首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J K de Riel  H Paulus 《Biochemistry》1978,17(24):5146-5150
The mechanism of desensitization of glycerol kinase to allosteric inhibition by fructose 1,6-bisphosphate caused by salt, urea, and high pH has been examined in the light of the model proposed in an earlier paper [de Riel, J. K., and Paulus H. (1978), Biochemistry 17] relating subunit dissociation and ligand binding. KCl (0.4 M) causes a tenfold decrease in the affinity of tetrameric glycerol kinase for fructose, 1,6-bisphosphate but has no significant effect on the dissociation process itself. Urea (2 M) causes a large increase in the equilibrium constant for the dissociation of the glycerol kinase tetramer to dimer but has no effect on the affinity of the tetramer for the allosteric inhibitor. High pH (9--10) has only a small effect on the subunit dissociation constant but greatly reduces the rates of subunit association and dissociation. Desensitization of glycerol kinase to allosteric inhibition can thus occur by three different mechanisms, two of which are directly related to the polysteric nature of the enzyme.  相似文献   

2.
1. An investigation of the reaction mechanism of the fructose 1,6-bisphosphate-activated pyruvate kinase isolated from the hepatopancreas of the crab Carcinus maenas was conducted. The enzyme was assayed in the presence of 500 microns-fructose 1,6-bisphosphate, 75 mM-KCl and 8 mM-Mg2+free at 25 degrees C. The results are consistent with a rapid-equilibrium random mechanism. 2. Evidence is presented that suggests the formation of two mixed-substrate-product dead-end complexes, enzyme-ADP-pyruvate and enzyme-ADP-ATP. 3. Competitive substrate inhibition was observed for both substrates, ADP and phosphoenolpyruvate, suggesting the formation of the complexes enzyme-ADP-ADP and enzyme-phosphoenolpyruvate-phosphoenolpyruvate in the suggested mechanism. 4. Data from the ATP product-inhibition studies indicate the formation of the complex enzyme-ATP-ATP. This suggests that in the reverse reaction ATP also will show substrate inhibition. 5. The presence of a saturating concentration of fructose 1,6-bisphosphate does not cause full activation of the purified preparations of the enzyme. 6. Pyruvate kinase activity in the supernatant of a hepatopancreas homogenate was completely activated by fructose 1,6-bisphosphate, suggesting that the binding of this ligand to the purified pyruvate kinase was impaired.  相似文献   

3.
A new purification procedure for rat liver fructose-1,6-bisphosphatase that involves use of Procion Red-Sepharose is described. The purified enzyme was homogeneous, had a subunit Mr of 40 000-41 000 and seemed to be undegraded. The enzyme could be phosphorylated by cyclic AMP-dependent protein kinase with a stoicheiometry of one per subunit. Phosphorylation caused a 2-fold decrease in the Km of the enzyme for fructose 1,6-bisphosphate, but did not affect its allosteric responses to AMP, Mg2+ and fructose 2,6-bisphosphate.  相似文献   

4.
Binding of hexose bisphosphates to muscle phosphofructokinase   总被引:3,自引:0,他引:3  
L G Foe  S P Latshaw  R G Kemp 《Biochemistry》1983,22(19):4601-4606
On the basis of kinetic activation assays, the apparent affinity of muscle phosphofructokinase for fructose 2,6-bisphosphate was about 9-fold greater than that for fructose 1,6-bisphosphate, which in turn was about 10 times higher than that for glucose 1,6-bisphosphate. Equilibrium binding experiments showed that both fructose bisphosphates bind to phosphofructokinase with negative cooperativity; the affinity for fructose 2,6-bisphosphate was about 1 order of magnitude greater than the affinity for fructose 1,6-bisphosphate. Binding of fructose 2,6-bisphosphate to phosphofructokinase was antagonized by fructose 1,6-bisphosphate and glucose 1,6-bisphosphate and vice versa. Both fructose bisphosphates promoted aggregation of the enzyme to higher polymers as indicated by sucrose density gradient centrifugation. Other indicators of phosphofructokinase conformation such as thiol reactivity and maximum activation of in vitro phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase gave identical results in the presence of fructose 2,6-bisphosphate, fructose 1,6-bisphosphate, or glucose 1,6-bisphosphate, indicating a common conformation is produced by all three ligands. It is concluded that the sugar bisphosphates bind to a single site on the enzyme.  相似文献   

