首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explored how a woody plant invader affected riparian bird assemblages. We surveyed 15 200‐m‐long transects in riparian zones in a much‐changed landscape of eastern Victoria, Australia. Abundance, species‐richness, foraging‐guild richness and composition of birds were compared in transects in three habitat types: (i) riparian zones dominated by the invasive willow Salix × rubens; (ii) riparian zones lined with native woody species; and (iii) riparian zones cleared of almost all woody vegetation. We also measured abundance and richness of arthropods and habitat structure to explore further the effects of food resources and habitat on the avifauna. We observed 67 bird species from 14 foraging guilds. Native riparian transects had more birds, bird species and foraging guilds than willow‐invaded or cleared transects. Habitat complexity increased from cleared to willow‐invaded to native riparian transects, as did abundance of native and woodland‐dependent birds. Native shrub and trees species had more foliage and branch‐associated arthropods than did willows, consistent with a greater abundance and variety of foraging guilds of birds dependent on this resource. Willow spread into cleared areas is unlikely to facilitate greatly native bird abundance and diversity even though habitat complexity is increased. Willow invasion into the native riparian zone, by decreasing food resources and altering habitat, is likely to reduce native bird biodiversity and further disrupt connectivity of the riparian zone.  相似文献   

2.
Abstract: Lowland riparian vegetation in the southwestern United States is critically important for maintaining a high richness and density of breeding birds. Further investigation is needed within riparian corridors, however, to evaluate the relative importance of vegetation type and hydrologic regime for avian density and nest survival as targets for regional conservation or restoration efforts. We estimated the densities of 40 bird species and for species grouped on the basis of nest height and dependence on surface water in gallery cottonwood–willow (Populus spp.–Salix spp.) forests, saltcedar (Tamarix spp.) shrub lands, and terrace vegetation types along a gradient in the hydrologic regime of the San Pedro River, Arizona, USA. We also assessed nest survival for shrub-nesting insectivores and herbivores. Canopy-nesting birds as a group and 14 individual bird species reached their greatest densities in cottonwood forests regardless of the hydrologic regime. Water-dependent birds as a group reached their highest density in both intermittent- and perennial-flow cottonwood stands, but certain species occurred almost exclusively in perennial-flow sites. Two shrub-nesting species and the brown-headed cowbird (Molothrus ater) were most abundant in saltcedar shrub lands, and the brown-headed cowbird was most abundant in saltcedar stands with intermittent flows. Mesquite (Prosopis spp.) and big sacaton (Sporobolus wrightii) grassland each maintained the highest densities of certain species within ≥1 hydrologic regime. Shrub-nesting insectivores had the greatest nest survival in cottonwood, including Arizona Bell's vireo (Vireo bellii arizonae), and also had lower proportions of nests parasitized and preyed upon, although 95% confidence intervals among vegetation types overlapped. Nest survival for both shrub-nesting insectivores and herbivores was lowest in intermittent-flow saltcedar, although, again, confidence intervals overlapped. Nest survival was lower in parasitized than nonparasitized nests in mesquite and across vegetation types for Arizona Bell's vireo and in cottonwood for Abert's towhee (Pipilo aberti). Riparian management that maintains heterogeneous riparian vegetation types, including floodplain vegetation comprising cottonwood–willow gallery riparian forests with some stretches of perennial flow, are important for maintaining the high diversity and abundance of breeding birds on the San Pedro River and probably across the region. Cottonwood stands also appear to maintain highest nest survival for some shrub-nesting birds.  相似文献   

3.
The distribution, diversity, and assembly of tropical insects have long intrigued ecologists, and for tropical ants, can be affected by competitive interactions, microhabitat requirements, dispersal, and availability and diversity of nesting sites. Arboreal twig‐nesting ants are limited by the number of hollow twigs available, especially in intensive agricultural systems. Ant diversity and abundance may shift along elevation gradients, but no studies have examined if the proportion of occupied twigs or richness of arboreal twig‐nesting ants vary with elevation. In coffee agroecosystems, there are over 40 species of arboreal twig‐nesting ants. We examined communities of twig‐nesting ants in coffee plants along an elevational gradient to answer the following questions: (1) Do species richness and colony abundance decline with elevation or show a mid‐elevation peak? (2) Does community composition change with elevation? (3) Is elevation an important predictor of change in ant abundance, richness, and relative abundance of common species? We surveyed 42 10 × 10 m plots in 2013 from 450 to1550 m elevation across a coffee landscape in Chiapas, Mexico. We sampled a total of 2211 hollow coffee twigs, 77.1 percent of which were occupied by one of 28 species of ants. Pseudomyrmex simplex was more abundant in lower elevations, whereas Pseudomyrmex ejectus dominated in high elevations. Species richness and the percent of occupied hollow twigs both peaked at mid‐elevations (800–1050 m). In sum, we found that species richness, abundance, and composition of arboreal twig‐nesting ants shift with elevation. These findings may provide important insights for understanding ant communities in coffee agroecosystems.  相似文献   

