and the Anadyr’ River were obtained on the basis of analysis of allozyme variability. These estimates together with our published earlier data on chum salmon from the Amur River basin and the rivers of the northern coast of the Sea of Okhotsk demonstrate pronounced regional genetic differentiation in the Asian part of the fish range. The intraregional level of interpopulation genetic diversity was maximum on Sakhalin Island (G ST = 6.6%) and was small on Iturup Island (G ST = 0.9%) and the northern coast of the Sea of Okhotsk (G ST = 0.6%). Interpopulation genetic diversity of Sakhalin chum salmon was almost commensurable to the diversity of the whole pool of studied Asian populations (G ST = 7.6%) and would be presented more completely in baselines assigned for genetic identification of mixed stocks. It was demonstrated that the character and degree of genetic differentiation between populations of chum salmon from the main hatcheries situated in different regions of the Sakhalin oblast and connected to one another by numerous transplantations of fertilized eggs did not change significantly during an approximately 20-year period of our observation, and this fact suggests low efficiency of such transplantations.  相似文献   

5.
The variability of 32 enzyme loci was studied in chum salmon populations with different types of reproduction—natural, mixed, and artificial—in some Magadan Region rivers. Among the populations studied, the values of mean heterozygosity and allele number per locus did not differ significantly. We found evidence of definite temporal stability of the populations, and also found that their genetic variability was expressed only slightly but still remained in spite of periodic egg transplantations between rivers. Statistically significant spatial genetic differentiation of the populations accounted for 0.55 to 0.76% of the total variation and the mean inter-year differentiation accounted for 0.30% of the total. Significant temporal (seasonal) genetic subdivision was revealed in chum salmon of the Tauy River. The populations of the Okhotsk Sea coast are very similar genetically to the east Sakhalin populations. The industrial chum salmon population founded and reproduced artificially in the Kulkuty River preserves the genetic similarity of the donor Yama River chum salmon. In the industrial population, we observed a tendency toward reduction of genetic variation over time. The contribution of the Yama population to the gene pool of the Ola chum salmon, (both by natural reproduction and by farming) is small in spite of many large-scale transplantations. However, the consequences of those transplantations are revealed by means of linkage disequilibrium analysis.  相似文献   

6.
Variability at ten microsatellite loci was examined in wild and hatchery populations of chum salmon from the Sakhalin Island and Southern Kuril Islands, Iturup and Kunashir. Substantial genetic differences between Sakhalin and South Kurils chum salmon (the differentiation theta reached 6.0%) were revealed. Statistically significant differences between chum salmon from Iturup and that from Kunashir were demonstrated, as well as between the chum salmon populations from different rivers within the islands. It was shown that in different types of population comparisons, required different marker sets most informative were.  相似文献   

7.
Populations with spatially restricted gene flow are characterized by genetic differentiation that may be positively correlated with the geographic distance separating populations, a pattern known as isolation by distance (IBD). Here we examined the fine-scale genetic structure of 66 chum salmon (Oncorhynchus keta) populations spawning in Alaska waterways and explored patterns of IBD using 90 nuclear and 3 mitochondrial single nucleotide polymorphisms. Estimating population structure of chum salmon in Alaska is of increasing concern because of fluctuating census sizes and the uncertain effects of harvest on specific populations. We hypothesized that IBD would be present because chum salmon spawn in coastal rivers that are distributed along a linear array and gene flow is spatially restricted due to homing. Evidence of very weak IBD was found throughout the region (R2 = 0.06, p < 0.0001) but the strength of the IBD relationship varied greatly over different spatial scales and geographic regions. Decomposed pairwise regression analyses identified nine outlier populations to regional IBD patterns, suggesting that geographic distance is not the only factor influencing genetic differentiation in the region. Instead, population structure appears to be heavily influenced by glacial history of the region and the presence of a glacial refugium on Kodiak Island.  相似文献   

