首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. An inhibitor of cytoplasmic guanine deaminase of rat liver was isolated from liver ;heavy mitochondrial' fraction after freezing and thawing and treatment with Triton X-100. 2. Submitochondrial fractionation revealed that the inhibitor was localized in the outer-membrane fraction. 3. The method of purification of inhibitor, involving precipitation with (NH(4))(2)SO(4) and chromatography on DEAE-cellulose, its precipitability by trichloroacetic acid and the pattern of absorption in the u.v. indicated that the inhibitor was a protein. In confirmation, tryptic digestion of the isolated material resulted in destruction of the inhibitor activity. The inhibitor was stable to acid, but labile to heat. 4. The isolated inhibitor required phosphatidylcholine (lecithin) for activity. Phosphatidylcholine also partially protected the inhibitor against heat inactivation. 5. When detergent treatment was omitted, the inhibitor activity of frozen mitochondria was precipitated by (NH(4))(2)SO(4) in a fully active form without supplementation with phosphatidylcholine, indicating that Triton X-100 ruptured the linkage between inhibitor and lipid. 6. A reconstituted sample of inhibitor-phosphatidylcholine complex was precipitated in a fully active form by dialysis against 2-mercaptoethanol, but treatment of the precipitate with NaCl yielded an extract which was inactive unless supplemented with fresh phosphatidylcholine. 7. We interpret the results as evidence that the inhibitor was present in vivo as a lipoprotein and that once the complex was dissociated by the action of detergent and the protein precipitated, there was an absolute need for exogenous phosphatidylcholine for its activity. The manner in which inhibitor associated with the outer membrane of rat liver mitochondria might regulate the activity of the enzyme in the supernatant has been suggested.  相似文献   

2.
3.
Mucopolysaccharides were isolated from rat liver mitochondria which had been labeled with 35S-sulfate. They were prepared from trichloroacetic acid (TCA)-insoluble and -soluble fractions of lipid-free mitochondria. These fractions were digested with pronase exhaustively, and the mucopolysaccharides were recovered in the void volume fractions of gel filtration of the pronase digests on Sephadex G-50, monitored by radioactivity determination. Identification of these mucopolysaccharides was based on electrophoresis on cellulose acetate film using three different media, enzymatic and chemical degradations specific to each type of mucopolysaccharide, using chondroitinases, heparitinase, and nitrous acid. From the TCA-insoluble fraction, chondroitin sulfate A and dermatan sulfate were obtained in a ratio of about 1 : 2, based on 35S-radioactivities, whereas the TCA-soluble fraction yielded chondroitin sulfates A/C, dermatan sulfate, and heparan sulfate in a ratio of about 1 : 3 : 12. The total amount of mitochondrial mucopolysaccharides was about 3 mg/g protein, distributed between the TCA-insoluble and -soluble fractions in a ratio of about 1 : 3.  相似文献   

4.
5.
Deteriosomes, a new class of microvesicles, have been isolated from rat liver tissue. These microvesicles are similar to those isolated previously from plant tissue [Yao et al., Proc Natl Acad Sci USA 88:2269–2273, 1991] in that they are nonsedimentable and enriched in membrane catabolites, particularly products of phospholipid degradation. Liver deteriosomes range in size from 0.05 μm to 0.11 μm in radius. They are also much more permeable than microsomal membrane vesicles indicating that the deteriosome bilayer is perturbed. The data are consistent with the proposal that deteriosomes are formed from membranes by microvesiculation and that they represent an intermediate stage of membrane deterioration. Furthermore, liver deteriosomes were found to contain phospholipase A2 activity. This suggests that they not only serve as a means of moving destabilizing macromolecular catabolites out of membranes into the cytosol but also possess enzymatic activity. The fact that the specific activity of phospholipase A2 is higher in deteriosomes than in deteriosome-free cytosol suggests that some of the enzymatic activity traditionally assumed to be cytosolic may in fact be associated with deteriosomes.  相似文献   

6.
The proteinase previously found in chromatin prepared from a total rat liver homogenate was purified from the rat liver mitochondrial fraction. The membrane-bound enzyme is solubilized in either 0.6% digitonin or 0.5 m phosphate buffer. After a 1330-fold purification, the enzyme appears homogeneous by acrylamide-gel electrophoresis. Sucrose density gradient centrifugation indicated a molecular weight of 22,500, a molecular weight of 23,500 ± 10% has been estimated by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme showed a high substrate specificity. Among several proteins tested, only glucagon, nonhistone chromosomal proteins, and histones are good substrates. A limited proteolysis was found for the very-lysine-rich histone H1, which was split into a high molecular weight fragment (Mr 13,000). The highly phosphorylated histone H1 isolated from regenerating rat liver 24 h after partial hepatectomy exhibited the same susceptibility to the proteinase as H1 from normal liver. Large polypeptides of a nonhistone chromosomal protein fraction were degraded more rapidly than the small ones. N-Acetyl-l-tyrosine ethyl ester was used with alcohol dehydrogenase and NAD in a coupled enzyme assay for the proteinase. The apparent Michaelis constant for the hydrolysis of N-acetyl-l-tyrosine ethyl ester is 5.0 × 10?3m. The proteinase has catalytic properties simlar to trypsin and chymotrypsin. The pH optimum was around 8, soybean trypsin inhibitor depressed the enzymatic activity, and the serine modifying reagents diisopropyl phosphofluoridate and phenylmethanesulfonyl fluoride inactivated the enzyme. The affinity reagent for chymotrypsin-like active sites, l-1-tosylamido-2-phenylethyl chloromethyl ketone, inactivated the proteinase.  相似文献   