4.
The non-indigenous perennial grass, Arundo donax, is an aggressive invader of riparian areas throughout California and many sub-tropical regions of the world, and is hypothesized to provide poorer quality habitat for native wildlife in riparian systems. We sampled aerial and ground-dwelling insects and other terrestrial arthropods associated with Arundo, native willow vegetation (Salix spp.), and mixtures of the two vegetation types during two seasons to determine how Arundo influences invertebrate composition in a low gradient stream in central California. The total number of organisms, total biomass and taxonomic richness of aerial invertebrates associated with native vegetation was approximately twice that associated with Arundo vegetation, while mixed vegetation supported intermediate arthropod levels. Shannon-Weaver (Weiner) diversity associated with native vegetation stands was also higher than that of Arundo vegetation. Ground-dwelling assemblages did not show differences as great as aerial assemblages which are more critical to foraging avian species. These results indicate that vegetation type is a significant factor reducing the abundance and diversity of invertebrates in this, and presumably in many other riparian ecosystems where this invasive species has become a dominant component. Arundo invasion changes the vegetation structure of riparian zones and in turn, may increasingly jeopardize its habitat value for birds and other wildlife whose diets are largely composed of insects found in native riparian vegetation.  相似文献   

5.
Riparian habitat supports the highest density and diversity of songbirds in Western North America despite covering less than 1% of the land area. Widespread destruction and degradation of riparian habitat, especially by livestock grazing, has led to habitat restoration efforts. In 2000, restoration activities in the form of permanent and seasonal exclusion of livestock from riparian areas were initiated to improve habitat for the endangered Western Yellow‐breasted Chat (Icteria virens auricollis) population, which is dependent on early successional shrub habitat for nesting, in the Okanagan Valley of British Columbia, Canada. We assessed the effectiveness of livestock exclusion by examining temporal changes in the abundance, richness, and breeding performance of birds in restoration and reference sites. The abundance of W. Yellow‐breasted Chats significantly increased between 2002 and 2013 in areas where restoration activities occurred. However, restoration did not have significant effects on the abundance, richness, or breeding performance of other riparian birds at the restoration sites independent of temporal changes that occurred at reference sites. Our results provide evidence that limiting livestock grazing in temperate riparian areas can lead to recovery of endangered riparian songbirds that rely on early successional shrub habitat but may have limited effects on common species that are not strictly reliant on this habitat.  相似文献   

6.
1. Different groups of specialised herbivores often exhibit highly variable responses to host plant traits and phylogeny. Gall‐forming insects and mites on willows are highly adapted to their hosts and represent one of the richest communities of gallers associated with a single genus of host plants. 2. The present study evaluated the effects of host plant secondary metabolites (salicylates, flavonoids, condensed tannins), physical traits (trichome density), nutrient content (N:C) and phylogeny on the abundance and richness of gall‐forming arthropods associated with eight willow species and Populus tremula. 3. Galler abundance was affected by N:C rather than by willow defensive traits or phylogeny, suggesting that gallers respond differently to host plant traits than to less specialised guilds, such as leaf‐chewing insects. None of the studied defensive traits had a significant effect on gall abundance. Gall morphospecies richness was correlated with the host phylogeny, mainly with the nodes representing the inner division of the willow subgenus Vetrix. This suggests that the radiation of some willow taxa could have been important for the speciation of gallers associated with willows. 4. In conclusion, it is shown that whereas willow traits, such as nutrient content, appeared to affect abundances of gallers, it is probably willow radiation that drives galler speciation.  相似文献   

