首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5'-Nucleotidase activity in Ehrlich ascites tumour cells was undetectable. The cell homogenate, when mixed with adult mouse liver homogenate, inhibited the 5'-nucleotidase activity of the latter, without affecting its p-nitrophenyl phosphate-hydrolysing activity. The inhibitor activity was enriched (6.8-fold) in a membrane fraction which was enriched in (Na+ + K+)-ATPase (14-fold) and alkaline phosphatase (8-fold). 5'-Nucleotidase activity in this membrane fraction could be detected only after separating the inhibitor activity from the enzyme on Sephadex G-50. The inhibitor activity was decreased by 27% when heat-treated, 33% when treated with 6 M urea and was almost completely lost when treated with trypsin. It was dialysable from a tubing with a molecular exclusion limit of 10,000, but was retained in a tubing with an exclusion limit of 3000. From these results we conclude that a small molecular weight protein inhibitor(s) of 5'-nucleotidase is present in the plasma membrane of Ehrlich ascites tumour cells. Also, the presence of such an inhibitor in the newborn mouse liver but not in the adult liver suggests that it may have some role in cellular ageing and cancer.  相似文献   

2.
1. The partially purified IMP-specific cytosolic 5'-nucleotidases from rat liver, polymorphonuclear leucocytes and heart were inhibited by 50% by 2-6 mM-5'-deoxy-5'-isobutylthioadenosine (IBTA) or 7-10 mM-5'-deoxy-5'-isobutylthioinosine (IBTI). IBTA and IBTI inhibited the rat liver and polymorphonuclear-leucocyte enzymes non-competitively. IBTA, but not IBTI, also inhibited the ecto-5'-nucleotidase of polymorphonuclear leucocytes. IBTI was, by contrast, a more potent inhibitor than IBTA of the AMP-specific soluble 5'-nucleotidase from pigeon heart. 2. During 2-deoxyglucose-induced ATP-catabolism in rat polymorphonuclear leucocytes, adenosine formation was inhibited by approx. 80% by 3 mM-IBTA and by approx. 70% by 7 mM-IBTI. 3. The results show that 5'-modified nucleosides are inhibitors of cytosolic 5'-nucleotidases and that they penetrate to inhibit their target enzymes in intact cells. Such inhibitors may be useful to clarify the mechanisms of adenosine formation and to prevent mononucleotide hydrolysis during ATP breakdown.  相似文献   

3.
The activity of 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) was examined in membrane fractions isolated by hypotonic shock-LiBr treatment (fraction HL) and sucrose gradient separation (fraction S) of rat ventricle homogenate. The enzyme activity in these two fractions differed significantly in several respects. In fraction HL, 5'-nucleotidase had a high affinity for AMP (Km 35 microM), and ATP was a potent competitive inhibitor. In contrast, the 5'-nucleotidase displayed by fraction S showed a low substrate affinity (Km 130 microM) and less sensitivity to ATP. Treatment of membranes with trypsin and neuraminidase markedly stimulated 5'-nucleotidase in fraction HL, whereas only a modest effect was observed in fraction S. Exposure of the membranes to Triton X-100 resulted in a 60% and 10% increase in the enzyme activity in fractions HL and S, respectively. The characteristic activity ratios of 5'-nucleotidase at 200 microM relative to 50 microM AMP in fractions HL and S were modified by alamethicin in an opposite way and became identical. Although concanavalin A almost completely inhibited the 5'-nucleotidase activity in both membrane preparations at a concentration of 2 microM, Hill plots of the data on concanavalin A inhibition revealed a coefficient of 2.2 for fraction S and 1.1 for fraction HL. The differences in 5'-nucleotidase activity of the two membrane fractions are considered to be due to differences in the orientation of the vesicles of the sarcolemmal preparations. These results suggest that two distinct catalytic sites for 5'-nucleotidase are present at the intra- and extracellular surface of the rat heart sarcolemma.  相似文献   