8.
Chum salmon populations in the Russian Far East have a complex multi-level genetic structure. A total of 53 samples (2446 fish) were grouped into five major regional clusters: the southern Kurils, eastern Sakhalin, southwestern Sakhalin, the Amur River, and a northern cluster. The northern cluster consists of chum salmon populations from a vast geographical region, including Chukotka, Kamchatka, and the continental coast of the Sea of Okhotsk. However, the degree of its genetic differentiation is low, 1.9%. In contrast, the southern population cluster exhibits much higher variation; for example, differentiation between chum salmon groups within Sakhalin Island reaches 4.6%, and the differentiation between Iturup Island and Sakhalin Island chum salmon is 7.7%. This suggests that southern populations of Asian chum salmon have a more ancient evolutionary history than northern populations. In contrast to the available data, our study indicates a great deviation of southwestern Sakhalin populations from other Sakhalin chum salmon. The Russian Far East chum salmon are genetically diverse and show statistically significant differentiation even within small geographic localities. This can be used to assign samples of unknown origins to definite local populations.  相似文献   

9.
Variability at eight microsatellite loci was examined in five populations of chum salmon Oncorhynchus keta Walbaum from Sakhalin hatcheries. The population of Kalinino hatchery had the lowest heterozygosity and the lowest average number of alleles per locus. The populations examined exhibited significant differentiation, theta ST = 0.026 on average per locus. The maximum genetic differences were found between the populations of the Kalinino and the Ado-Tymovo hatcheries; the latter differs from the remaining populations also by the highest number and high frequencies of specific alleles. The genetic features of the Taranai hatchery population, observed at microsatellite loci, reflect its "mixed" origin.  相似文献   

10.
The results of examining mtDNA variability in populations of chum salmon Oncorhynchus keta from the rivers of the basins of the seas of Japan and Okhotsk and in the chum salmon seasonal races of the Amur River are presented. A significant level of polymorphism between the majority of the populations studied was detected. The groups of chum salmon from the seas of Japan and Okhotsk displayed the most pronounced differences. Analysis of genetic variability demonstrated that periodic paleontologic and climatic changes in the past of this region were the most probable factor that caused the divergence of these populations. The advances and retreats of glaciers and the accompanying regressions and transgressions of the ocean level caused isolation of chum salmon in the refugia belonging hypothetically to the paleo-Shuifen and paleo-Amur regions. These population groups diverged presumably 350–450 thousand years ago. Differences between the seasonal races of the Amur chum salmon are insignificant, and their emergence dates back to the period of the last Wisconsinian glaciation. Probably, the main isolation factor now is the genetically determined time of spawning.  相似文献   

11.
Genetic variation at 19 enzyme (including 11 polymorphic) and 10 microsatellite loci was examined in the population samples of odd-and even-broodline pink salmon from the southern part of Sakhalin Island, Southern Kuril Islands, and the northern coast of the Sea of Okhotsk. The estimates of relative interpopulation component of genetic variation for the allozyme loci, per broodline, were on average 0.43% (G ST), while over the microsatellite loci it was 0.26% (the ?ST coefficient, F-statistics based on the allele frequency variance), and 0.90% (the ρST coefficient, R-statistics based on the allele size variance). The values of interlinear component constituted 2.34, 0.31, and 1.05% of the total variation, respectively. Using the allozyme loci, statistically significant intralinear heterogeneity was demonstrated among the regions, as well as among the populations of southern Sakhalin. Multidimensional scaling based on the allozyme data demonstrated regional clustering of the sample groups, representing certain populations during the spawning run or in different years. Most of the microsatellite loci examined were found to be highly polymorphic (mean heterozygosity > 0.880). The estimates of interlinear, interregional, and interpopulation variation over these loci in terms of ?ST values were substantially lower than in terms of ρST values. Regional genetic differentiation, mostly expressed at the allozyme loci between the populations from the northern Sea of Okhotsk and the Sakhalin and Kuril group of populations, was less expressed at the microsatellite loci. The differentiation between these regions observed can be considered as the evidence in favor of a large-scale isolation by distance characterizing Asian pink salmon. It is suggested that in pink salmon, low genetic differentiation at neutral microsatellite loci can be explained by extremely high heterozygosity of the loci themselves, as well as by the migration gene exchange among the populations (the estimate of the gene migration coefficient inferred from the “private” allele data constituted 2.6 to 3.4%), specifically, by the ancient migration exchange, which occurred during postglacial colonization of the range  相似文献   