5.
6.
J E Scheffler  H J Fromm 《Biochemistry》1986,25(21):6659-6665
The fluorescent nucleotide analogue formycin 5'-monophosphate (FMP) inhibits rabbit liver fructose-1,6-bisphosphatase (I50 = 17 microM, Hill coefficient = 1.2), as does the natural regulator AMP (I50 = 13 microM, Hill coefficient = 2.3), but exhibits little or no cooperativity of inhibition. Binding of FMP to fructose-1,6-bisphosphatase can be monitored by the increased fluorescence emission intensity (a 2.7-fold enhancement) or the increased fluorescence polarization of the probe. A single dissociation constant for FMP binding of 6.6 microM (4 sites per tetramer) was determined by monitoring fluorescence intensity. AMP displaces FMP from the enzyme as evidenced by a decrease in FMP fluorescence and polarization. The substrates, fructose 6-phosphate and fructose 1,6-bisphosphate, and inhibitors, methyl alpha-D-fructofuranoside 1,6-bisphosphate and fructose 2,6-bisphosphate, all increase the maximal fluorescence of enzyme-bound FMP but have little or no effect on FMP binding. Weak metal binding sites on rabbit liver fructose-1,6-bisphosphatase have been detected by the effect of Zn2+, Mn2+, and Mg2+ in displacing FMP from the enzyme. This is observed as a decrease in FMP fluorescence intensity and polarization in the presence of enzyme as a function of divalent cation concentration. The order of binding by divalent cations is Zn2+ = Mn2+ greater than Mg2+, and the Kd for Mn2+ displacement of FMP is 91 microM. Methyl alpha-D-fructofuranoside 1,6-bisphosphate, as well as fructose 6-phosphate and inorganic phosphate, enhances metal-mediated FMP displacement from rabbit liver fructose-1,6-bisphosphatase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The allosteric fructose 1,6-bisphosphate-activated pyruvate kinase from Escherichia coli was modified with pyridoxal 5'-phosphate in the presence and in the absence of phosphoenolpyruvate, fructose 1,6-bisphosphate, MgADP and MgATP. In all cases a time-dependent inactivation was observed, but the rate and the extent of inactivation varied according to the conditions used. The kinetic properties of the partially inactivated enzyme were differently modified by addition of substrates and effectors to the modification mixture, the parameters mostly affected being those concerning fructose 1,6-bisphosphate. Tryptic peptides obtained from fully inactivated pyruvate kinase in the different conditions have been separated. In all conditions three main 6-pyridoxyllysine-containing peptides were present, the amounts of which showed significant differences in the presence of fructose 1,6-bisphosphate and MgADP. The function of the labelled peptides and the evidence supporting the physical existence of different conformational states are discussed. The main conclusion concerns the involvement of one of the above peptides in the binding of the allosteric effector fructose 1,6-bisphosphate.  相似文献   