4.
5''-Nucleotidase in Rat Brain Myelin   总被引:11,自引:9,他引:2  
Rat brain myelin showed substantial activity of 5'-nucleotidase. The specific activity in myelin was enriched two- to threefold over that in rat brain homogenates, and the total activity in myelin accounted for approximately 24% of the activity in the homogenates. The 5'-nucleotidase in the homogenates and in isolated myelin had optimum activity at pH 7.5--9.0, was stimulated by Mg2+ and Mn2+, and was inhibited by Co2+, Zn2+, EDTA, and EGTA. 5'-AMP, 5'-UMP, and 5'-CMP were the preferred substrates, and 5'-GMP was hydrolyzed at approximately one-half the rate of the other mononucleotides. The very low rates of cleavage of beta-glycerophosphate and 2'-AMP ruled out any significant contribution of nonspecific phosphatase to the observed 5'-nucleotidase activity in myelin. The 5'-nucleotidase was inhibited by concanavalin A and was protected by alpha-methyl-D-mannoside against inhibited by that lectin, suggesting that this enzyme in the CNS is a glycoprotein. It is concluded from these data, and from histochemical observations made in other laboratories, that the myelin sheath is one major locus of 5'-nucleotidase in the rat brain.  相似文献   

5.
Thiol proteinase inhibitors in rat serum were purified and their properties were compared with those of rat liver thiol proteinase inhibitor. The inhibitors in rat serum were separated into three forms (S-1, S-2, and S-3) by linear gradient elution from a DE52 column. One inhibitor (S1) was purified to homogeneity by chromatography on ficin-bound Sepharose and Sephadex G-150 columns. The apparent molecular weights of S1, S2, and S3 on Sephadex G-150 columns were 90,000, 95,000, and 160,000, respectively. Serum thiol proteinase inhibitor and liver thiol proteinase differed in the following: 1) all three forms of serum inhibitor had much higher molecular weights than the liver thiol proteinase inhibitor (Mr = 12,500); 2) no cross-reactivity was observed between serum inhibitors and liver inhibitor in tests with either antiserum inhibitor or anti-liver antiserum; 3) both serum inhibitor and liver inhibitor were specific for thiol proteinases, but had different inhibition spectra; 4) the liver inhibitor did not bind to concanavalin A-Sepharose, whereas the serum inhibitor bound and was eluted with alpha-methyl mannoside. A thiol proteinase inhibitor of high molecular weight detected in tissue homogenates inhibited papain markedly but did not inhibit cathepsin H. Its activity was diminished by perfusion of the organ, indicating that it is derived from serum.  相似文献   

6.
A fraction enriched in plasma membranes from porcine polymorphonuclear leucocytes, isolated by sucrose density centrifugation was shown to possess considerable AMP hydrolysing activity (150 nmol/min per mg protein). However all of this activity could be inhibited using excess p-nitrophenyl phosphate in the incubation medium. Furthermore the hydrolysis of AMP by the membrane was unaffected by the 5'-nucleotidase inhibitor alpha, beta-methyleneadenosine diphosphate and by the lectin concanavalin A, another potent inhibitor of 5'-nucleotidase. An antibody against mouse liver 5'-nucleotidase also did not inhibit the activity. These results suggest that the hydrolysis of AMP by porcine polymorph membranes is not accomplished by a specific 5'-nucleotidase and the necessity for distinguishing between true 5'-nucleotidase and non-specific phosphatase activity is discussed.  相似文献   

7.
Two proteinase inhibitors, designated as inhibitors I and II, were purified from adzuki beans (Phaseolus angularis) by chromatographies on DEAE- and CM-cellulose, and gel filtration on a Sephadex G-100 column. Each inhibitor shows unique inhibitory activities. Inhibitor I was a powerful inhibitor of trypsin [EC 3.4.21.4], but essentially not of chymotrypsin ]EC 3.4.21.1]. On the other hand, inhibitor II inhibited chymotrypsin more strongly than trypsin. The molecular weights estimated from the enzyme inhibition were 3,750 and 9,700 for inhibitors I and II, respectively, assuming that the inhibitions were stoichiometric and in 1 : 1 molar ratio. The amino acid compositions of both inhibitors closely resemble those of low molecular weight inhibitors of other leguminous seeds: they contain large amounts of half-cystine, aspartic acid and serine, and little or no hydrophobic and aromatic amino acids. Inhibitor I lacks both tyrosine and tryptophan residues. The molecular weights were calculated to be 7,894 and 8,620 for inhibitors I and II, respectively. The reliability of these molecular weights was confirmed by the sedimentation equilibrium and 6 M guanidine gel filtration methods. On comparison with the values obtained from enzyme inhibition, it was concluded that inhibitor I and two trypsin inhibitory sites on the molecule, whereas inhibitor II had one chymotrypsin and one trypsin inhibitory sites on the molecule.  相似文献   

