首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 195 毫秒
1.

Background and Aims

In clonal plants producing vegetative offspring, performance at the genet level as well as at the ramet level should be investigated in order to understand the entire picture of the population dynamics and the life history characteristics. In this study, demography, including reproduction and survival, the growth patterns and the spatial distributions of ramets within genets of the clonal herb Convallaria keiskei were explored.

Methods

Vegetative growth, flowering and survival of shoots whose genets were identified using microsatellite markers were monitored in four study plots for 3 years (2003–2005). The size structures of ramets in genets and their temporal shifts were then analysed. Their spatial distributions were also examined.

Key Results

During the census, 274 and 149 ramets were mapped in two 1 × 2 m plots, and 83 and 94 ramets in two 2 × 2 m quadrats. Thirty-eight genotypes were identified from 580 samples. Each plot included 5–18 genets, and most ramets belonged to the predominant genet(s) in each plot. Shoots foliated yearly for several years, but flowering ramets did not have an inflorescence the next year. A considerable number of new clonal offspring persistently appeared, forming a bell-shaped curve of the size structure of ramets in each genet. Comparing the structures modelled by the normal distributions suggested variation among ramets belonging to a single genet and variation among genets. Furthermore, spatial analyses revealed clumped and distant distributions of ramet pairs in a genet, in which the distant patterns corresponded to the linearly elongating clonal growth pattern of this species.

Conclusion

Characteristics of ramet performances such as flowering and recruitment of clonal offspring, in addition to growth, played a large part in the regulation of genet dynamics and distribution, which were different among the studied genets. These might be characteristics particularly relevant to clonal life histories.Key words: Clonal plant, Convallaria keiskei, demography, genet, genetic identification, growth pattern, life history, ramet, spatial distribution  相似文献   

2.
Clonal growth occurring below the ground makes it difficult to identify individuals and demonstrate the demographic features of a focal plant species. In this study, genotypically identified ramets of a rhizomatous clonal herb, Convallaria keiskei Miq., were monitored for their growth, survival, and reproduction from 2003 to 2006. After the monitoring period, their subterranean organs were excavated to explore the underground connections of established ramets and the direction of clonal growth. We then combined data on the fate of the monitored ramets with the information of rhizome connections, clarifying reproductive demography at both the ramet and genet levels. Although each ramet initiated both sexual reproduction (via flowering) and clonal growth, clonal growth tended to precede sexual reproduction. In a surveyed genet, 51.0% of ramets produced flowers and 29.6% generated clonal offspring during the study period. Consequently, we clarified the reproductive demography of C. keiskei: clonal growth tended to precede flowering in a ramet, and a genet can keep reproducing every season at the genet level, despite a ramet not having inflorescence every year.  相似文献   

3.
Clonal structure in clonal plants can affect sexual reproduction. Individual ramets can decrease reproduction if their neighbors are ramets of the same genet due to inbreeding depression or self-incompatibility. We assessed ramet reproductive success in the partial self-incompatible Ferocactus robustus (Cactaceae) as a function of floral display size in focal ramets and floral display size and clonal structure of their reproductive neighborhoods. Ramets were labeled, sized in number of stems, mapped and genetically identified through RAPD markers in one population. A pollen dispersal area of 15-m radius was established for each ramet to determine the clonal diversity in the neighborhoods. Flower production and fruit set were counted on a monthly basis during one reproductive season as a surrogate of ramet fitness. We expected a decrease in individual ramet reproductive success as a function of the number of reproductive ramets of the same genet in the neighborhood. A total of 272 sampled ramets revealed 116 multilocus genotypes, showing high clonal diversity in the population (G/N = 0.43, D = 0.98). Clonal diversity of neighborhoods ranged from 0.06 to 1 and fruit set varied from 0 to 76.9%. Individual ramet reproductive success was influenced by (1) mate availability, (2) floral display size of a genet within the reproductive neighborhood, and (3) the proportion of distinguishable genotypes. Floral display size of genets and ramets coupled with the genetic diversity within the reproductive neighborhood determines the low sexual reproduction in F. robustus.  相似文献   