8.
In the absence of glycolytic intermediate, fructose-1,6-bisphosphate, pyruvate kinase type K exists in the dimeric form and is readily phosphorylated, whereas in the same sample and the same conditions pyruvate kinase type M is present as a tetramer and is not phosphorylated. Addition of fructose-1,6-bisphosphate results in the association of dimeric K2 molecules to a tetrameric K4 enzyme as determined by gel filtration and cellulose acetate electrophoresis, with concomitant loss of the capacity of the K isozyme to become phosphorylated. Phosphorylated K2 dimers can also tetramerize, but with a low recovery of the radiolabel, suggesting a fructose-1,6-bisphosphate induced dephosphorylation or selective degradation. The dimeric K isozyme is enzymatically active; inactive K-type monomers can be detected by immunoblot analysis in the absence of fructose-1,6-bisphosphate, but no phosphorylated pyruvate kinase is present in this fraction. The formation of K4 tetramers can not be accomplished by the substrate phosphoenolpyruvate. Fructose-1,6-bisphosphate is an allosteric activator of pyruvate kinase type K and induces hyperbolic saturation curves for phosphoenolpyruvate. In contrast, in the absence of effectors, pyruvate kinase type M exhibits Michaelis-Menten kinetics, but sigmoidal curves can be induced by the amino acid phenylalanine. However, even in the presence of phenylalanine, the M-type maintained its tetrameric configuration and did not serve as a substrate in the phosphorylation reaction. These findings argue for the importance of subunit interaction in the regulation of phosphorylation of pyruvate kinase.  相似文献   

9.
Histidine and its derivatives increased rabbit muscle fructose 1,6-bisphosphatase activity at neutral pH with positive cooperativity. In the presence of histidine and carnosine the optimum pH shifted from pH 8.0 to 7.4. The cooperative response of the enzyme to AMP and fructose 1,6-bisphosphate was observed in the presence of the histidine derivatives. Of a number of divalent cations tested, only Zn2+ was found to be an effective inhibitor of enzyme activity at low concentrations. The kinetic data suggested that Zn2+ acted as inhibitor as well as activator for the enzyme activity; a high affinity binding site was associated with Ki of approximately 0.5 microM Zn2+ and a catalytic site was associated with Km of approximately 10 microM Zn2+. Rabbit muscle fructose 1,6-bisphosphatase bound 4 equivalents of Zn2+/mol, presumably 1 per subunit, in the absence of fructose 1,6-bisphosphate. Two equivalents of Zn2+/mol bound to the enzyme were readily removed by dialysis or gel filtration in the absence of a chelating agent. The other two equivalents of Zn2+/mol were removed by histidine and histidine derivatives of naturally occurring chelators with concomitant increase in activity.  相似文献   

10.
Active nonphosphorylated fructose bisphosphatase (EC 3.1.3.11) was purified from bakers' yeast. After chromatography on phosphocellulose, the enzyme appeared as a homogeneous protein as deduced from polyacrylamide gel electrophoresis, gel filtration, and isoelectric focusing. A Stokes radius of 44.5 A and molecular weight of 116,000 was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate resulted in three protein bands of Mr = 57,000, 40,000, and 31,000. Only one band of Mr = 57,000 was observed, when the single band of the enzyme obtained after polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate was eluted and then resubmitted to electrophoresis in the presence of sodium dodecyl sulfate. Amino acid analysis indicated 1030 residues/mol of enzyme including 12 cysteine moieties. The isoelectric point of the enzyme was estimated by gel electrofocusing to be around pH 5.5. The catalytic activity showed a maximum at pH 8.0; the specific activity at the standard pH of 7.0 was 46 units/mg of protein. Fructose 1,6-bisphosphatase b, the less active phosphorylated form of the enzyme, was purified from glucose inactivated yeast. This enzyme exhibited maximal activity at pH greater than or equal to 9.5; the specific activity measured at pH 7.0 was 25 units/mg of protein. The activity ratio, with 10 mM Mg2+ relative to 2 mM Mn2+, was 4.3 and 1.8 for fructose 1,6-bisphosphatase a and fructose 1,6-bisphosphatase b, respectively. Activity of fructose 1,6-bisphosphatase a was 50% inhibited by 0.2 microM fructose 2,6-bisphosphate or 50 microM AMP. Inhibition by fructose 2,6-bisphosphate as well as by AMP decreased with a more alkaline pH in a range between pH 6.5 and 9.0. The inhibition exerted by combinations of the two metabolites at pH 7.0 was synergistic.  相似文献   

