首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Farr TJ  Huppe HC  Turpin DH 《Plant physiology》1994,105(4):1037-1042
Extraction of Chlamydomonas reinhardtii CW-15 cells by rapid freezing and thawing demonstrates that the in vivo activity of the algal glucose-6-phosphate dehydrogenase (G6PDH) is inhibited by the presence of light and activated in the dark, whereas phosphoribulosekinase (PRK) is light activated and inhibited in the dark. The effects of darkening are reversed by incubation with dithiothreitol (DTT) and mimicked by chemical oxidants, indicating that, as in higher plants, reduction via the ferredoxin-thioredoxin system likely regulates these enzymes. The two enzymes varied in their sensitivity to reduction; the inclusion of 0.5 mM DTT during extraction inhibited G6PDH, whereas PRK required treatment with 40 mM DTT for 1 h to reach maximum activation. The activation change for both enzymes was nearly complete within the 1st min after cells were transferred between light and dark, but the level of activation was relative to the incident light at low intensities; G6PDH activity decreased with increasing light, whereas PRK became more active. The reductive inhibition of G6PDH saturated at very low light, whereas PRK activation kinetics closely followed the increase in photosynthetic oxygen evolution. These results indicate that light-driven redox modulation of G6PDH and PRK is more than an on/off switch, but acts to optimize the reduction and oxidation of carbon in the chloroplast in accordance with the supply of electrons.  相似文献   

2.
Addition of the plant hormone 24-epibrassinolide to culture media stimulated the growth of a freshwater diatom, Asterionella formosa. The hormone stimulated activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme from Calvin cycle, by 6-fold. Other key metabolic enzymes, phosphofructokinase and malate dehydrogenase were also stimulated but to a lesser extent. The activity of glucose-6-phosphate dehydrogenase, involved in the oxidative pentose phosphate pathway, also increased in the presence of the hormone but only under non reducing conditions. In cells stimulated by epibrassinolide, activated enzymes were sensitive to oxidized-DTT. GAPDH purified from cells grown in the presence of the hormone was not associated with a small protein of 8.5 kDa shown to be similar to CP12. Consequently the activity of GAPDH was no longer regulated by either oxidizing or reducing conditions. Among enzymes that, like GAPDH, responded positively to reducing agent were fructose-1,6-bisphosphatase (FBPase) and glucose-6-phosphate dehydrogenase (G6PDH). These enzymes were also sensitive to, and were negatively regulated by, oxidized-DTT. The activities in extracts from illuminated cells differed from those from darkened cells: FBPase, G6PDH and GAPDH, that were activated by DTT in darkened cells were no more activated in illuminated cells, but were oxidized by oxidized-DTT. Thus, oxidizing or reducing conditions mimic the conditions in dark and light, respectively. Unlike the other enzymes, phosphofructokinase (PFK) was inhibited by DTT but oxidized-DTT reversed this effect. The enzymes shown to be redox regulated in vitro by reduction/oxidation are very likely candidates for regulation in vivo by thioredoxins.  相似文献   

3.
This article represents a summary of our contemporary understanding of carbon dioxide assimilation in photosynthesis, including both the oxygen-evolving (oxygenic) type characteristic of cyanobacteria, algae and higher plants, and the non-oxygen-evolving (anoxygenic) type characteristic of other bacteria. Mechanisms functional in the regulation of the reductive pentose phosphate cycle of oxygenic photosynthesis are emphasized, as is the reductive carboxylic acid cycle-the photosynthetic carbon pathway functional in anoxygenic green sulfur bacteria. Thioredoxins, an ubiquitous group of low molecular weight proteins with catalytically active thiols, are also described in some detail, notably their role in regulating the reductive pentose phosphate cycle of oxygenic photosynthesis and their potential use as markers to trace the evolutionary development of photosynthesis.Abbreviations NADP-GAPDH-NADP glyceraldehyde 3-phosphate dehydrogenase - FBPase fructose 1,6-bisphosphatase - FTR ferredoxin-thioredoxin reductase - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - SBPase sedoheptulos 1,7-bisphosphatase - PRK phosphoribulokinase - NADP-MDH-NADP malate dehydrogenase - CF1-ATPase chloroplast coupling factor - G6PDH glucose 6-phosphate dehydrogenase Most of the references cited in this article are reviews. For references to specific material, readers should consult the appropriate review.  相似文献   

