首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of nitroprusside and isoflurane on multipoint pulmonary arterial pressure (PAP)/cardiac index (Q) plots in pentobarbital sodium-anesthetized dogs ventilated alternatively in hyperoxia (fraction of inspired O2, FIO2, 0.4) and hypoxia (FIO2 0.1). Over the entire range of Q studied, 2-5 l.min-1.m-2, hypoxia increased PAP in 16 dogs ("responders") and did not affect PAP in 16 other dogs ("nonresponders"). A hypoxic pulmonary vasoconstriction (HPV) was restored in the nonresponders by intravenous administration of 1 g of acetylsalicylic acid (ASA). Nitroprusside (5 micrograms.kg-1.min-1) inhibited HPV in responders (n = 8) and nonresponders treated with ASA (n = 8). End-tidal 1.41% isoflurane (a minimal alveolar concentration equal to one for dogs) did not affect HPV in responders (n = 8) and nonresponders treated with ASA (n = 8). In the latter group isoflurane increased PAP at the highest Q studied (3-5 l.min-1.m-2) in hyperoxia and hypoxia. In a final group of eight dogs with Q kept constant, PAP remained unchanged during two consecutive sequences of alternated 30-min periods (maximum time to generate a PAP/Q plot) successively at FIO2 0.4 and 0.1, and the hypoxia-induced increase in PAP was reproducible. Thus the present experimental model appeared suitable for the study of the effects of hypoxia and drugs on pulmonary vascular tone of intact dogs. At the given doses HPV was inhibited by nitroprusside and not affected by isoflurane. Products of arachidonic acid metabolism possibly could be implicated in the pulmonary vascular effects of isoflurane.  相似文献   

2.
Escherichia coli B contains two superoxide dismutases which differ with respect to their localization within the cell, the nature of their prosthetic metals, their responses to changes in (p)O(2), and their functions. One of these enzymes, which was liberated from the cells by osmotic shock and which was therefore presumed to be localized in the periplasmic space, is an iron-containing superoxide dismutase. The amount of this iron enzyme did not vary in response to changes in (p)O(2) during growth. In contrast, the other superoxide dismutase was not solubilized by osmotic shock, was a mangano-protein, and was found in greater amounts in cells which had been grown at high (p)O(2). E. coli, which had low levels of the iron-enzyme and high levels of the mangano-enzyme, as a consequence of growth in iron-deficient aerated medium, was killed by exposure to an exogenous flux of O(2) (-) which was generated either photochemically or enzymatically. The addition of bovine superoxide dismutase to the suspending medium protected these cells against this stress. On the other hand, E. coli, which had high levels of the iron-enzyme and low levels of the mangano-enzyme, as a consequence of growth in iron-rich anaerobic medium, was resistant to exogeneous O(2) (-). On the basis of these and of previously reported results (4a, Yost, F. J. and I. Fridovich, J. Biol. Chem., 1973, in press), it appears that the iron superoxide dismutase, of the periplasmic space, serves as a defense against exogenous O(2) (-), whereas the mangano-superoxide dismutase, in the matrix of these cells, serves to counter the toxicity of endogenous O(2) (-).  相似文献   