4.
The life-history characteristics of Cardamine leucantha (Tausch) O. E. Schulz (Brassicaceae) are described. The species is an herbaceous perennial that favors open but relatively moist habitats. It is distributed from Kyushu to Hokkaido in Japan but also occurs in Korea, Mongolia, China and the Russian Far East. In southwestern Japan, shoots start sprouting from mid- to late April, reaching approximately 30–70 cm in height, with 5–10 compound leaves. Ramets simultaneously produce one or more stoloniferous rhizomes that elongate until new ramets are formed at the tips. Cardamine leucantha has a pseudo-annual life cycle, in which mother ramets wither at the end of each season and only daughter ramets appear aboveground in the next year. As a result, ramet positions change annually. In a study population, the number of flowers averaged 23.9 ± 21.0 per ramet and fruit set was 44.2 ± 24.8% (10.4 ± 10.1 fruits per ramet). Ramets produced 3.8 ± 2.3 rhizomes that were 22.0 ± 15.6 cm long. The species sometimes forms large populations. A single genet develops into a group of disconnected ramets spreading via clonal growth. Reproductive characteristics (e.g., fruit set and numbers of flowers and rhizomes) vary among populations, resulting in interpopulation differences in genet structure. Because the reference genome became available recently, established molecular tools will be applied effectively for the investigations of C. leucantha as a model clonal plant.  相似文献   

5.
马青青  刘建军  余鸽  刘伟  马亦生 《生态学报》2016,36(20):6496-6505
利用SSR分子标记技术分析了佛坪国家级自然保护区秦岭箭竹(Fargesia qinlingensis)的克隆多样性和克隆结构,以探讨小尺度范围内秦岭箭竹自然居群遗传变异的分布特征,对该种开花特性、高山地区生态环境维护和大熊猫的保护提供重要依据。结果表明7对SSR引物共扩增出79个位点,其中多态性位点77个,多态位点百分率(PPB)为97.47%。秦岭箭竹的142个分株共形成107个克隆,最大克隆可达5 m。克隆多样性略高于其他克隆植物的平均值(D=0.62,G/N=0.17,E=0.68),基因型比率(G/N)、Simpson指数(D)、平均克隆大小(N/G)和Fager均匀性指数(E)分别为0.7535、0.9680、1.3271和0.5109。克隆空间结构分析表明秦岭箭竹的克隆构型为密集型,各克隆呈镶嵌性分布,同一克隆的分株排列紧密。克隆聚类分析表明各克隆之间聚类不明显,总体上来自同一样地的克隆被聚为一类。空间自相关分析显示在空间距离为36 m范围内,分株比基株有更显著的空间遗传结构,空间自相关系数r的取值范围分别为0.084—0.626和0.024—0.288,说明克隆繁殖在一定程度上限制了空间遗传结构的范围。样地内秦岭箭竹个体在空间距离小于44 m时存在显著的正相关空间结构,特别是在4 m处表现出最大的空间自相关系数(r=0.626),表明空间距离相距4 m内的个体最有可能属于同一克隆,4 m比5 m更能表现出清晰的克隆结构,X-轴截距为52.280,代表了秦岭箭竹不规则克隆的平均最小长度。秦岭箭竹的克隆多样性和克隆结构与初始苗补充、花粉散播方式和微环境差异有关。  相似文献   

6.
Fertile ramets of bumblebee-pollinated Alstroemeria aurea, a clonal perennial native to the temperate forests of the southern Andes, produce single terminal inflorescences that may bear two or more temporally non-overlapping whorls of flowers. While fruit set is commonly high (>80%) among early-opening flowers, it is usually low (<20%) among late-opening flowers within ramets. Using flowering ramets with two whorls of flowers, we examined experimentally the following related hypotheses. First, late flowers act as a reserve of ovaries, increasing their likelihood of setting seed when early fruits abort due to either pollen or resource limitation. Second, where early fruit abortion has occurred, plants may actively ensure pollination of late flowers by increasing their attractants and rewards. In a natural population, we simulated (1) lack of pollen deposition in early flowers, by excising their stigmas just before receptivity, and (2) resource limitation, by removing all the leaves from an experimental flowering ramet. Treatments were applied to individual ramets according to a 2 × 2 factorial design. We found that when early flowers failed to set fruit due to stigma excision, nectar secretion and particularly pollen receipt strongly increased in late flowers. Higher pollen deposition contributed significantly to the observed five-fold increase in seed output of late flowers. Fruit and seed set from early flowers were more negatively affected by defoliation than that from late flowers. Defoliation did not interfere with a ramet's capacity to increase late reproductive output when early reproduction failed. These results support the assertion that late flowers act as a reserve of ovaries helping a plant to cope with an unpredictable environment. These results also suggest that plants may actively increase pollinator visitation by opportunistically increasing flower rewards. Received: 23 June 1998 / Accepted: 3 May 1999  相似文献   