12.
Long-term changes in the sex ratio have been studied in pink salmon (Oncorhynchus gorbuscha and chum salmon (O. keta) populations of Kamchatka and Sakhalin. It has been demonstrated that these changes are an adaptation to population dynamics: an increase in the population size is accompanied by a shift towards a higher proportion of males; a decrease in population size, by a shift towards a higher proportion of females. The correspondence between morphological and molecular characters in populations of the two species has been analyzed in order to determine the mechanism of sex ratio control. In some pink salmon and chum salmon populations, there is a discrepancy between sex identifications based on morphological characters and molecular markers. This discrepancy is assumed to be accounted for by sex inversion mechanisms, which may be population-or region-specific. In two cases, it has been found that the sex ratio discrepancy in populations is related to the numbers of fish in subsequent generations. These findings suggest that sex inversion may be related to population size control.  相似文献   

13.
Genetic stock identification (GSI) is a major management tool of Pacific salmon (Oncorhynchus Spp.) that has provided rich genetic baseline data of allozymes, microsatellites, and single‐nucleotide polymorphisms (SNPs) across the Pacific Rim. Here, we analyzed published data sets for adult chum salmon (Oncorhynchus keta), namely 10 microsatellites, 53 SNPs, and a mitochondrial DNA locus (mtDNA3, control region, and NADH‐3 combined) in samples from 495 locations in the same distribution range (n = 61,813). TreeMix analysis of the microsatellite loci identified the greatest convergence toward Japanese/Korean populations and suggested two admixture events from Japan/Korea to Russia and the Alaskan Peninsula. The SNPs had been purposively collected from rapidly evolving genes to increase the power of GSI. The largest expected heterozygosity was observed in Japanese/Korean populations for microsatellites, whereas it was largest in Western Alaskan populations for SNPs, reflecting the SNP discovery process. A regression of SNP population structures on those of microsatellites indicated the selection of the SNP loci according to deviations from the predicted structures. Specifically, we matched the sampling locations of the SNPs with those of the microsatellites and performed regression analyses of SNP allele frequencies on a 2‐dimensional scaling (MDS) of matched locations obtained from microsatellite pairwise F ST values. The MDS first axis indicated a latitudinal cline in American and Russian populations, whereas the second axis showed differentiation of Japanese/Korean populations. The top five outlier SNPs included mtDNA3, U502241 (unknown), GnRH373, ras1362, and TCP178, which were identified by principal component analysis. We summarized the functions of 53 nuclear genes surrounding SNPs and the mtDNA3 locus by referring to a gene database system and propose how they may influence the fitness of chum salmon.  相似文献   

14.
Synopsis To assess the genetic variation and population structure of wild chum salmon in China, we analyzed microsatellite loci for populations in the Amur, Wusuli, Suifen Current and the Tumen rivers. We evaluated expected heterozygosity with two estimators of genetic differentiation (FST and GST) and Nei’s standard genetic distance. The average expected heterozygosity across the 10 loci was 0.65 in the Wusuli River and the Suifen Current River, 0.64 in the Amur River and 0.66 in the Tumen River, The results of this study show that the recent declines in chum salmon have not led to low levels of genetic variability in China. The proportion of inter-population subdivision among chum salmon was between 5.7 and 6.8%. According to the estimator used, the NJ tree based on Nei’s standard genetic distance indicated that there were two different branches (the Sea of Okhotsk branch and the Sea of Japan branch), the Amur River and the Wusuli River populations were closer, while the Suifen Current River and the Tumen River clustered together. The genetic test for population bottlenecks provided no evidence for a significant genetic signature of population decline, which is consistent with the record of the four populations we have in the last few years.  相似文献   