3.
Superoxide dismutase-rich bacteria. Paradoxical increase in oxidant toxicity   总被引:20,自引:0,他引:20  
Superoxide dismutase is considered important in protection of aerobes against oxidant damage, and increased tolerance to oxidant stress is associated with induction of this enzyme. However, the importance of superoxide dismutase in this tolerance is not clear because conditions which promote the synthesis of superoxide dismutase likewise affect other antioxidant enzymes and substances. To clarify the role of superoxide dismutase per se in organismal defense against oxidant-generating drugs, we employed Escherichia coli transformed with multiple copies of the gene for bacterial iron superoxide dismutase. These bacteria have greater than ten times the superoxide dismutase activity of wild-type E. coli but, importantly, are normal in other oxidant defense parameters including catalase, peroxidases, glutathione, and glutathione reductase. High superoxide dismutase and control bacteria were exposed to the O2- -generating drug paraquat and to elevated pO2. We find; high superoxide dismutase E. coli are more readily killed by paraquat under aerobic, but not anaerobic, conditions. During exposure to paraquat, high superoxide dismutase E. coli accumulate more H2O2. Coincidentally, the reduced glutathione content of high superoxide dismutase E. coli declines more than in control E. coli. E. coli with high superoxide dismutase activity are also more readily killed by hyperoxia. Interestingly, the susceptibility of the parental and high superoxide dismutase E. coli to killing by exogenous H2O2 is not significantly different. Thus, under these experimental conditions, greatly enhanced superoxide dismutase activity accelerates H2O2 formation. The increased H2O2 probably accounts for the exaggerated sensitivity of high superoxide dismutase bacteria to oxidant-generating drugs. These results support the concept that the product of superoxide dismutase, H2O2, is at least as hazardous as the substrate, O2-. We conclude that effective organismal defense against reactive oxygen species may require balanced increments in antioxidant enzymes and cannot necessarily be improved by increases in the activity of single enzymes.  相似文献   

4.
cGMP content of axoplasm from the giant axon of Loligo forbesi was investigated after subjecting the axon to various treatments. Repetitive electrical stimulation or depolarisation by high K+ caused no change in cGMP content. Glutamate and serotonin were also without effect. The nicotinic agonist carbachol (100 microM) increased cGMP levels by 90% (n = 5). A large transient elevation of cGMP content was evoked by external nitroprusside (10 nM-20 microM in intact axons. Nitroprusside injected into both extruded axoplasm and intact axons also increased cGMP content, the stimulation being considerably higher in intact axons where the axolemma was also present. Nitroprusside was also active in axons where the soluble cytoplasmic components were washed out by internal perfusion.  相似文献   

5.
The complete amino acid sequence of copper-zinc superoxide dismutase from Neurospora crassa is reported. The subunit consists of 153 amino acids and has a Mr of 15,850. The primary structure was determined by automated and manual sequence analysis of peptides obtained by digestions of the carboxymethylated and aminoethylated enzyme with trypsin and thermolysin. The protein is devoid of tryptophan and methionine and displays a free amino terminus. Comparison of the amino acid sequence with those from human erythrocyte, bovine erythrocyte, horse liver, swordfish liver, and yeast copper-zinc superoxide dismutases reveals a high degree of sequence homology among the six enzymes. Most prominently, the regions containing the amino acid residues participating in the metal-binding and the half-cystine residues forming the intramolecular disulfide bridge are highly conserved. The invariant amino acids Pro 74 and Asp 76 of the four vertebrate and yeast superoxide dismutases were found to be substituted by arginine and alanine, respectively, in the Neurospora enzyme. These radical substitutions occurring in the zinc ligand region, known to form a characteristic loop structure in bovine erythrocyte copper-zinc superoxide dismutase (Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S., and Richardson, D. C. (1982) J. Mol. Biol. 160, 181-217), however, do not affect the catalytic properties of the Neurospora enzyme.  相似文献   

6.
The effect of ischemia-reperfusion on activity, protein and m-RNA levels of catalase, copper-zinc and manganese containing superoxide dismutases and glutathione peroxidase, the enzymes that are involved in free radical detoxification was studied in rat kidney. Ischemia alone did not alter either the activities or protein levels of superoxide dismutase and glutathione peroxidase. However, catalase activity was found to be inhibited to 82% of control. The inhibition of catalase was due to the inactivation of the enzyme as there was no significant change in enzyme protein level. Reperfusion following ischemia, however, led to a significant decrease in both the activities as well as the protein levels of all the antioxidant enzymes. The observed overall decrease in total superoxide dismutase activity was the net effect of a decrease in copper-zinc superoxide dismutase while manganese superoxide dismutase activity was found to be increased following reperfusion. This observed increased manganese superoxide dismutase activity was the result of its increased protein level. The mRNA levels for catalase, superoxide dismutases, and glutathione peroxidase were observed to be increased (100–145% of controls) following ischemia; reperfusion of ischemic kidneys, however, resulted in a significant decrease in the levels of mRNAs coding for all the enzymes except manganese superoxide dismutase which remained high. These results suggest that in tissue, the down regulation of the antioxidant enzyme system could be responsible for the pathophysiology of ischemia-reperfusion injury.  相似文献   