7.
We evaluated willow removal as a technique for enhancing habitat for birds of braided rivers by monitoring five bird species at three sites in the Mackenzie Basin, New Zealand, from 1991 to 1994 Four species—banded dotterel (Charadrius bicinctus), pied stilt (Himantopus novaezelandiae), black- fronted tern (Sterna albostriata) and South Island pied oystercatcher (Haematopus ostralegus) used the areas of riverbed cleared of willows for nesting and foraging, at the same or greater density than other areas of riverbed already free from willows. Wrybills (Anarhynchus frontalis) were occasionally seen in cleared areas of riverbed but were not nesting there during the study. Densities of banded dotterel and wrybill were lowest at sites with the greatest densities of willows, and only three out of 327 monitored nests were located in willow habitat. Nest predation rates did not differ significantly among sites with differing levels of willow infestation, nor did they differ between areas of cleared riverbed and riverbed already free from willow. In addition to weed control, predator control may be necessary to increase bird populations. This study indicates that willow removal increases foraging and nesting habitat for some river bird populations, but further surveys are necessary to assess whether willow removal has any long-term benefits.  相似文献   

8.
The use of paddock trees by birds was assessed in a grazinglandscape in southern New South Wales, Australia. Seventy paddock treesites were surveyed for 20 min each in the morning, and 36sites were surveyed again at midday in March 2000. During this time, thepresence and abundance of birds was recorded. Several site and landscapevariables were measured at each site. These included tree species, atree size index, a measure of the crown cover density around the site,and proximity to the nearest woodland patch. During formal surveys, 31bird species, including several woodland species, were observed usingpaddock trees. Data from bird surveys in woodland patches that wereobtained in a separate study in November 1999 were used to comparewhether there was a relationship between the abundance of a given birdspecies in woodland patches and paddock trees. Many birds commonlydetected in woodland patches were also common in paddock trees. However,some birds with special habitat requirements were absent from paddocktrees although they were common in woodland patches. Site occupancypatterns were modelled for several guilds of birds using logisticregression. Foliage-foraging birds were more likely to occupy clumps oftrees and sites with a high tree size index. Nectarivores appeared to bemore likely to be detected at sites more than 200 m fromwoodland, although this result was marginally non-significant(P = 0.08). The probability of detecting granivoreswas higher at sites with a low tree size index. Open country specieswere most likely to occupy large trees and sites that were located morethan 200 m from the nearest woodland patch. The value ofpaddock trees may have been underestimated in the past because a widevariety of bird species use paddock trees on a regular basis. Ensuringthe continued survival of paddock trees should be an important aspect offuture conservation and revegetation efforts.  相似文献   

9.
Abstract

We investigated the effects of invasion by introduced grey willow (Salix cinerea) on beetle communities within four wetland vegetation types: native vegetation, native vegetation following grey willow removal, native vegetation undergoing grey willow invasion and dense grey willow-dominated vegetation. In total, 1505 beetles from 90 species were collected using modified Malaise traps. Native wetland vegetation had significantly lower beetle species richness than willow-dominated vegetation and was dominated by herbivores, whereas detritivores characterised willow-dominated vegetation. Beetle abundance was highest in the willow-dominated vegetation and mostly comprised detritivores. In contrast, beetle abundance was lowest in native wetland vegetation, but had even proportions of herbivores and detritivores. Native wetland vegetation had a high proportion of native beetles present. As grey willows invaded, introduced beetles became more common. The beetle community composition differed significantly between grey willow-dominated vegetation and native wetland vegetation. These compositional differences were mainly due to the increasing complexity of vegetation structure following grey willow invasion. The beetle communities within restored native wetland vegetation were most similar to those within the native wetland vegetation. From a conservation perspective, these results are encouraging and suggest that, although grey willows dramatically alter the composition of beetle communities present, these communities can be restored to a beetle fauna that is similar to those found within native wetland through the removal of the willows.  相似文献   

10.
Riparian areas are noted for their high biodiversity, but this has rarely been tested across a wide range of taxonomic groups. We set out to describe species richness, species abundance, and community similarity patterns for 11 taxonomic groups (forbs & grasses, shrubs, trees, solpugids, spiders, scarab beetles, butterflies, lizards, birds, rodents, and mammalian carnivores) individually and for all groups combined along a riparian-upland gradient in semiarid southeastern Arizona, USA. Additionally, we assessed whether biological characteristics could explain variation in diversity along the gradient using five traits (trophic level, body size, life span, thermoregulatory mechanism, and taxonomic affiliation). At the level of individual groups diversity patterns varied along the gradient, with some having greater richness and/or abundance in riparian zones whereas others were more diverse and/or abundant in upland zones. Across all taxa combined, riparian zones contained significantly more species than the uplands. Community similarity between riparian and upland zones was low, and beta diversity was significantly greater than expected for most taxonomic groups, though biological traits explained little variance in diversity along the gradient. These results indicate heterogeneity amongst taxa in how they respond to the factors that structure ecological communities in riparian landscapes. Nevertheless, across taxonomic groups the overall pattern is one of greater species richness and abundance in riparian zones, coupled with a distinct suite of species.  相似文献   