11.
The interaction of AMP and fructose 2,6-bisphosphate with rabbit liver fructose-1,6-bisphosphatase has been investigated by proton nuclear magnetic resonance spectroscopy (1H NMR). The temperature dependence of the line widths of the proton resonances of AMP as a function of fructose-1,6-bisphosphatase concentration indicates that the nucleotide C2 proton is in fast exchange on the NMR time scale while the C8 proton is exchange limit. The exchange rate constant, koff, has been calculated for the adenine C8 proton and is 1900 s-1. Binding of fructose 6-phosphate and inorganic phosphate, or the regulatory inhibitor, fructose 2,6-bisphosphate, results in a decrease in the dissociation rate constant for AMP from fructose-1,6-bisphosphatase, as indicated by the sharpened AMP signals. A temperature dependence experiment indicates that the AMP protons are in slow exchange when AMP dissociates from the ternary complex. The rate constant for dissociation of AMP from the enzyme.AMP.fructose 2,6-bisphosphate complex is 70 s-1, 27-fold lower than that of AMP from the binary complex. These results are sufficient to explain the enhanced binding of AMP in the presence of fructose 2,6-bisphosphate and, therefore, the synergistic inhibition of fructose-1,6-bisphosphatase observed with these two regulatory ligands. Binding of fructose 2,6-bisphosphate to the enzyme results in broadening of the ligand proton signals. The effect of AMP on the binding of fructose 2,6-bisphosphate to the enzyme has also been investigated. An additional line width broadening of all the fructose 2,6-bisphosphate protons has been observed in the presence of AMP. The assignment of these signals to the sugar was accomplished by two-dimensional proton-proton correlated spectra (two-dimensional COSY) NMR. From these data, it is concluded that AMP can also affect fructose 2,6-bisphosphate binding to fructose-1,6-bisphosphatase.  相似文献   

12.
The regulation of pyruvate kinase in isolated hepatocytes from fasted rats was studied where the intracellular level of fructose 1,6-bisphosphate was elevated 5-fold by the addition of 5 mM dihydroxyacetone. In this case, flux through pyruvate kinase was increased. The increase in flux correlated with an elevation in fructose bisphosphate levels but not with P-enolpyruvate levels which were unchanged. Pyruvate kinase was activated and its affinity for P-enolpyruvate was increased 7-fold in hepatocyte homogenates. Precipitation of the enzyme from homogenates with ammonium sulfate removed fructose 1,6-bisphosphate and activation was no longer observed. These results indicate that flux through and activity of pyruvate kinase can be controlled by the intracellular level of fructose 1,6-bisphosphate. The effect of elevated fructose 1,6-bisphosphate levels on the ability of glucagon to inactivate pyruvate kinase was also studied where only covalent enzyme modification is observed. Inactivation by maximally effective hormone concentrations was unaffected by elevated levels of fructose 1,6-bisphosphate, but the half-maximally effective concentration was increased from 0.3 to 0.8 nM. Activation of the cyclic AMP-dependent protein kinase by 0.3 nM glucagon was unaffected, but the initial rate of pyruvate kinase inactivation was suppressed. These results suggest that alterations in the level of fructose 1,6-bisphosphate can affect the ability of physiological concentrations of glucagon to inactivate pyruvate kinase by opposing phosphorylation of the enzyme. Consistent with this view was the finding that physiological concentrations of fructose 1,6-bisphosphate inhibited in vitro phosphorylation of purified pyruvate kinase. Inactivation of pyruvate kinase by 0.3 nM glucagon or 1 microM phenylephrine was also suppressed by 10 nM insulin. Insulin did not act by increasing fructose 1,6-bisphosphate levels. The antagonism to glucagon correlated well with the ability of insulin to suppress activation of the cyclic AMP-dependent protein kinase. However, no such correlation was observed with phenylephrine in the absence or presence of insulin. Thus, insulin can enhance pyruvate kinase activity by both cyclic AMP-dependent and independent mechanisms.  相似文献   