7.
The autoxidation of 3-hydroxyanthranilate to cinnabarinate at 37 degrees C and at pH 7.4 is hastened by superoxide dismutase (SOD). The Cu,Zn-containing enzyme from bovine erythrocytes and the Mn-containing enzyme from Escherichia coli were equally effective in this regard; whereas the H2O2-inactivated Cu,Zn enzyme was ineffective. Catalase appears to augment the effect of superoxide dismutase, because it prevents the bleaching of cinnabarinate by H2O2. It follows that O2-, which is a product of the autoxidation, slows the net autoxidation by engaging in back reactions and that SOD increases the rate of autoxidation by removal of O2- and thus by prevention of these back reactions.  相似文献   

8.
Human neutrophils exposed to the soluble stimulus, phorbol myristate acetate, generate a flux of O2.- which can destroy human erythrocyte targets. Under optimal conditions, each neutrophil was capable of lysing almost 10 erythrocyte targets. Hemolysis was inhibited by exogenous copper-zinc or iron superoxide dismutase while neither heat-denatured enzyme nor albumin inhibited cytotoxicity. Although neutrophils can also generate H2O2, neither catalase nor a glutathione-glutathione peroxidase system inhibited hemolysis. Hemolysis was prevented by conversion of the hemoglobin to carbon monoxyhemoglobin, suggesting an intracellular mechanism of cytotoxicity. Conversion of hemoglobin to methemoglobin by nitrite treatment did not impair neutrophil-mediated hemolysis. However, nitrite-treated targets were not protected by superoxide dismutase, while exogenous catalase inhibited cytotoxicity, suggesting a potential role for H2O2 and methemoglobin. H2O2 and methemoglobin are known to interact to form an oxidant complex whose cytotoxic potential was underlined by the marked sensitivity of nitrite-treated cells to commercial H2O2. It is proposed that neutrophil-derived O2.- oxidizes oxyhemoglobin to generate methemoglobin and H2O2 which interact to form a cytotoxic complex capable of hemolyzing the erythrocyte target.  相似文献   

9.
Highly purified rat lung soluble guanylate cyclase was activated with nitric oxide or sodium nitroprusside and the degree of activation varied with incubation conditions. With Mg2+ as the action cofactor, about 2- to 8-fold activation was observed with nitric oxide or sodium nitroprusside alone. Markedly enhanced activation (20-40 fold) was observed when 1 muM hemin added to the enzyme prior to exposure to the activating agent. The activation with hemin and sodium nitroprusside was prevented in a dose-dependent manner by sodium cyanide. The level activation was also increased by the addition of 1 mM dithiothreitol, but unlike hemin which had no effect on basal enzyme activity, dithiothreitol led to a considerable increase in basal activity. Activated guanylate cyclase decayed to basal activity within one hour at 2 degrees C and the enzyme could be reactivated upon re-exposure to nitroprusside or nitric oxide. Under basal conditions, Michaelis-Menten kinetics were observed, with a Km for GTP of 140 muM with Mg2+ cofactor. Following activation with nitroprusside or nitric oxide, curvilinear Eadie-Hofstee transformations of kinetic data were observed, with Km's of 22 MuM and 100 MuM for Mg-GTP. When optimal activation (15-40 fold) was induced by the addition of hemin and nitroprusside, multiple Km's were also seen with Mg-GTP and the high affinity form was predominant (22 MuM). Similar curvilinear Eadie-Hofstee transformations were observed with Mn2+ as the cation cofactor. These data suggest that multiple GTP catalytic sites are present in activated guanylate cyclase, or alternatively, multiple populations of enzyme exist.  相似文献   