11.
The complex nature of ecosystems with multiple invaders requires whole-system approaches to ecosystem management. Undesirable, unintended secondary effects may occur if interspecific interactions are ignored. Although degraded riparian zones urgently need effective restoration, broad-scale removal of introduced tree species (e.g., willows [ Salix spp.]) and fencing of riparian zones to exclude livestock may facilitate spread of the invasive aquatic grass Glyceria maxima in southeastern Australia. We recorded occurrence of the grass at riparian sites with different amounts of woody vegetation, including willows, and monitored spread for 2 years in locations with and without livestock. Glyceria maxima occurred more frequently at sites with little or no woody riparian vegetation. Larger, older patches fenced from livestock spread fastest. Analyses of costs of controlling G. maxima with herbicide showed that it is more cost-effective to eradicate small patches than large patches if locations are known. However, the cost per m2 reduction in patch size is cheaper for larger patches. We recommend that small, young patches should be eradicated as soon as detected and show that spread of large source patches can be controlled effectively with continued spraying over several years. If restoration of waterways is to succeed, riparian management strategies must recognize connectivity between riparian and freshwater habitats.  相似文献   

12.
1. Riparian plant communities are primarily structured by the hydrological regime of the stream. Models of climate change predict increased temperatures and changed patterns of precipitation that will alter the flow of rivers and streams with consequences for riparian communities. In boreal regions of Europe, stream flows will exhibit earlier spring‐flood peaks of lower magnitude, lower summer flows and higher flows in autumn and winter. We quantified the effects of predicted hydrological change on riparian plant species richness, using four different scenarios for the free‐flowing Vindel River in northern Sweden. 2. We calculated the hydrological niche of vegetation belts by relating the occurrence of species and vegetation belts to data on flood duration for 10 years preceding the vegetation survey. We then used the flood duration predicted for 2071–2100 to estimate expected changes in the extent of each vegetation belt. Using species accumulation curves, we then predicted changes in plant species richness as a result of changes in extent. 3. The two most species‐rich vegetation belts, riparian forest and willow shrub, were predicted to decrease most in elevational extent, up to 39 and 32%, respectively. The graminoid belt below the shrub belt will mainly shift upwards in elevation while the amphibious vegetation belt at the bottom of the riparian zone increases in size. 4. In the Vindel River, the riparian forest and willow shrub zone will lose most species, with reductions of 5–12% and 1–13% per site, respectively, depending on the scenario. The predicted loss from the entire riparian zone is lower, 1–9%, since many species occur in more than one vegetation belt. More extensive species losses are expected in the southern boreal zone for which much larger spring‐flood reductions are projected. 5. With an expected reduction in area of the most species‐rich belts, it becomes increasingly important to manage and protect riparian zones to alleviate other threats, thus minimising the risk of species losses. Restoring river and stream reaches degraded by other impacts to gain riparian habitat is another option to avoid species losses.  相似文献   

13.
Using mechanical treatments to mimic natural disturbances is becoming a standard management and restoration approach. In the Sierra Nevada, as throughout much of western North America, much of aspen habitat is in poor health. Because of the high ecological value of healthy aspen, and its limited extent on the landscape, restoration to reverse the decline and improve stand health has become a management priority in the region. To evaluate the ecological effects of mechanically removing competing conifers to restore aspen in the Sierra Nevada, we compared vegetation characteristics and bird abundance in treated and untreated aspen stands on the Lassen National Forest before and up to 13 years after mechanical conifer removal. Treatments reduced total canopy cover and increased herbaceous cover and the number of aspen stems, while shrub and overstory aspen covers were unchanged. Of 10 aspen focal bird species, 7 increased in abundance following treatment relative to controls, including all species associated with early seral aspen habitat and cavity nesting species; none declined. In contrast, of the six conifer focal species, the four associated with denser conifer habitat declined as a result of the treatments. The two species associated with conifer edges and understory cover increased. Our results demonstrate mechanical conifer removal treatments can provide ecologically meaningful changes in habitat for the avian community and are an effective tool for restoring ecological values of degraded aspen habitat for birds in the Sierra Nevada.  相似文献   