8.
The activities of 5'-nucleotidase, 2'-nucleotidase, alkaline phosphatase, and acid phosphatase were measured in rat and autopsied human brains. The four phosphatases in the rat brain showed little change in activity after death. The activities of adenosine-producing enzymes were compared in various parts of rat and human brains. When phosphatase activity was measured at pH 7.5, 5'-nucleotidase showed the highest activity in the most parts of the brain. The activity of 2'-nucleotidase and that of nonspecific phosphatase were almost the same at pH 7.5. However, higher phosphatase activity was observed in all parts of the brain when nonspecific phosphatase activity was measured at pH 10.0 or 5.5. High specific activity of 5'-nucleotidase in the brain was detected in the membranous components, especially in the synaptic membranes. The activity of 2'-nucleotidase was distributed in the soluble and synaptosomal fractions. The highest activity of both alkaline and acid phosphatases was recovered in the crude mitochondrial fraction, with the highest specific activity in the microsomal fraction. Phosphatase activity was distributed widely in the rat brain. The activity of 5'-nucleotidase was high in the medulla oblongata, thalamus, and hippocampus, but low in the peripheral nerve, spinal cord, and occipital lobe. The activity of 2'-nucleotidase was high in the vermis and frontal lobe. The highest acid and alkaline phosphatase activities were detected in the frontal lobe and in the olfactory bulb, respectively. The distribution of the four phosphatases in the autopsied human brain was similar to that in the rat brain. The highest 5'-nucleotidase activity was observed in the temporal lobe and thalamus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
1. Supernatant fluids from rat cerebral cortex, cerebellum, kidney, heart and liver contained more phosphodiesterase activity hydrolysing cyclic GMP than that hydrolysing cyclic AMP when assayed with sub-saturating concentrations of substrate. 2. These activities were resolved into several fractions by Sephadex G-200 gel filtration; no two tissues had similar activity profiles. 3. With every tissue examined, a fraction (fraction II) with a molecular weight of about 150,000 was obtained which hydrolysed cyclic GMP preferentially at sub-saturating substrate concentrations in the presence of micromolar concentration of Ca2+, millimolar concentration of Mg2+ and a protein activator. 4. The activity of fraction II accounted for about 60 percent in liver, more than 80 percent in heart and cerebellum, and almost 100 percent in cerebral cortex of the total activity for cyclic GMP hydrolysis, calculated from the activity profiles. 5. Km values of fraction II samples from kidney, heart and liver for cyclic GMP were 1.3, 1.7 and 5 muM respectively. 6. 3-Isobutyl-1-methylxanthine inhibited hydrolysis of cyclic GMP by fraction II with an I50 value of 3muM for heart and liver and 50 muM for cerebrum. 7. The activator protein, with an estimated molecular weight of about 30,000 was isolated from all the tissues listed in 1.8. The concentrations of activator protein and of the isolated enzyme, fraction II, did not correspond exactly.  相似文献   

10.
Abstract: A readily soluble 5'-nucleotidase was purified 1,800-fold from rat brain 105,000- g supernatant. The enzyme showed similarity to the 5'-nucleotidase ectoenzyme of plasma membranes. It exhibited a low K m for AMP, which was preferred over IMP as substrate. It was inhibited by free ATP and ADP and by α,β-methylene ADP. The enzyme appeared to be a glycoprotein on the basis of its interaction with concanavalin A. It contained a phosphatidylinositol moiety because treatment with phosphatidylinositol-specific phospholipase C increased its hydrophilicity. A single subunit of Mr = 54,300 ± 800 was observed, which is appreciably smaller than published values for the 5'-nucleotidase ectoenzyme or for other low- K m"soluble" 5'-nucleotidases. The soluble 5'-nucleotidase showed an elution profile on AMP-Sepharose affinity chromatography or on Mono Q ion-exchange chromatography different from that of the brain ectoenzyme. Forty-two percent of the soluble 5'-nucleotidase in brain 105,000- g supernatant did not bind to a Mono Q ion-exchange column because of its interaction with a soluble factor. This factor could be removed by chromatography on concanavalin A-Sepharose. The factor had the novel property of increasing the sensitivity of the purified soluble 5'-nucleotidase toward the inhibitor ATP by 20-fold. This factor was also able to increase the inhibition of brain 5'-nucleotidase ectoenzyme by ATP.  相似文献   