10.
W F Beyer  I Fridovich 《Biochemistry》1987,26(5):1251-1257
The iron-containing superoxide dismutase from Escherichia coli is inactivated by H2O2 to a limit of approximately 90%. When corrected for the H2O2-resistant portion, this inactivation was first order with respect to residual activity and exhibited a pseudo-first-order rate constant of 0.066 min-1 at 25 degrees C in 0.24 mM H2O2 at pH 7.8. The superoxide dismutase activity remaining after treatment with H2O2 differed from the activity of the native enzyme with respect to heat stability, inhibition by azide, and inactivation by light in the presence of rose bengal and by N-bromosuccinimide. The native and the H2O2-modified enzymes were indistinguishable by electrophoresis on polyacrylamide gels. Inactivation of the enzyme by H2O2 was accompanied by loss of tryptophan and some loss of iron, but there was no detectable loss of histidine or of other amino acids. H2O2 treatment caused changes in the optical spectrum of the enzyme. Inactivation of the enzyme by H2O2 depends upon the iron at the active site. Thus, the apoenzyme and the manganese-substituted enzyme were unaffected by H2O2. We conclude that reaction of H2O2 with the iron at the active site generates a potent oxidant capable of attacking tryptophan residues. A mechanism is proposed.  相似文献   

11.
The purpose of this study was to elucidate the biochemical basis of the enhanced hydrogen peroxide (H2O2) production by guinea pig peritoneal macrophages (MP) cultured in lymphokine (LK)-containing medium. The markedly augmented H2O2 generation by these cells, demonstrable by the horseradish peroxidase (HRP)-catalyzed oxidation of phenol red, is distinguished by its lack of dependence on a second stimulus. We demonstrate that H2O2 production is truly spontaneous and is not caused by a stimulant present among the H2O2 assay reagents. The principal candidate for such a role was HRP type II (a mixture of five isoenzymes) that was reported to be capable of eliciting an oxidative burst in MP. Four distinct HRP isoenzymes that were found incapable of provoking an oxidative response were nevertheless adequate for demonstrating H2O2 production by LK-activated MP. Blocking the MP receptor for mannose by the addition of mannan to the assay system resulted in enhanced detection of H2O2 by low concentrations of HRP type II and by three out of four HRP isoenzymes. Treatment of MP with LK-containing medium for 72 hr did not result in a significant change in the activity of cellular superoxide dismutase (SOD) compared with MP cultured for the same length of time in control medium. By using the specific inhibitor of copper, zinc-containing SOD, sodium diethyldithiocarbamate (DDC), and the universal SOD inhibitor, sodium nitroprusside, we found that the predominant enzyme in guinea pig peritoneal MP is probably manganese-containing SOD. Incubation of LK-activated MP with nitroprusside resulted in almost total inhibition of H2O2 production and a simultaneous switch to superoxide (O2-) liberation. Similar exposure to DDC had no effect. These data indicate that H2O2 produced by LK-activated MP is derived exclusively by enzymatic dismutation of O2- mediated by a manganese-containing SOD. The increase in spontaneous H2O2 production induced by LK is therefore secondary to augmented O2- production that occurs at a cellular location where O2- is accessible to SOD. The enzymatic basis of the enhanced oxygen radical production was investigated by determining the kinetic parameters of the O2- -forming NADPH oxidase of resting LK-treated MP in a cellfree system in which O-2 production was induced by sodium dodecyl sulfate. The Km for NADPH and the Vmax of the enzyme of LK-treated MP were not different from those of the enzyme of MP incubated in control medium. We conclude that LK treatment of MP does not modulate the NADPH oxidase itself but, most likely, a process related to activation of the enzyme.  相似文献   