7.
To understand the evolution of clonal reproduction and the diversity of clonal plants, it is necessary to clarify the characteristics of each clonal habit. There has been little research on whether bulbils alter spatial genetic structure (SGS) because of the lack of connection to maternal ramets. We used simple-sequence-repeat (SSR) markers to determine the fine-scale SGS of the dioecious plant Dioscorea japonica, which disperses both as bulbils and as seeds. We also evaluated the contributions of sexual and clonal reproduction and tested for spatial sex segregation (SSS). We discovered 111 genets from 394 ramets in a 2.8-ha plot. Genotypic richness (R = 0.28) and clonal diversity (Simpson’s D = 0.94, Fager’s E = 0.90) were high. We did not find SSS, suggesting that the population does not suffer from a shortage of mating pairs due to clonal reproduction. The Sp values revealed moderate SGS at the genet level (Sp = 0.013–0.014), and the genets intermingled at a local scale. Significant SGS at the ramet level showed that ramets within the same genet tended to aggregate. We also found a skewed clonal spatial distribution. The spatial extent of genets was positively correlated with the number of ramets within a genet. The contribution of bulbil production to the variance of parent–offspring gene dispersal was about one–fifth the contribution from sexual reproduction. These results suggest that the dispersal via bulbils affects the SGS in D. japonica, although its contribution to gene dispersal is small compared to the contribution of sexual reproduction.  相似文献   

8.
Patterns of sexual reproduction and clonal growth were investigated in the understory palm Reinhardtia gracilis var. gracilior over a 3-yr period. R. gracilis is a very abundant clonal palm in the tropical rain forest of Los Tuxtlas, Veracruz, México. Because ramets form clumps, genets are easily identified in the field. Genets were monitored in a 0.5-ha area, and classified by size according to the number of ramets they possessed. In contrast to clonal growth, sexual reproduction was highly dependent on genet size. The probability of reproduction, the number of inflorescences, and the number of fruits produced were positively correlated with genet size. However, neither the probability of producing a ramet, nor the number of ramets produced per genet were correlated with genet size. Over the 3 yr of study, 55% of the genet population had at least one ramet with reproductive structures, while <1% (a single genet in one year) had six ramets with flowers. Thirty-two percent of the mature genets reproduced during each of three consecutive years. In contrast, 58% of the genets produced no new ramets during these 3 yr. No evidence was found of a trade-off between clonal growth and sexual reproduction. Ramet production increases genet size and this in turn increases genet reproductive performance. Clonal growth in this species may be viewed as a growth strategy that tends to maximize genet fitness.  相似文献   

9.
Clarification of clonal growth pattern is critical for understanding the population dynamics and reproductive system evolution of clonal plant species. The contribution of clonality to the spatial genetic structure (SGS) within populations is also an important issue. I examined the spatial distribution of genetic variability within two populations of the coastal plant Carex kobomugi using seven microsatellite loci. Genotyping of 226 and 140 ramets within 14 × 40 m and 14 × 34 m plots on two populations revealed 36 and 33 multilocus genotypes, respectively. To quantify the extent of intermingling among clones, for each genet, I calculated the dominance of ramets belonging to a particular genet within a spatial range of the genet. Furthermore, I analyzed spatial distribution of genotypes within 2 × 2 m and 1 × 2 m quadrats using second-order spatial statistics. These analyses indicated that clones are highly intermingled, suggesting a low level of spatial interaction among clones. Spatial autocorrelation analysis of kinship coefficient including all pairs of ramets showed significantly stronger SGS than analysis considering only pairs between different genets. I conclude that clonal propagation largely contributes to SGS at a fine scale.  相似文献   