13.
Inhibition of rat liver fructose-1,6-bisphosphatase by AMP was uncompetitive with respect to fructose 1,6-bisphosphate in the absence of fructose 2,6-bisphosphate, but non-competitive in its presence. AMP was unable to bind to the enzyme except in the presence of one of the fructose bisphosphates; the binding stoicheiometry was 2 molecules/tetramer. Increasing concentrations of Mg2+ increased the Hill coefficient h and the apparent Ki for AMP, whereas fructose 2,6-bisphosphate had the opposite effect. Increasing concentrations of both AMP and fructose 2,6-bisphosphate decreased h and increased the apparent Ka for Mg2+. AMP slightly decreased, and Mg2+ slightly increased, the apparent Ki for fructose 2,6-bisphosphate, but each had only small effects on h. These results are interpreted in terms of a new three-state model for the allosteric properties of the enzyme, in which fructose 2,6-bisphosphate can bind both to the catalytic site and to an allosteric site and AMP can bind to the enzyme only when the catalytic site is occupied.  相似文献   

14.
Human liver fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) has been purified 1200-fold using a heat treatment step followed by absorption on phosphocellulose at pH 8 and specific elution with buffer containing the substrate (fructose 1,6-bisphosphate) and allosteric effector (AMP). The enzyme is homogeneous in electrophoresis in polyacrylamide gel, in the presence and absence of denaturing agent. It has a molecular weight of 144 000 and is composed of four identical or nearly identical subunits. Fluorescence spectra indicate that the enzyme does not contain tryptophan residues. The pH optimum is 7.5 and the Km is determined as 0.8 microM. The enzyme is inhibited by AMP in cooperative manner with a K0 x 5 of 6 microM.  相似文献   

15.
1. Pyruvate kinase purified from the hepatopancrease of Carcinus maenas exhibited sigmoidal saturation kinetics with respect to the substrate phosphoenolpyruvate in the absence of the allosteric activator fructose 1,6-bisphosphate, but normal hyperbolic saturation was seen in the presence of this activator. The activation appears to be the result of a decrease in the s0.5 (phosphoenolpyruvate) and not to a change in Vmax. 2. In the presence of ADP and ATP at a constant nucleotide-pool size the results indicate that phosphoenolpyruvate co-operativity is lost on increasing the [ATP]/[ADP] ratio. 3. Paralleling this change is the observation that the fructose 1,6-bisphosphate activation became less at the [ATP]/[ATP] ratio was increased. This was due to the enzyme exhibiting a near-maximal activity in the absence of activator. 4. L-Alanine inhibited the enzyme, but homotropic co-operative interactions were only seen with a cruder (1000000g supernatant) enzyme preparation. The inhibition by alanine could be overcome by increasing the concentration of either phosphoenolpyruvate or fructose 1,6-bisphosphate, although increasing the L-alanine concentration did not appear to be able to reverse the activation by fructose 1,6-bisphosphate. 5. In the presence of a low concentration of phosphoenolpyruvate, increasing the concentration of the product, ATP, caused an initial increase in enzyme activity, followed by an inhibitory phase. In the presence of either fructose 1,6-bisphosphate or L-alanine only inhibition was seen. 6. The inhibition by ATP could not be completely reversed by fructose 1,6-bisphosphate.  相似文献   

16.
Submission of a rat liver homogenate made in 250 mM sucrose-1 mM EDTA to centrifugation between 9,500 times g for 10 min and 105,000 times g for 60 min results in the sedimentation of 60 to 70% of the total cellular fructose 1,6-bisphosphate aldolase (EC 4.1.2.13). Under these conditions only about one-quarter of the total triose phosphate dehydrogenase and phosphoglycerate kinase appears in the microsomal fraction. Ultrastructural immunologic localization techniques have demonstrated that the aldolase is associated with the endoplasmic reticulum, in situ. The binding of this enzyme to the membrane is sensitive to changes in pH with an optimum at 6.0, and to increasing concentrations of NaCl and fructose 1,6-bisphosphate, being about 100-fold more sensitive to the ester than to the inorganic salt.  相似文献   