11.
I Wada  S Eto  M Himeno  K Kato 《Journal of biochemistry》1987,101(5):1077-1085
5'-Nucleotidase was found in purified rat liver tritosomes. When tritosomes were subfractionated into the membrane and soluble contents fractions, 73% of the total 5'-nucleotidase activity was found in the membrane fraction and 24% in the soluble contents fraction. Immunoblotting using specific polyclonal antibodies against the rat liver plasma membrane 5'-nucleotidase showed that the mobilities on SDS-polyacrylamide gel electrophoresis of both 5'-nucleotidases in the membrane and contents fractions were identical to that of the enzyme in the plasma membranes (Mr = 72,000). 5'-Nucleotidases in the membrane and contents fractions were sensitive to neuraminidase and converted into a form that was 4 kDa smaller after digestion, as observed in the case of plasma membrane enzyme. 5'-Nucleotidases, both from the membrane and contents fractions, were purified using immunoaffinity chromatography, and the isoelectric points, heat stability, and oligomeric structure of the purified enzymes were compared. Isoelectric focusing and the heat stability test indicated the resemblance of the soluble enzyme to the membrane-bound enzyme. However, the membrane-bound enzyme aggregated in the absence of Triton X-100, whereas the soluble enzyme behaved as a dimer. The topography of 5'-nucleotidase in the tritosomal membranes was studied using antibodies against 5'-nucleotidase and neuraminidase treatment. The inhibition of 5'-nucleotidase were not observed in the intact tritosomal fraction until the tritosomes had been disrupted by osmotic shock. These results show that the active sites and the oligosaccharide chains of 5'-nucleotidase are located on the inside surface of the tritosomal membranes.  相似文献   

12.
N-Methyl-, N-ethyl-, N-propyl-, N-butyl-, N,N-dimethyl- and N,N'-dimethylputrescines were assayed as inhibitors of ornithine decarboxylase (EC 4.1.1.17) from rat liver and from Escherichia coli. They were found to be poor inhibitors, with the exception of N-propylputrescine and N,N-dimethylputrescine, which were inhibitory at 25 mM. A homologous series of 1-alkylputrescines ranging from 1-methylputrescine (1,4-diaminopentane) to 1-heptylputrescine (1,4-diaminoundecane) was assayed for effect on the activity of ornithine decarboxylase from the same sources. 1-Methylputrescine (5 mM) inhibited the mammalian enzyme, while the higher homologues showed significantly less inhibitory activity. When assayed on the bacterial enzyme, 1-methylputrescine (5 mM) was not inhibitory, while the higher homologues showed inhibitory effects. At higher concentrations, 1-methylputrescine and 1-heptylputrescine were the best inhibitors of these series of rat liver ornithine decarboxylase. When 1-methylputrescine, 2-methylputrescine, 1,2-dimethylputrescine, 1,3-dimethylputrescine and 1,4-dimethylputrescine were assayed as inhibitors of the decarboxylase, 2-methylputrescine was found to be the best inhibitor of the rat liver enzyme, while 1,3-dimethylputrescine was the best inhibitor of the bacterial enzyme. 1,4-Dimethylputrescine (2,5-diaminohexane) did not inhibit the enzyme from either source. Both, 2-methylputrescine and 1-methylputrescine, as well as the 1,2- and 1,3-dimethylputrescines were competitive inhibitors of the enzyme, and a Ki of 1 mM was obtained for 2-methylputrescine when the rat liver decarboxylase was used. N-Methyl, 1-methyl and 2-methylputrescines were found to inhibit in vivo the activity of rat liver ornithine decarboxylase which had been previously induced by thioacetamide treatment. 2-Methylputrescine (50 mumol/100 g body weight) was found to be the best in vivo inhibitor (93% inhibition), while putrescine under similar conditions inhibited 56% of the enzymatic activity.  相似文献   

13.
5'-Nucleotidase from chicken gizzard smooth muscle was purified to homogeneity and used as immunogen for generating monoclonal antibodies. From about 150 positive clones nine IgG producing hybridoma cell lines have been selected for further characterization and antibody preparation. The resulting antibodies bind 5'-nucleotidase from chicken smooth muscle, chicken skeletal muscle, and chicken heart muscle but not the enzyme from chicken liver or rat liver. It could clearly be demonstrated that the nine antibodies recognize different antigenic determinants. Four of these antibodies are strong inhibitors of the AMPase activity of 5'-nucleotidase. One antibody is a weak inhibitor and four other antibodies have no effect on its enzymic activity. One of the monoclonal antibodies was used for immunoaffinity purification of 5'-nucleotidase from chicken heart muscle and chicken skeletal muscle. Pure and active enzymes could be isolated from detergent extracts in one step with a 10 to 20-fold higher yield compared to classical purification procedures. The subcellular distribution of 5'-nucleotidase in chicken gizzard was investigated using indirect immunofluorescence. We found a staining of the plasma membrane of smooth muscle cells and endothelial cells by all of the nine antibodies with variations in the staining intensity.  相似文献   