7.
Ribonuclease inhibitor (RI), a 50 kDa protein, has been found both in mammalian and nonmammalian tissues. We have isolated RI from goat liver and partial characterization has been accomplished. For the isolation of RI, DEAE cellulose column chromatography followed by affinity chromatography using CNBr activated Sepharose 4B was performed. The inhibition of ribonucleolytic activity of Ribonuclease A has been checked by an agarose gel based assay. The antiangiogenic property of the protein was tested by the chorioallantoic membrane (CAM) assay. Results indicate inhibition of angiogenesis.  相似文献   

8.
A monoclonal antibody inhibiting rat liver 5'-nucleotidase   总被引:8,自引:0,他引:8  
  相似文献   

9.
A cytosol 5'-nucleotidase was purified from rat liver. It appeared to be homogeneous on the criteria of polyacrylamide gel electrophoresis. We estimated the approximate molecular weight of the enzyme to be 200 000 and concluded that the enzyme most likely exists in the native state as a tetramer. Our results suggest that adenine nucleotides, which are activators of the enzyme, induce its conformational change.  相似文献   

10.
Rat-liver chromatin was digested with micrococcal nuclease at low ionic strength in the presence of a low concentration of CaCl2. The nuclease digest was successfully separated into three fractions, P1, P2, and P3, by gel filtration on a column of Sepharose 2B. P1 fraction was shown to be a mixture of long fragments of partially digested chromatin by the sedimentation profile or by electrophoresis of DNA. P2 fraction contained four histones H2A, H2B, H3, and H4 in almost equal amounts, together with nonhistone protein of low molecular weight. The DNA was composed of three or four fragments less than 300 base pairs long. From the Kav value of the P2 fraction, the average size was estimated to be about 240 base pairs. On analytical ultracentrifugation, this fraction exhibited a monophasic boundary and a sedimentation value of 13.7S. P3 fraction contained nonhistone proteins which showed a molecular weight larger than that of H1 histone. The size of DNA was estimated to be less than 50 base pairs from the Kav value. Based on these results, the P2 fraction was concluded to consist of nucleosome monomer enriched in nonhistone proteins. The P3 fraction is presumably the nuclease-sensitive or internucleosome portion, which contains small amounts of nonhistone proteins.  相似文献   

11.
12.
A manganese-containing superoxide dismutase has been purified from rat liver and characterized. The enzyme has a molecular weight of 89,000 and is composed of four subunits. One atom of manganese is contained per subunit. The metal content, molecular weight, and amino acid analyses show that the rat enzyme is similar to the manganosuperoxide dismutase isolated from human liver.  相似文献   

13.
A thiol proteinase inhibitor was purified from rat liver by essentially the same procedure as reported previously (Kominami, E., Wakamatsu, N., and Katunuma, N. (1981) Biochem. Biophys. Res. Commun. 99, 568-575), but without heat treatment. The purified inhibitor appears homogeneous on polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate and displayed no multiple forms. The inhibitor has Mr = 12,500 and contains 50.5% of polar amino acid residues, 9.3% aromatic amino acids, and no tryptophan. The presence of 2 half-cystines/molecule and the absence of free thiol groups indicate that the inhibitor possesses one disulfide bridges. The inhibitor inhibits cathepsin H by forming an enzyme-inhibitor complex in a molar ratio of 1:1. It inhibits most thiol proteinases such as cathepsin H, L, B, and C, papain, and ficin, but not calcium-activated neutral proteinase or serine proteinases or carboxyl proteinases. The inhibitor was found in various rat tissues. Immunological diffusion analysis with anti-liver thiol proteinase inhibitor serum indicated that the rat liver inhibitor is immunologically identical with the inhibitors from other rat tissues. On subcellular fractionation of rat liver, the thiol proteinase inhibitor was recovered in the cytosol fraction.  相似文献   