12.
The principal objective of this study was to test the hypothesis that nitroprusside relaxes vascular smooth muscle via the reactive intermediate, nitric oxide (NO), and that the biologic action of NO is associated with the activation of guanylate cyclase. Nitroprusside, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and NO elicit concentration-dependent relaxation of precontraced helical strips of bovine coronary artery. Nitroprusside, MNNG and NO also markedly activate soluble guanylate cyclase from bovine coronary arterial smooth muscle and, thereby, stimulate the formation of cyclic GMP. Three heme proteins, hemoglobin, methemoglobin and myoglobin, and the oxidant, methylene blue, abolish the coronary arterial relaxation elicited by NO. Similarly, these heme proteins, methylene blue and another oxidant, ferricyanide, markedly inhibit the activation of coronary arterial guanylate cyclase by NO, nitroprusside and MNNG. The following findings support the view that certain nitroso-containing compounds liberate NO in tissue:heme proteins, which cannot permeate cells, inhibit coronary arterial relaxation elicited by NO, but not by nitroprusside or MNNG; the vital stain, methylene blue, inhibits relaxation by NO, nitroprusside and MNNG; heme proteins and oxidants inhibit guanylate cyclase activation by NO, nitroprusside and MNNG in cell-free mixtures. The findings that inhibitors of NO-induced relaxation of coronary artery also inhibit coronary arterial guanylate cyclase activation suggest that cyclic GMP formation may be associated with coronary arterial smooth muscle relaxation.  相似文献   

13.
A pressor response has been observed with propranolol, a nonselective beta-adrenoceptor antagonist, in animals given a nonselective alpha-adrenoceptor antagonist. This study investigates whether a pressor response to propranolol occurs in conscious unrestrained rats following a hypotensive response induced by phentolamine (nonselective alpha-antagonist), prazosin (selective alpha 1-antagonist) and (or) rauwolscine (selective alpha 2-antagonist), sodium nitroprusside (smooth muscle relaxant), or methacholine (muscarinic agonist). The rats were subjected to a continuous infusion of a hypotensive agent or normal saline followed by i.v. injection of propranolol. The infusion of phentolamine significantly decreased mean arterial pressure (MAP). Subsequent injection of propranolol restored MAP to the control level. Prazosin and rauwolscine each caused a small but not significant decrease in MAP which was reversed by propranolol. Concurrent infusions of prazosin and rauwolscine caused a significant decrease in MAP. Subsequent injection of propranolol caused a large pressor response which increased MAP to 20% above control MAP prior to the administration of drugs. Nitroprusside or methacholine each caused a significant decrease in MAP, but the hypotension was not antagonized by propranolol. The concurrent infusions of a low dose of nitroprusside and prazosin caused a significant decrease in MAP which was reversed by propranolol. The infusion of saline did not alter MAP, and propranolol did not cause a pressor response. It is concluded that propranolol antagonizes the hypotensive effect of an alpha-blocker but not that of sodium nitroprusside or methacholine. Our results suggest the presence of a specific interaction between alpha- and beta-antagonists.  相似文献   