17.
Wild-type glycerol kinase of Escherichia coli is inhibited by both nonphosphorylated enzyme IIIGlc of the phosphoenolpyruvate:carbohydrate phosphotransferase system and fructose 1,6-diphosphate. Mutant glycerol kinase, resistant to inhibition by fructose 1,6-diphosphate, was much less sensitive to inhibition by enzyme IIIGlc. The difference between the wild-type and mutant enzymes was even greater when inhibition was measured in the presence of both enzyme IIIGlc and fructose 1,6-diphosphate. The binding of enzyme IIIGlc to glycerol kinase required the presence of the substrate glycerol.  相似文献   

18.
The allosteric properties of the fructose-1,6-bis-phosphate-activated pyruvate kinase from Escherichia coli were examined in the presence of a number of fructose bisphosphate analogues, as well as of increased ionic strength (NaCl) and of the hydrogen-bond-breaking agent, formamide. Fructose 2,6-bisphosphate, ribulose 1,5-bisphosphate and 5-phosphorylribose 1-pyrophosphate gave allosteric activation (additive to that of fructose 1,6-bisphosphate). Formamide always decreased Vmax, but left unchanged the Km for phosphoenolpyruvate, while it decreased the concentration of fructose bisphosphate required to give half-maximal activity (K0.5). NaCl increased the K0.5 for both phosphoenolpyruvate and fructose bisphosphate, leaving Vmax unchanged. These results are consistent with ionic binding of fructose bisphosphate through phosphates and with a critical role of hydrogen bonds in stabilizing both the inactive and the active enzyme conformers.  相似文献   

19.
6-Phosphofructokinase purified from honey-bee flight muscle is inhibited by ATP and, unusually, by glucose 1,6-bisphosphate and fructose 1,6-bisphosphate. The inhibition by either of the bisphosphates is not relieved by AMP, but is relieved by fructose 6-phosphate and especially by fructose 2,6-bisphosphate. Lack of effect by AMP is consistent with a low activity of adenylate kinase in this muscle.  相似文献   

20.
The binding of beta-D-fructose 2,6-bisphosphate to rabbit muscle phosphofructokinase and rabbit liver fructose-1,6-bisphosphatase was studied using the column centrifugation procedure (Penefsky, H. S., (1977) J. Biol. Chem. 252, 2891-2899). Phosphofructokinase binds 1 mol of fructose 2,6-bisphosphate/mol of protomer (Mr = 80,000). The Scatchard plots of the binding of fructose 2,6-bisphosphate to phosphofructokinase are nonlinear in the presence of three different buffer systems and appear to exhibit negative cooperativity. Fructose 1,6-bisphosphate and glucose 1,6-bisphosphate inhibit the binding of fructose-2,6-P2 with Ki values of 15 and 280 microM, respectively. Sedoheptulose 1,7-bisphosphate, ATP, and high concentrations of phosphate also inhibit the binding. Other metabolites including fructose-6-P, AMP, and citrate show little effect. Fructose-1,6-bisphosphatase binds 1 mol of fructose 2,6-bisphosphate/mol of subunit (Mr = 35,000) with an affinity constant of 1.5 X 10(6) M-1. Fructose 1,6-bisphosphate, fructose-6-P, and phosphate are competitive inhibitors with Ki values of 4, 2.7, and 230 microM, respectively. Sedoheptulose 1,7-bisphosphate (1 mM) inhibits approximately 50% of the binding of fructose 1,6-bisphosphate to fructose bisphosphatase, but AMP has no effect. Mn2+, Co2+, and a high concentration of Mg2+ inhibit the binding. Thus, we may conclude that fructose 2,6-bisphosphate binds to phosphofructokinase at the same allosteric site for fructose 1,6-bisphosphate while it binds to the catalytic site of fructose-1,6-bisphosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号