4.
CP12 is a protein of 8.7 kDa that contributes to Calvin cycle regulation by acting as a scaffold element in the formation of a supramolecular complex with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) in photosynthetic organisms. NMR studies of recombinant CP12 (isoform 2) of Arabidopsis thaliana show that CP12-2 is poorly structured. CP12-2 is monomeric in solution and contains four cysteines, which can form two intramolecular disulfides with midpoint redox potentials of -326 and -352 mV, respectively, at pH 7.9. Site-specific mutants indicate that the C-terminal disulfide is involved in the interaction between CP12-2 and GAPDH (isoform A(4)), whereas the N-terminal disulfide is involved in the interaction between this binary complex and PRK. In the presence of NAD, oxidized CP12-2 interacts with A(4)-GAPDH (K(D) = 0.18 microm) to form a binary complex of 170 kDa with (A(4)-GAPDH)-(CP12-2)(2) stoichiometry, as determined by isothermal titration calorimetry and multiangle light scattering analysis. PRK is a dimer and by interacting with this binary complex (K(D) = 0.17 microm) leads to a 498-kDa ternary complex constituted by two binary complexes and two PRK dimers, i.e. ((A(4)-GAPDH)-(CP12-2)(2)-(PRK))(2). Thermodynamic parameters indicate that assembly of both binary and ternary complexes is exoergonic although penalized by a decrease in entropy that suggests an induced folding of CP12-2 upon binding to partner proteins. The redox dependence of events leading to supramolecular complexes is consistent with a role of CP12 in coordinating the reversible inactivation of chloroplast enzymes A(4)-GAPDH and PRK during darkness in photosynthetic tissues.  相似文献   

5.
The patterns of light activation of 4 chloroplastic enzymes were examined in mesophyll protoplasts of pea ( Pisum sativum ) in the absence or presence of oligomycin (inhibitor of oxidative phosphorylation) or antimycin A (inhibitor of cytochrome pathway) or salicylhydroxamic acid (SHAM, inhibitor of alternative pathway). The results were compared with those of DCMU (inhibitor of photosynthetic electron transport). The light activation of NADP glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH), fructose-1,6-bisphosphatase (FBPase), phosphoribulokinase (PRK) (enzymes of the Calvin cycle) and NADP malate dehydrogenase (NADP-MDH) (reflects chloroplast redox state) was more pronounced at limiting CO2 (0.1 m M NaHCO3) than that at optimal CO2 (1.0 m M NaHCO3). SHAM decreased markedly (up to 33%) the light activation of all 4 enzymes, while antimycin A or oligomycin exerted only a limited effect (<10% decrease). Antimycin A or oligomycin or SHAM had no significant effect on light activation of these 4 enzymes in isolated chloroplasts. However, DCMU caused a remarkable decrease in light activation of enzymes in both protoplasts (up to 78%) and chloroplasts (up to 69%). These results suggest that the restriction of alternative pathway of mitochondrial metabolism results in a marked decrease in the light activation of key chloroplastic enzymes in mesophyll protoplasts but not in isolated chloroplasts. Such a decrease in the light activation of enzymes could be also a secondary feedback effect because of the restriction on carbon assimilation.  相似文献   

6.
Spinach fructose 1,6-bisphosphatase (FBPase, EC 3.1.3.11), a redox-modulated chloroplast enzyme and part of the Calvin cycle, and three different Cys mutants were expressed in E. coli. The properties of the purified proteins were compared to those of native and recombinant chloroplast FBPase from the red alga Galdieria sulphuraria. In spinach chloroplast FBPase, Cys(155) and Cys(174) are engaged in the formation of the disulfide bridge. The corresponding mutants are active when expressed in E. coli, while C179S is inactive and can be reductively activated as can the wild-type enzyme. The active C174S mutant, however, could be inactivated by oxidation, and reactivated, but only by reduction, not alternatively with high pH and high Mg(2+) as is the case for the wild-type enzyme. In the sequence of Galdieria FBPase, the Cys that corresponds to Cys(179) in the spinach enzyme is lacking. However, the Galdieria FBPase, in contrast to the spinach Cys(179) mutant, does not show any indication for a comparable redox modulation of its activity. Instead, oxidation only leads to partial inactivation without any qualitative changes in enzyme properties. Upon reduction, the lost activity can be recovered.  相似文献   