14.
Sodium nitroprusside, a potent activator of soluble guanylate cyclase, potentiated mixed disulfide formation between cystine, a potent inhibitor of the cyclase, and enzyme purified from rat lung. Incubation of soluble guanylate cyclase with nitroprusside and [35S]cystine resulted in a twofold increase in protein-bound radioactivity compared to incubations in the absence of nitroprusside. Purified enzyme preincubated with nitroprusside and then gel filtered (activated enzyme) was activated 10- to 20-fold compared to guanylate cyclase preincubated in the absence of nitroprusside and similarly processed (nonactivated enzyme). This activation was completely reversed by subsequent incubation at 37 degrees C (activation-reversed enzyme). Incorporation of [35S]cystine into guanylate cyclase was increased twofold with activated enzyme, while no difference was observed with activation-reversed enzyme, compared to nonactivated enzyme. Cystine decreased the activity of nonactivated and activation-reversed enzyme about 40% while it completely inhibited activated guanylate cyclase. Mg+2- or Mn+2-GTP inhibited the incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. Also, diamide, a potent thiol oxidant that converts juxtaposed sulfhydryls to disulfides, completely blocked incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. These data indicate that activation of soluble guanylate cyclase by nitroprusside results in an increased availability of protein sulfhydryl groups for mixed disulfide formation with cystine. Protection against mixed disulfide formation with diamide or substrate suggests that these groups exist as two or more juxtaposed sulfhydryl groups at the active site or a site on the enzyme that regulates catalytic activity. Differential inhibition by mixed disulfide formation of nonactivated and activated enzyme suggests a mechanism for amplification of the on-off signal for soluble guanylate cyclase within cells.  相似文献   

15.
Growth of Escherichia coli, based upon the fermentation of glucose, is associated with a low intracellular level of superoxide dismutase. Exhaustion of glucose, or depression of the pH due to accumulation of organic acids, causes these organisms to then obtain energy from the oxidative degradation of other substances present in a rich medium. This shift in metabolism is associated with a marked increase in the rate of synthesis of superoxide dismutase. Depression of the synthesis of superoxide dismutase by glucose is not due to catabolite repression since it is not eliminated by cyclic adenosine 3',5'-monophosphate and since alpha-methyl glucoside does not mimic the effect of glucose. Moreover, glucose itself no longer depresses superoxide dismutase synthesis when the pH has fallen low enough to cause a shift to a non-fermentative metabolism. It appears likely that superoxide dismutase is controlled directly or indirectly by the intracellular level of O2- and that glucose depressed the level of this enzyme because glucose metabolism is not associated with as rapid a production of O2- as is the metabolsim of many other substances. In accord with this view is the observation that paraquat, which can increase the rate of production of O2- by redox cycling, caused a rapid and marked increase in superoxide dismutase.  相似文献   

16.
Spectroscopic methods have been employed in order to understand the molecular basis of the decrease in enzymatic activity of the antiinflammatory enzyme copper-zinc superoxide dismutase (SOD) following the covalent binding of polyethyleneglycol (PEG) chains to the protein amino-groups. The PEG modification is a general method recently proposed to improve the therapeutic index of enzymes. 1H NMR spectra on the cobalt substituted PEG-modified SOD, Cu2Co2-PEG-SOD, have been recorded. The signals are quite broad with respect to the unmodified enzyme. This has been interpreted on the basis of the effect of molecular weight on the linewidth. The analysis has shown that the histidine hydrogens involved in metal binding at the enzyme active site are the same in both native and PEG-modified SOD. Similarly, circular dichroism and absorption spectra indicate that the overall conformation of the metal clusters is not perturbed upon modification. On the other hand, azide titration shows that the affinity constant of N-3 for SOD is largely reduced upon PEG modification (K = 154 M-1 and 75 M-1 for the native and modified SOD, respectively). These results indicate that the decrease in enzymatic activity upon surface modification with PEG is not caused by a perturbation of the active site geometry, but to a decrease in the channeling of the O2- ion towards the enzyme active site.  相似文献   