14.
The effect of subcutaneous injection of hydrocortisone and corticosterone on the activity values of some subcellular fractions marker enzymes from rat liver and brain was investigated and compared with controls (without treatment with hormones). The following enzymes were studied (subcellular fraction are shown between parentheses): N-acetyl-beta-D-glucosaminidase and beta-glucuronidase (lysosomes); succinate dehydrogenase = SDH (mitochondria); glucose-6-phosphatase (endoplasmic reticulum); 5'-nucleotidase and Na+-K+-Mg2+ ATPase (plasma membrane). The specific activity of lysosomal enzymes from liver showed no change when rats were injected either with hydrocortisone or corticosterone. The same enzymes from brain showed significant increases in their activities with both hydrocortisone or corticosterone except beta-glucuronidase; this enzyme gave activity values remaining between the control levels, after treatment with corticosterone. The activity of mitochondrial SDH was increased after corticosterone injection either in liver or brain. After hydrocortisone injection, its activity rises significantly in brain (72%), but it falls in liver compared to the control values. Glucose-6-phosphatase behaves similarly in brain or liver fractions; its activity increases always after corticosterone treatment and decreases by hydrocortisone. The plasma membrane marker enzymes did not change practically in brain fractions, excepted Na+-K+-Mg2+ ATPase which tends to rise its activity after hydrocortisone injection. In liver fractions, both 5'-nucleotidase and Na+-K+-Mg2+ ATPase activities increase either by corticosterone or hydrocortisone treatment, except 5'-nucleotidase which specific activity decreases in liver after hydrocortisone treatment.  相似文献   

15.
A factor that specifically inhibited δ-aminolevulinate dehydratase was found in rat bone marrow cells. The inhibitor, which was located in the supernatant fraction of the bone marrow hemolysate, was purified about 12-fold by ammonium sulfate fractionation and column chromatography on Sephadex G-75. The partially purified inhibitor was heat labile and sensitive to trypsin and was denatured by urea. It had a pH optimum of 7.5–8.0, and a molecular weight of 28,000. It inhibited the activity of δ-aminolevulinate dehydratase noncompetitively.  相似文献   

16.
5'-Nucleotidase activity of normal human embryonic lung fibroblasts (IMR-90) was found to be inhibited by the homogenates of seven different cell lines originated from patients with different kinds of leukemia and of fresh lymphocytes from a patient with Sezary syndrome (circulating T-cell lymphoma). About 97% of the inhibiting activity was found in the soluble fraction of RPMI 8402 cells, a cell line originated from the lymphocytes of a patient with acute lymphocytic leukemia. This inhibiting activity was not destroyed by dialysis, heating at 56 degrees C for 30 min, nor digestion with RNAase or DNAase. About 85% of the inhibiting activity was destroyed by digestion with papain at 37 degrees C for 1 h and it was destroyed completely by heating at 100 degrees C for 30 min. When the heated (56 degrees C for 30 min) soluble fraction of RPMI 8402 cells was mixed with the homogenate of IMR-90 cells, it had no effect on the activities of alkaline, neutral or acid phosphatases, nor of N-acetyl-beta-D-glucosaminidase or cytochrome c oxidase of IMR-90 cells. Preincubating the mixed samples for 1, 20 and 45 min, respectively, before adding the substrate, the heated soluble fraction of RPMI 8402 cells did not increase the percentage of inhibition for 5'-nucleotidase of the homogenate of IMR-90 cells. No inhibition of other enzyme activities was observed under similar conditions. These data suggest that the inhibiting activity is due to a protein(s) that is not a protease. The inhibiting activity was found in a single peak after the soluble fraction was fractionated by Sephadex G-100 chromatography and sedimentation centrifugation. The molecular weight of the inhibitor was found to be approx. 35,000 by comparing its retention volume and sedimentation rate with those of proteins of known molecular weight. The present study suggest that the previously reported undetectability of 5'-nucleotidase in permanent cell lines could be due to the presence of a protein inhibitor for 5'-nucleotidase in these human leukemic cell lines. It also supports the hypothesis that the increased 5'-nucleotidase activity in normal senescent cells in vitro may be a control in cellular aging that is missing from leukemic cells in vitro.  相似文献   