10.
 羊柴(Hedysarum laeve)是豆科多年生半灌木,在自然条件下可以同时进行有性繁殖和克隆繁殖。该文在野外条件下研究了不同水平的水分和养 分处理对羊柴种群的繁殖权衡的影响。结果表明,与对照相比,增加一定量的水分处理显著减少了花和荚果的生物量;显著增加了克隆分株枝 的生物量,显著减少了分株根茎的生物量, 但没有影响其它部分的生物量。增加一定量的水分会抑制有性繁殖,改变生物量对克隆繁殖分株各 部分的分配比例。与对照相比,增加一定量的养分能够促进有性繁殖,抑制克隆繁殖。  相似文献   

11.
Plant mating systems have received considerable attention because the proportion of selfed vs. outcrossed progeny is an important evolutionary factor. In clonally reproducing plants, geitonogamous selfing between distant ramets belonging to the same genet is expected to be widespread, yet empirical data are sparse. Nothing is known about between‐ramet selfing in aquatic flowering plants with subaqueous pollen transfer, most of which display pronounced clonal reproduction. From two locations in the western Baltic Sea, I present data on the effects of patch isolation and clonal diversity on the outcrossing rate of eelgrass, Zostera marina L., based on the genotypes of maternal plants and recently fertilized ovules scored at eight microsatellite loci. There were no differences in outcrossing rates between vegetation patches and continuous meadow although patches were nearly always composed of single genets. Quantitative effects of clonal diversity were present in the continuous vegetation where a significant positive correlation between genet diversity and the proportion of outcrossed offspring was detected (Kendall’s τ=0.82, P=0.0017). On a population‐scale as well, the genotypic diversity was positively correlated with outcrossing. The relative fitness of selfed offspring was low (ω ± 95% confidence interval=0.56 ± 0.032 and 0.322 ± 0.15) indicating that geitonogamy incurred substantial fitness costs. Selfing rates in Z. marina may not be in evolutionary equilibrium because of spatial and temporal heterogeneity of clonal size and diversity. The high prevalence of dioecy in seagrasses may have evolved to avoid the fitness costs associated with geitonogamy.  相似文献   

12.
To clarify the characteristics of clonal growth ofMallotus japonicus, we excavated all roots of this species in a plot and ascertained the connections between shoots. All shoots examined were ramets that originated from roots. Young ramets grew in shady sites as well as sunnier sites, indicating that ramet production was not dependent on local light conditions.  相似文献   

13.
A. Pornon  N. Escaravage 《Plant Ecology》1999,141(1-2):145-150
Genotypic structure of a closed population of the clonal ericaceous shrub Rhododendron ferrugineum is examined in the light of two independent studies previously conducted on this species. In the first study, spatial distribution of genotypes in the closed population was inferred from the amplified fragment length polymorphism (AFLP) procedure. Age of clones was estimated using their spatial extent and the annual growth rate of shoots. In the second study, ramet demography was studied in the three most representative stages of shrub invasion on two different sites, including the site where the population investigated by AFLP grew. The demographic data recorded were the area occupied by ramets and ramet age, and from this information the developmental pattern of Rhododendron populations was determined. Additional data such as genet density and distance between genets were calculated.These two sources of information allow us to propose that all or most of the clones detected in the closed population established at the early successional stage, and that the present genotypic structure was established several hundred years ago, long before the population reached total closure. Hypotheses concerning the future development of this genotypic structure are discussed.  相似文献   

14.
Abstract: In many clonal plant species seedling recruitment is restricted to short colonization episodes early in the development of the population, and clonal diversity (i.e., genet diversity) in the population is expected to decrease with increasing population age. In established populations of the pseudo-annual Circaea lutetiana seedling recruitment has previously not been observed. Therefore, we expected established populations to have low clonal diversities. We analysed number and frequency of genets and spatial distribution of genets in six differently-aged C. lutetiana populations with the use of four informative RAPD primers. We found relatively low clonal diversities in young populations but very high clonal diversities in established populations. Therefore, the hypothesis was rejected that seedling recruitment does not occur in established populations. Moreover, we did not find large genet size asymmetries in established populations. Genet size differences can be caused by stochastic processes or by fitness related traits, such as differences in vegetative reproduction. Because vegetative propagation of ramets is dependent on ramet size, and the number of ramets and the size of each ramet determine genet size, we expected that large genets produced, on average, large ramets. However, this was not the case, suggesting that stochastic processes caused genet size differences. Genet size may also be bounded if spatial distribution of genets is affected by micro-habitat differences. For this we expected to find a clumped spatial distribution of ramets of the same genet. However, ramets of large genets were always found intermingled with ramets belonging to other genets.  相似文献   