17.
Induction of Superoxide Dismutase by Molecular Oxygen   总被引:59,自引:28,他引:31       下载免费PDF全文
Oxygen induces superoxide dismutase in Streptococcus faecalis and in Escherichia coli B. S. faecalis grown under 20 atm of O(2) had 16 times more of this enzyme than did anaerobically grown cells. In the case of E. coli, changing the conditions of growth from anaerobic to 5 atm of O(2) caused a 25-fold increase in the level of superoxide dismutase. Induction of this enzyme was a response to O(2) rather than to pressure, since 20 atm of N(2) was without effect. Induction of superoxide dismutase was a rapid process, and half of the maximal level was reached within 90 min after N(2)-grown cells of S. faecalis were exposed to 20 atm of O(2) at 37 C. S. faecalis did not contain perceptible levels of catalase under any of the growth conditions investigated by Stanier, Doudoroff, and Adelberg (23), and the concentration of catalase in E. coli was not affected by the presence of O(2) during growth. S. faecalis, which had been grown under 100% O(2) and which therefore contained an elevated level of superoxide dismutase, was more resistant of 46 atm of O(2) than were cells which had been grown under N(2). E. coli grown under N(2) contained as much superoxide dismutase as did S. faecalis grown under 1 atm of O(2). The E. coli which had been grown under N(2) was as resistant to the deleterious effects of 50 atm of O(2) as was S. faecalis which had been grown under 1 atm of O(2). These results are consistent with the proposal that the peroxide radical is an important agent of the toxicity of oxygen and that superoxide dismutase may be a component of the systems which have been evolved to deal with this potential toxicity.  相似文献   

18.
1. The systemic vascular resistance (SVR) and oxygen consumption of high grade Brahman (Bos indicus) steers were measured before and after treatment with guanfacin and nitroprusside to test whether the decreased whole-body oxygen consumption seen with guanfacin treatment is due to less oxygen consumption by vascular smooth muscle.2. Guanfacin changed oxygen consumption by —31% but raised SVR by 61%. Nitroprusside had no significant effect on oxygen consumption but changed SVR by —20%. Moreover, with guanfacin, the changes in oxygen consumption and SVR were temporally incongruent.3. We conclude that the lowered whole-body oxygen consumption caused by guanfacin was not due to decreased consumption by vascular tissue.  相似文献   

19.
The copper chelator N,N'-diethyldithiocarbamate (DDC), is often used to inactivate intracellular copper-zinc superoxide dismutase in erythrocytes. However, in studies with red cells we found that the compound also reacted with oxyhemoglobin to produce oxygen radicals in addition to generating lipid peroxidation products, oxidized N,N'-diethyldithiocarbamate, methemoglobin, and sulfhemoglobin. Moreover, intracellular glutathione was depleted and vital cellular enzymes were susceptible to inactivation. We, and others, have confirmed these findings in nonerythrocytic cell lines. Thus, cells exposed to DDC are severely damaged before studies on the effects of added putative superoxide producing compounds can be performed with them. In this report, we have systematically investigated other copper chelators for their ability to inactivate intracellular copper-zinc superoxide dismutase without producing the deleterious effects mentioned above. Catechol, triethylenetetramine, and tetraethylenepentamine were found to be such agents when erythrocytes were dialyzed in the cold against dilute solutions of these chelators. In addition, with a myeloid leukemic cell line (HL-60), triethylenetetramine inhibited SOD without causing significant GSH oxidation. Examination of the affinity constants of chelators active against purified copper-zinc superoxide dismutase indicated that an affinity binding constant (log K1) between 12.6 and 13.8 was required for the chelator to successfully remove copper from the enzyme.  相似文献   

20.
The complete amino acid sequence of the mangano superoxide dismutase from Escherichia coli B has been deduced through characterization of peptides from cyanogen bromide, bromonitrophenylsulfenyl skatole, citraconylated tryptic, and succinylated tryptic digests of the intact polypeptide chain and through subfragmentation of selected peptides with chymotrypsin, thermolysin, trypsin, and Staphylococcus aureus V8 extracellular protease. No significant homology is detected on comparison with the sequence of the copper- and zinc-containing superoxide dismutase from bovine erythrocytes, indicating that the manganese-iron and the copper-zinc classes of dismutases arose from independent evolutionary ancestors, a proposal previously based solely on enzymological and NH2-terminal sequence data. The amino acid sequence listed below corresponds to a molecular weight of 22,900 and appears to be identical in each subunit polypeptide of the native enzyme dimer. formula: (see text).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号