7.
Available evidence suggests that the stress‐induced increase in the activity of glucose‐6‐phosphate dehydrogenase (G6PDH, EC 1.1.1.49), the key regulatory enzyme of the oxidative pentose phosphate pathway, might often be related to the presence of plant water deficit. The response of G6PDH to dark chilling in chilling sensitive plant species is still unknown. In this communication we report on this response and its dependence on the presence of chill‐induced drought stress. A chilling sensitive soybean (Glycine max L. Merr.) genotype was exposed to dark chilling of the entire plant (whole‐chilled) or only the shoots and leaves (shoot‐chilled). The development of chill‐induced drought stress upon illumination was quantified by measurement of proline and relative water content (RWC). Chill‐induced drought stress (decrease in RWC and increase in proline content) developed with time in whole‐chilled plants, but not in shoot‐chilled plants. The response of the above‐mentioned treatments on G6PDH activity in fully expanded leaves was assessed. In parallel, the effects on CO2 assimilation, PSII activity and chloroplast fructose‐1,6‐bisphosphatase (FBPase EC 3.1.3.11) and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco EC 4.1.1.39) activity were quantified. A decrease in CO2 assimilation rate, FBPase activity and ribulose‐1,5‐bisphosphate (RuBP) content was observed in whole‐chilled but not in shoot‐chilled plants. However, in shoot‐chilled plants regulation of diurnal PSII activity was altered. The increase in the activation state of NADP‐dependent malate dehydrogenase (NADP‐MDH EC 1.1.1.82) in shoot‐chilled plants suggests an increase in stromal redox state. Although the two different dark chilling treatments resulted in distinct physiological and biochemical effects, both induced an increase in foliar G6PDH activity, suggesting an important role of this enzyme during and following dark chilling stress, irrespective of the presence of chill‐induced drought stress.  相似文献   

8.
9.
The activity of glucose-6-phosphate dehydrogenase (G6PDH, E. C. 1.1.1.49) in a reconsituted pea chloroplast system was assayed spectrophotometrically by the reduction of NADP, ming glucose-6-phosphate as substrate. Deactivation of G6PDH could be intensified by adding lightreduced thioredoxin (Td) into the reconstituted chloroplast system. The experimental results presented suggest that Td plays an important role not only in the dark activation, but also in the light deactivation of G6PDH in chloroplasts. There were two isozymes of G6PDH in green and in etiolated pea seedlings. The effects of dithiothreitol (DTT) and Td on G6PDH in etiolated seedlings were different from that in chloroplasts. The light regulation of G6PDH in chloroplasts is mediated through Td.  相似文献   

10.
Cadmium represents one of the most toxic pollutants in plant ecosystems: at high concentrations it can cause severe effects, such as plant growth inhibition, decrease in photosynthesis and changes in plant basal metabolism. Changes in pigments’ content, RubisCO large subunit, and D1 protein indicated a severe reduction in photosynthetic efficiency. Furthermore, the decrease of nitrate reductase activity and changes in free amino acids levels show a general stress condition of nitrogen assimilation. Cadmium increased the activities of ROS scavenging enzymes; among these, ascorbate peroxidase rate was the most noticeably increased. It is worth noting that glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.64), showed changes in both activities and occurrence during cadmium stress. Interestingly, our data suggest that G6PDH would modulate redox homeostasis under metal exposure, and possibly satisfy the increased request of reductants to counteract the oxidative burst induced by cadmium. Therefore, the results suggest that APX and G6PDH may play a pivotal role to counteract the oxidative stress induced by cadmium in young barley plants.  相似文献   