15.
余鸽  龙凤来  刘建军  马青青  康永祥  黄建  曹庆 《生态学报》2017,37(14):4743-4753
很多竹类植物是典型的克隆植物,也是大熊猫的食物。研究典型竹子种群克隆结构的形成和发展对竹林的生产和抚育具有理论和实践意义,可为预测该竹林群落的演替趋势和大熊猫保护提供科学依据。利用SSR标记研究不同年龄A(7龄)、B(30龄)和C(60龄)巴山木竹种群的克隆结构和多样性,探讨小尺度范围内不同年龄巴山木竹种群的克隆结构及斑块的建立和发展。8对SSR引物共扩增出了118个位点,3个种群样地的256个样本共检测到了49个克隆(基因型),A、B和C种群分别检测出31、10个和8个克隆。随着种群年龄的增长,巴山木竹克隆面积增加,克隆数量减少;A和B样地各克隆分布格局为团块状,而C样地克隆既有团块状又有离散状。这一结果显示出在幼苗定居的初期,基株可能以短距离的克隆延伸为主从而呈现出团块状;而随着年龄的增长,克隆面积不断扩大,当复轴混生型的巴山木竹克隆受到强大的压迫时,基株可能会进行较多的单轴和长距离克隆延伸,呈现出离散状。Mantel检测和空间自相关分析都支持3个样地在小尺度范围内存在明显的克隆空间遗传结构。3个样地在10 m等级下显著的正相关空间遗传结构距离为3.1、28、48 m,X-轴截距为9.051、30.698和50.536,空间自相关系数的范围分别为0.1—0.167、0.008—0.703和0.006—0.735。由此可推断,随着年龄的增长,巴山木竹克隆斑块的规模在不断地扩大,同一克隆的分株数量增加,在均匀取样情况下,正相关空间遗传结构距离范围内取到具有相同基因型的可能性越大。A、B和C 3样地的基因型比率(G/N)为1、0.14和0.055,Simpson多样性指数(D)分别为1、0.876和0.744。这说明巴山木竹幼苗期基因型比例远远高于成年的竹林,随着年龄的增长巴山木竹克隆多样性虽有所降低,但由于有性繁殖的作用仍然保持了较高的多样性。聚类和主坐标分析均表明总体上各样地的克隆被聚为一类,但不同样地少数克隆的基因型有重叠和聚集,可推断出不同巴山木竹种群之间可能存在着基因流动和近似的克隆起源。  相似文献   

16.
The rhizomatous perennial Pityopsis graminifolia was studied in a Florida sandhill community in an annually burned site, a periodically burned site, and a site that has been protected from fire since 1965. These different fire regimes significantly affected the demography and life histories of both plants and plant parts in this clonal species. Fires resulted in reductions in ramet biomass and height, and an increase in the (root + rhizome)/shoot biomass ratio. Burning also decreased the total number of flower heads and new rhizomes produced per ramet. However, the survivorship of initiated rhizomes was greater in burned sites and resulted in a larger number of established daughter ramets per clone. As a result, in burned sites there was a shift in clone structure toward larger numbers of smaller ramets, but there were no significant reductions in seed or rhizome production on a per genet basis. The results showed that the responses to fire in P. graminifolia are different when measured at the genet vs. ramet level and that the effects of fire on clones can be explained by demographic responses of plant parts. Population regeneration in the study sites was dependent on successful clonal ramet production because no seedling recruitment was observed. This suggests that disturbances other than fire are important for new genet recruitment in these clonal populations.  相似文献   

17.
Michael T. Ganger 《Oecologia》1997,110(2):231-236
Canada mayflower (Maianthemum canadense Desf.), a rhizomatous, perennial herb, was the subject of a 2-year field experiment that examined two factors potentially affecting fruit and seed production: pollen addition and ramet isolation. Ramets were either open pollinated or overpollinated by hand to supplement natural levels. Rhizomes of the ramets were either severed, to prevent resource supplementation from the genet, or left intact. Ramets that were overpollinated matured more fruits and more seeds than ramets that were open pollinated. Thus, mayflower appears to have been pollen limited in both years. Ramets that were open pollinated and whose rhizomes were severed matured as many fruits, seeds, and seeds/fruit as ramets that were open pollinated and whose rhizomes were left intact. Ramets that were overpollinated and whose rhizomes were severed matured fewer fruits, seeds, and seeds/fruit than overpollinated ramets whose rhizomes were left intact. It appears that at natural levels of pollination, mayflower ramets are physiologically independent but as the level of pollen increases, mayflower ramets receive support from other parts of the genet. Received: 13 May 1996 / Accepted: 1 November 1996  相似文献   