17.
Plasma membranes were isolated from rat liver mainly under isotonic conditions. As marker enzymes for the plasma membrane, 5'-nucleotidase and (Na+ + K+)-ATPase were used. The yield of plasma membrane was 0.6-0.9 mg protein per g wet weight of liver. The recovery of 5'-nucleotidase and (Na+ +K+)-ATPase activity was 18 and 48% of the total activity of the whole-liver homogenate, respectively. Judged from the activity of glucose-6-phosphatase and succinate dehydrogenase in the plasma membrane, and from the electron microscopic observation of it, the contamination by microsomes and mitochondria was very low. A further homogenization of the plasma membrane yielded two fractions, the light and heavy fractions, in a discontinuous sucrose gradient centrifugation. The light fraction showed higher specific activities of 5'-nucleotidase, alkaline phosphatase, (Na+ +K+)-ATPase and Mg2+-ATPase, whereas the heavy one showed a higher specific activity of adenylate cyclase. Ligation of the bile duct for 48 h decreased the specific activities of (Na2+ +K+)-ATPase and Mg2+-ATPase in the light fraction, whereas it had no significant influence on the activities of these enzymes in the heavy fraction. The specific activity of alkaline phosphate was elevated in both fractions by the obstruction of the bile flow. Electron microscopy on sections of the plasma membrane subfractions showed that the light fraction consisted of vesicles of various sizes and that the heavy fractions contained membrane sheets and paired membrane strips connected by junctional complexes, as well as vesicles. The origin of these two fractions is discussed and it is suggested that the light fraction was derived from the bile front of the liver cell surface and the heavy one contained the blood front and the lateral surface of it.  相似文献   

18.
The controversial subject of mitochondrial 5'-nucleotidase in the liver was studied employing density gradient fractionation combined with a method for analyzing the distribution profiles of marker enzymes based on multiple regression analysis. Triton WR-1339 was used to improve the separation of mitochondria from lysosomes by the gradient centrifugation technique. Adenosine production was examined further using acetate to increase intramitochondrial AMP, and thus adenosine production, in incubations with gradient centrifugation-purified mitochondria. Distribution analysis of the crude homogenate showed that 5'-nucleotidase activity exists in the mitochondrial fraction. To increase the resolution of this approach with respect to mitochondria, a crude mitochondrial fraction was also studied. In this case the relative mitochondrial activity decreased but 5'-nucleotidase activity was still clearly detectable. The mitochondrial 5'-nucleotidase exhibited a Km of 94 microM and a Vmax of 31 nmol/min per mg protein for AMP. The kinetic data for the Mg2+, ATP, ADP and AOPCP sensitivity of the enzyme showed that it differs from the plasma membrane, lysosome and cytosol 5'-nucleotidases. AOPCP was only a moderate inhibitor, and ATP was a more potent inhibitor than ADP at a 1 mM concentration. The enzyme also showed a requirement of Mg2+. Acetate caused the conversion of intramitochondrial adenylates to AMP and the formation of adenosine. Adenosine concentration increased in the extramitochondrial space in a time-dependent manner, but only trace amounts of nucleotides were detected. The data show that 5'-nucleotidase activity producing adenosine exists in rat liver mitochondria and a concentration-dependent adenosine output from mitochondria by diffusion or facilitated diffusion is also suggested.  相似文献   

19.
Addition of NADH, but not NAD+ or NADPH, to rat liver plasma membranes resulted in the increase of their 5'-nucleotidase activity. NADH-dependent activation of 5'-nucleotidase was significantly suppressed by atebrine, an inhibitor of NADH dehydrogenase of plasma membranes, and completely abolished by 2,4-dinitrophenol (2 X 10(-4)M) and Triton X-100 (2%). Inhibitors of electron transfer in the mitochondrial respiratory chain, rotenone and potassium cyanide, failed to affect 5'-nucleotidase activity in both the presence and absence of NADH. The data obtained give reasons to suggest a redox-dependent mechanism of 5'-nucleotidase activation in rat liver plasma membranes.  相似文献   

20.
Two heat-stable inhibitors (a and b) of phosphoprotein phosphatases I and II from Mucor rouxii were isolated from mycelium of the fungus. They were partially purified from extracts by heating, DEAE-cellulose chromatography, and Sephadex G-75 gel filtration. The molecular weights of inhibitors a and b, estimated by gel filtration, are 5,000 and 20,000 respectively. Inhibitor a acts similarly on both enzymes while inhibitor b is relatively more active on enzyme II. Storage of inhibitor b at -20 degrees C for several weeks resulted in a partial conversion to a lower-molecular-weight form with properties similar to those of inhibitor a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号