11.
The thioredoxin-regulated chloroplast protein CP12 forms a multienzyme complex with the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). PRK and GAPDH are inactivated when present in this complex, a process shown in vitro to be dependent upon oxidized CP12. The importance of CP12 in vivo in higher plants, however, has not been investigated. Here, antisense suppression of CP12 in tobacco (Nicotiana tabacum) was observed to impact on NAD-induced PRK and GAPDH complex formation but had little effect on enzyme activity. Additionally, only minor changes in photosynthetic carbon fixation were observed. Despite this, antisense plants displayed changes in growth rates and morphology, including dwarfism and reduced apical dominance. The hypothesis that CP12 is essential to separate oxidative pentose phosphate pathway activity from Calvin-Benson cycle activity, as proposed in cyanobacteria, was tested. No evidence was found to support this role in tobacco. Evidence was seen, however, for a restriction to malate valve capacity, with decreases in NADP-malate dehydrogenase activity (but not protein levels) and pyridine nucleotide content. Antisense repression of CP12 also led to significant changes in carbon partitioning, with increased carbon allocation to the cell wall and the organic acids malate and fumarate and decreased allocation to starch and soluble carbohydrates. Severe decreases were also seen in 2-oxoglutarate content, a key indicator of cellular carbon sufficiency. The data presented here indicate that in tobacco, CP12 has a role in redox-mediated regulation of carbon partitioning from the chloroplast and provides strong in vivo evidence that CP12 is required for normal growth and development in plants.  相似文献   

12.
光还原的硫氧还蛋白对6—磷酸葡萄糖脱氢酶的钝化作用   总被引:1,自引:0,他引:1  
测定了豌豆(Pisum sativum)幼苗的重组叶绿体中光还原的硫氧还蛋白(Td)对6-磷酸葡萄糖脱氢酶(G6PDH)的钝化作用.结果表明,Td在叶绿体G6PDH的光抑制和暗激活中均起重要的调节作用.在其绿色叶片和黄化组织中,G6PDH都存在着两种同工酶,但二硫苏糖醇(DTT)和Td对黄化幼苗中G6PDH活性的影响与叶绿体的明显不同,DTT对黄化幼苗G6PDH的钝化作用和氧化Td的活化作用均低于对叶绿体中的这两种作用.  相似文献   

13.
Hyperthermophilic archaea have an unusual phosphatase that exhibits activity toward both inositol-1-phosphate and fructose-1,6-bisphosphate, activities carried out by separate gene products in eukaryotes and bacteria. The structures of phosphatases from Archaeoglobus fulgidus (AF2372) and Methanococcus jannaschii (MJ0109), both anaerobic organisms, resemble the dimeric unit of the tetrameric pig kidney fructose bisphosphatase (FBPase). A striking feature of AF2372, but not of MJ0109, is that the sulfhydryl groups of two cysteines, Cys150 and Cys186, are in close proximity (4 A). A similar arrangement of cysteines has been observed in chloroplast FBPases that are regulated by disulfide formation controlled by redox signaling pathways (ferredoxin/thioredoxin). This mode of regulation has not been detected in any other FBPase enzymes. Biochemical assays show that the AF2372 phosphatase activity can be abolished by incubation with O(2). Full activity is restored by incubation with thiol-containing compounds. Neither the C150S variant of AF2372 nor the equivalent phosphatase from M. jannaschii loses activity with oxidation. Oxidation experiments using Escherichia coli thioredoxin, in analogy with the chloroplast FBPase system, indicate an unexpected mode of regulation for AF2372, a key phosphatase in this anaerobic sulfate reducer.  相似文献   

14.
In a recent paper (Wenderoth et al., J Biol Chem 272: 26985–26990, 1997) we reported that the positions of the two redox regulatory cysteines identified in a plastidic G6PD isoform from potato (Solanum tuberosum L.) differ substantially from those conserved in cyanobacterial G6PDH sequences. To investigate the origin of redox regulation in G6PDH enzymes from photoautotrophic organisms, we isolated and characterized several G6PD cDNA sequences from higher plants and from a green and a red alga. Alignments of the deduced amino acid sequences showed that the cysteine residues cluster in the coenzyme-binding domain of the plastidic isoforms and are conserved at three out of six positions. Comparison of the mature proteins and the signal peptides revealed that two different plastidic G6PDH classes (P1 and P2) evolved from a common ancestral gene. The two algal sequences branch off prior to this class separation in higher plants, sharing about similar amino acid identity with either of the two plastidic G6PDH classes. The genes for cytosolic plant isoforms clearly share a common ancestor with animal and fungal G6PDH homologues, whereas the cyanobacterial isoforms branch within the eubacterial G6PDH sequences. The data suggest that cysteine-mediated redox regulation arose independently in G6PDH isoenzymes of eubacterial and eukaryotic lineages.  相似文献   