15.
In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.  相似文献   

16.
Relationships between allozyme differentiation, habitat variation and individual reproductive success were examined in local populations of a perennial herb, Gypsophila fastigiata, on the Baltic island of Öland (Sweden). Relatively little (c. 2%) of the total allozyme diversity in this largely outcrossing species is explained by differentiation between sites tens of kilometres apart. The low level of geographic differentiation suggests that gene flow between sites is, or has recently been, extensive. Yet the component of allozyme diversity due to differentiation between plots (only tens of meters apart) within sites is 3 times larger than the between-site component of diversity. Allozyme variation, especially at the Pgi-2 locus, is significantly associated with habitat variation within sites. Different allele x habitat combinations for the Pgi-2 locus are associated with differences in individual reproductive fitness. Differential selection in different local habitats may thus contribute to the fine-scale structuring of genetic diversity within sites.  相似文献   

17.
微卫星标记对黑龙江流域大麻哈鱼遗传多样性的研究   总被引:14,自引:0,他引:14  
采用 12个微卫星标记 ,对中国 3个大麻哈鱼洄游群体 (乌苏里江、黑龙江和绥芬河 )的遗传多样性进行了检测。计算出各个种群的基因杂合度、遗传多样性和各个座位的多态信息含量。结果表明 ,3个大麻哈鱼洄游种群的平均基因杂合度分别为 :0 .6 732、0 5 995、0 .6 917,种群遗传多样性分别为 0 .70 82、0 .6 5 11、0 .76 16。这些结果表明大麻哈鱼遗传多样性还比较丰富 ,其资源的恢复具有良好的前景 ,说明当前中国大麻哈鱼资源数量下降并非由遗传因素引起 ,主要原因可能是由于过度捕捞和水域环境污染等人为因素造成。人工增殖放流为恢复中国大麻哈鱼资源起到了重要作用 ,但目前大麻哈鱼的小种群极易产生遗传瓶颈的现状也应引起人们高度重视  相似文献   

18.
Allozyme variation of populations of chum salmon Oncorhynchus ketafrom southern Russian Far East was examined. Of 55 loci screened, 31 were polymorphic. Within-population variation accounted for most of the allele diversity; F STaveraged over loci was 0.052. Linkage disequilibrium was found in less than 5% of locus pairs in the chum population examined. Analysis of within- and among-population variance components of linkage disequilibrium using D-statistics (Ohta, 1982) showed that most genetic variation was distributed among populations.  相似文献   

19.
A knowledge of genetic structure in natural populations is often necessary for conservation and management purposes, especially in declining Pacific salmon populations. To test for genetic differentiation between nine populations of chinook salmon, Oncorhynchus tshawytscha, from south-western British Columbia, Canada, DNA was extracted from 603 fish and hybridized with a single-locus minisatellite probe. Multivariate statistical analyses of the resulting allele size data permitted successful overall population identification of 52% (individual population range: 24–78%; P < 0.005), indicating a high level of genetic differentiation among the nine populations. Two of the nine populations were further analysed using data from a second minisatellite locus. The discrimination success rate improved from 81.1% (one-locus analyses) to 90.0% (two-locus analyses), indicating the potential for greatly increased resolution gained by the addition of more loci. These results indicate that variation at minisatellite loci can be used for assessing population-level genetic structure, even with artificial gene flow.  相似文献   

20.
Based on the data of Russian and foreign researchers, a database, consisting of 100 allozyme-coding loci examined in 288 chum salmon populations from Asia and Northern America, was constructed. Using G-test, genetic heterogeneity of Asian population samples of chum salmon was evaluated. Correlations between the frequencies of major alleles and geographic latitude of the mouths of native rivers were estimated. Using the methods of Nei and Cavalli-Sforza and Edwards, for different local chum salmon stock groups the genetic distances at the number of polymorphic enzyme loci were determined. Analysis of these distances made it possible to evaluate the patterns of genetic diversity in regional population groups from the Russian Far East, Japan, and North America. The proportions of genetic variation at each hierarchical level, identified in accordance with the geographical positions of the populations, were estimated through partitioning of variation in Asian populations into within and between-population components. It was demonstrated that intraspecific genetic structure of chum salmon corresponded geographic subdivision into regional population groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号