14.
Certain amino acids and other compounds are metabolized via propionyl-CoA----D-methylmalonyl-CoA----L-methylmalonyl- CoA----succinyl-CoA----tricarboxylic acid cycle. D-Methylmalonyl-CoA can also be converted to methylmalonic acid and coenzyme A by a specific hydrolase that does not act on L-methylmalonyl-CoA [R.J. Kovachy, S.D. Copley, and R.H. Allen (1983) J. Biol. Chem. 258, 11415-11421]. Because little is known about mammalian DL-methylmalonyl-CoA racemase and because it is involved in the flow of D-methylmalonyl-CoA to L-methylmalonyl-CoA----tricarboxylic acid cycle (versus to methylmalonic acid), we developed a new assay and purified rat liver racemase 23,000-fold to homogeneity. The molecular weight of the racemase is 32,000 and it contains two subunits of Mr 16,000 that are not connected by disulfide bonds. The rat liver and the rat and human white blood cell racemase are immunologically related. They are completely inactivated by EDTA and can be activated by the addition of Co+2, with 50% activation occurring at a concentration of 0.2 microM. Lower levels for maximal activation were obtained with higher concentrations of Co+3, Fe+2, and Mn+2. Other metals such as Zn+2, Cu+2, Cu+1, and Cd+2 completely inhibited racemase even in the presence of equal concentrations of Co+2. The purified racemase appears to bind 1 mol Co/mol subunit.  相似文献   

15.
16.
Mitochondrial NADH dehydrogenase has been purified from rat liver mitochondria by protamine sulfate fractionation and DEAE-Sephadex chromatography. The enzyme is water-soluble and its molecular weight has been estimated at 400 +/- 50 kilodaltons. NADH-ferricyanide reductase and NADH cytochrome c reductase activities have been studied and the kinetic parameters have been determined. Both substrates, NADH and the electron acceptor (ferricyanide or cytochrome c) have an inhibitor effect on the reductase activities and the kinetic mechanism of the enzyme is ping-pong bi-bi.  相似文献   

17.
A procedure is presented for the rapid purification of a 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) from potato tubers, involving ammonium sulphate fractionation and chromatography on phosphocellulose, DEAE-cellulose and Sephadex G-75. Application of this procedure results in a 6000-fold purification of the 5'-nucleotidase and the final preparations are virtually homogeneous, yielding only one protein band on electrophorsis in polyacrylamide gels in non-dissociating or dissociating conditions. The 5'-nucleotidase has a molecular weight of 50 000 from gel filtration experiments. Sodium dodecylsulphate-polyacrylamide gel electrophoresis of the purified 5'-nucleotidase reveals one major band of molecular weight 25 000. The 5'-nucleotidase is competitively inhibited by cyclic nucleotides, having micromolar Ki values for cyclic AMP and cyclic GMP at pH 5.0 and pH 8.0. The enzyme has a pH optimum of 5.0 with 5'-GMP as substrate. While 5'-AMP and 3'-AMP are hydrolyzed at comparable rates at pH 5.0, at pH 8.0 the rate of hydrolysis of 3'-AMP is only 4% of that with 5'-AMP. ADP, ATP and 2'-AMP are very poor substrates for the enzyme. The nucleotidase has micromolar Km values for nucleoside 5'-monophosphates other than 5'-NMP. A wide variety of divalent cations activate the 5'-nucleotidase.  相似文献   

18.
Addition of NADH, but not NAD+ or NADPH, to rat liver plasma membranes resulted in the increase of their 5'-nucleotidase activity. NADH-dependent activation of 5'-nucleotidase was significantly suppressed by atebrine, an inhibitor of NADH dehydrogenase of plasma membranes, and completely abolished by 2,4-dinitrophenol (2 X 10(-4)M) and Triton X-100 (2%). Inhibitors of electron transfer in the mitochondrial respiratory chain, rotenone and potassium cyanide, failed to affect 5'-nucleotidase activity in both the presence and absence of NADH. The data obtained give reasons to suggest a redox-dependent mechanism of 5'-nucleotidase activation in rat liver plasma membranes.  相似文献   

19.
1. A new serine proteinase, tryase, was isolated from the membrane fraction of a post-nuclear supernatant of rat liver homogenate. The enzyme was solubilized with 1 M-MgCl2 and purified to homogeneity by DEAE-cellulose chromatography and affinity chromatography with soya-bean trypsin inhibitor linked to Sepharose 4B. 2. The enzyme was identified on sodium dodecyl sulphate/polyacrylamide gels by reaction with radiolabelled di-isopropyl phosphorofluoridate. Unreduced its molecular weight was 32 500, reduced it was 28 000. 3. The enzyme readily hydrolysed azocasein and tripeptide nitroanilide substrates with an arginine or lysine residue adjacent to the leaving group. D-Pro-Phe-Arg-NPhNO2 was used routinely (Km = 0.25 mM). Tryase showed little activity on blocked arginine esters or amides. 4. It was inhibited by di-isopropyl phosphorofluoridate, benzamidine, aprotinin, soya-bean and lima-bean trypsin inhibitors, Ile-Leu-Arg-CH2Cl and Phe-Ala-Arg-CH2Cl. It was not inhibited by Tos-Lys-CH2Cl. 5. Subcellular-fractionation studies showed that tryase was associated with particles similar in their sedimentation properties to lysosomes, but, since it was not present in tritosomes, it was not in the classical lysosome. 6. Rat liver contained other neutral proteinases; one of these was a serine proteinase with an apparent molecular weight of 90 000 on gel chromatography.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号