15.
16.
Both NAD- and NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (G3PDH) (EC 1.2.1.12) activities were detected in glucose-grown cells of Pseudomonas aeruginosa strain PAO. After growth on gluconeogenic substrates such as citrate, the activity of the NAD-G3PDH was reduced severalfold in contrast to little change for the NADP-G3PDH. The two G3PDH activities could be separated by ammonium sulphate fractionation. PAGE revealed the presence of two G3PDH isoenzymes of 140 (NADP-specific) and 315 (NAD-specific) kDa. Slight differences were observed in the thermostabilities and pH optima of the two enzymes whereas the regulation of their activities by various compounds varied strongly. The NADP-G3PDH enzyme was activated by ATP, reduced NAD, and fructose 6-phosphate. It was inhibited by fructose 1,6-diphosphate and 6-phosphogluconate. The NAD-G3PDH enzyme was inhibited by ATP, reduced NAD, and 6-phosphogluconate; it was slightly activated by reduced NADP. The possible roles of these isoenzymes in the control of hexose catabolism and gluconeogenesis in P. aeruginosa are discussed.  相似文献   

17.
Illumination of intact chloroplasts and treatment of chloroplast stroma with dithiothreitol (DTT) both inactivate glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) to less than 10% apparent activity when assayed under standard conditions. Illumination of intact protoplasts and incubation of leaf extract with DTT inactivate about 25-35% of the total G6PDH activity. In the leaf extract, however, further loss of activity is observed if NADP is absent. Light- and DTT-inactivated chloroplast G6PDH can be reactivated by oxidation with sodium tetrathionate or the thiol oxidant diamide. Chloroplast G6PDH is as sensitive toward reductive enzyme modulation in a stromal extract as are other light/dark modulated enzymes, e.g., NADP-malate dehydrogenase. Also, glutathione, provided it is kept reduced, is sufficient to cause inactivation. Light- and DTT-induced inactivation are shown to be due to a Km shift with respect to glucose-6-phosphate (G6P) from 1 to 35 and 43 mM, respectively, and with respect to NADP from 10 to 50 microM without any significant change of the Vmax. NADPH competitively (NADP) inhibits the enzyme (Ki = 8 microM). Reactivation by oxidation can be explained by an enhanced affinity of the oxidized enzyme toward G6P and NADP. The pH optimum of the reduced enzyme is more in the alkaline region (pH 9-9.5) as compared to that of the oxidized form (pH 8.0). The presence of 30 mM phosphate causes a shift of 0.5 to 1.0 pH unit into the alkaline region for both forms.  相似文献   

18.
19.
20.
Liu Y  Wu R  Wan Q  Xie G  Bi Y 《Plant & cell physiology》2007,48(3):511-522
The pivotal role of glucose-6-phosphate dehydrogenase (G-6-PDH)-mediated nitric oxide (NO) production in the tolerance to oxidative stress induced by 100 mM NaCl in red kidney bean (Phaseolus vulgaris) roots was investigated. The results show that the G-6-PDH activity was enhanced rapidly in the presence of NaCl and reached a maximum at 100 mM. Western blot analysis indicated that the increase of G-6-PDH activity in the red kidney bean roots under 100 mM NaCl was mainly due to the increased content of the G-6-PDH protein. NO production and nitrate reductase (NR) activity were also induced by 100 mM NaCl. The NO production was reduced by NaN(3) (an NR inhibitor), but not affected by N(omega)-nitro-L-arginine (L-NNA) (an NOS inhibitor). Application of 2.5 mM Na(3)PO(4), an inhibitor of G-6-PDH, blocked the increase of G-6-PDH and NR activity, as well as NO production in red kidney bean roots under 100 mM NaCl. The activities of antioxidant enzymes in red kidney bean roots increased in the presence of 100 mM NaCl or sodium nitroprusside (SNP), an NO donor. The increased activities of all antioxidant enzymes tested at 100 mM NaCl were completely inhibited by 2.5 mM Na(3)PO(4). Based on these results, we conclude that G-6-PDH plays a pivotal role in NR-dependent NO production, and in establishing tolerance of red kidney bean roots to salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号