18.
Marcelo A. Aizen 《Oecologia》1997,111(3):404-412
Local density and sexual composition are two aspects of floral neighborhoods thought to influence pollination and seed output of recipient plants. I characterized the floral neighborhood of 436 flowering ramets of Alstroemeria aurea, a southern Andean perennial, distributed among three sites. On each ramet, I measured total pollen receipt and seed output. The long-lived, bumblebee-pollinated flowers of A. aurea are synchronously protandrous with a given ramet being either all male or all female and thus incapable of self or geitonogamous pollination at the ramet level. Even though each ramet changes sex over time, A. aurea forms floral neighborhoods that remain stable with respect to density and sex ratio during the span of a focal ramet female phase. Contrary to expectation, under field conditions neither local density nor sexual identity explained significant amounts of variation in pollen receipt. Density of neighboring flowering ramets marginally affected pollen receipt in two of the three populations but in opposite directions. Despite the absence of strong effects of neighborhood sexual composition on pollen receipt, the sexual identity of neighbors affected seed output which suggests effects on the quality of pollination due to changes in patterns of pollen flow. I also compared pollen loads on the stigmas of artificially isolated ramets (6 m) with those on experimental focal ramets surrounded by six close neighbors (20 cm) that were either all male or all female. Here, pollen receipt by focal ramets in all-male neighborhoods was 1.3 times greater than in isolated ramets, and 3.8 times greater than in ramets in all-female neighborhoods. In these artificial neighborhoods, stigmatic pollen deposition increased significantly over time. In nature, rates of bumblebee visits were higher in female-biased (early-flowering) than in male-biased (late-flowering) co-occurring floral patches. Thus, spatio-temporal shifts in visitation frequencies associated with the sexual composition of floral neighborhoods might compensate for spatial variability in pollen availability within populations and explain the discrepancies between empirical and experimental results. Received: 11 June 1996 / Accepted: 24 March 1997  相似文献   

19.
Clonal propagation becomes more abundant with increasing altitudes as environmental conditions worsen. To date, little attention has been paid to the way in which clonal propagation affects genetic diversity and the fine‐scale spatial genetic structure (FSGS) of clonal alpine trees. An AFLP study was undertaken to quantify the clonal and genetic diversity and FSGS of the vulnerable treeline species Polylepis reticulata in Ecuador. We successfully genotyped 32 and 75 ramets within 4 m × 100 m (coarse scale) and 4 m × 4 m (fine scale) transects of one population, respectively. Higher genotypic diversity was detected at the coarse scale than at the fine scale, while lower genetic diversity was detected for P. reticulata than other Polylepis spp. at both scales. Significantly stronger FSGS was detected at the ramet level than the genet level for P. reticulata within a spatial distance of 3 m. The studied P. reticulata population showed pronounced FSGS (Sp = 0.012 at the genet level, a statistic reflecting declining pairwise kinship with distance) revealed restricted gene dispersal, which implies restricted seed dispersal for this population, assuming pollen flow is as extensive as that described for other wind‐pollinated tree species. Our results revealed that clonal diversity is a function of both sample size and the spatial scale of the sampling area. The findings highlights that clonal propagation has affected FSGS within a spatial distance of 3 m for this species.  相似文献   

20.
Resource allocation patterns and trade‐off between sexual and clonal reproduction in clonal plants have been extensively studied, but little is known about effects of organ removal on the trade‐offs in clonal plants. To examine the effects, we conducted an experiment with the stoloniferous herb Duchesnea indica in which we removed plant organs like roots, flowers, or fruits. Removing roots significantly increased number of ramets and biomass allocation to stolons, but decreased number of fruits. Removing flowers or fruits greatly increased number of ramets and biomass allocation to stolons and roots, but decreased spacer length, number of fruits, and fruits set. Onset and median date of flowering phenology of D. indica shifted after flowers, fruits, or roots were removed. These results may indicate that removing organs can affect trade‐off between sexual and clonal reproduction of D. indica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号