14.
Diverse specialised metabolites contributed to the success of vascular plants in colonising most terrestrial habitats. Understanding how distinct aspects of chemical diversity arise through heterogeneous environmental pressures can help us understand the effects of abiotic and biotic stress on plant evolution and community assembly. We examined highland and lowland willow species within a phylogenetic framework to test for trends in their chemical α-diversity (richness) and β-diversity (variation among species sympatric in elevation). We show that differences in chemistry among willows growing at different elevations occur mainly through shifts in chemical β-diversity and due to convergence or divergence among species sharing their elevation level. We also detect contrasting phylogenetic trends in concentration and α-diversity of metabolites in highland and lowland willow species. The resulting elevational patterns contribute to the chemical diversity of willows and suggest that variable selective pressure across ecological gradients may, more generally, underpin complex changes in plant chemistry.  相似文献   

15.
Invasion of riparian habitats by non‐native plants is a global problem that requires an understanding of community‐level responses by native plants and animals. In the Great Plains, resource managers have initiated efforts to control the eastward incursion of Tamarix as a non‐native bottomland plant (Tamarix ramosissima) along the Cimarron River in southwestern Kansas, United States. To understand how native avifauna interact with non‐native plants, we studied the effects of Tamarix removal on riparian bird communities. We compared avian site occupancy of three foraging guilds, abundance of four nesting guilds, and assessed community dynamics with dynamic, multiseason occupancy models across three replicated treatments. Community parameters were estimated for Tamarix‐dominated sites (untreated), Tamarix‐removal sites (treated), and reference sites with native cottonwood sites (Populus deltoides). Estimates of initial occupancy (ψ2006) for the ground‐to‐shrub foraging guild tended to be highest at Tamarix‐dominated sites, while initial occupancy of the upper‐canopy foraging and mid‐canopy foraging guilds were highest in the treated and reference sites, respectively. Estimates of relative abundance for four nesting guilds indicated that the reference habitat supported the highest relative abundance of birds overall, although the untreated habitat had higher abundance of shrub‐nesters than treated or reference habitats. Riparian sites where invasive Tamarix is dominant in the Great Plains can provide nesting habitat for some native bird species, with avian abundance and diversity that are comparable to remnant riparian sites with native vegetation. Moreover, presence of some native vegetation in Tamarix‐dominated and Tamarix‐removal sites may increase abundance of riparian birds such as cavity‐nesters. Overall, our study demonstrates that Tamarix may substitute for native flora in providing nesting habitat for riparian birds at the eastern edge of its North American range.  相似文献   

16.
17.
Declines of West European farmland birds have been associated with intensive agricultural practices, while in Central and Eastern European countries grasslands still harbour a diverse and unique bird community. However, in these countries comparative studies on the effects of agricultural intensity on biodiversity are virtually missing. We compared bird communities of paired extensively and intensively grazed cattle pastures in three different regions of the Hungarian Great Plain. The influence of grazing intensity, landscape and regional effects were tested on the abundance and species richness of two ecological groups of bird species (grassland and non-grassland birds), as well as on the abundance of the three commonest grassland bird species (Skylark, Yellow wagtail, Corn bunting) in linear mixed models. We found significant effects of grazing intensity on the abundance of grassland birds, which were more abundant on the extensive sites, whereas no effects were found on non-grassland birds. This could be explained by a closer dependence of grassland birds on grasslands for nesting and foraging, whereas non-grassland birds only used grasslands opportunistically for foraging. Landscape effect was shown on grassland bird abundance, but not on non-grassland birds. The regions did affect only the species richness of grassland birds. At species level, the effect of management was significant for the three commonest grassland species, which were more abundant on the extensive fields in all regions. Additionally, on Skylark abundance landscape and regional effects were also shown. These findings suggest that conservation of biodiversity in agricultural systems requires the consideration of landscape perspective to apply the most adequate management.  相似文献   

18.
Abstract: Common reed (Phragmites australis) forms dense stands with deep layers of residual organic matter that negatively affects plant diversity and possibly habitat use by wetland birds. We sought to determine whether seasonal relative abundance and species richness of birds varied among 3 habitat types in Great Lakes coastal wetland complexes recently invaded by common reed. We used fixed-distance point counts to determine species relative abundances and species richness in edge and interior locales within common reed, cattail (Typha spp.), and meadow marsh habitats of various sizes during 2 summers (2001 and 2002) and 1 autumn (2001) at Long Point, Lake Erie, Ontario, Canada. We found that total relative abundance and species richness of birds were greater in common reed habitat compared to cattail or meadow marsh habitats. However, we also found that relative abundance of marsh-nesting birds was greater in meadow marsh habitat than in cattail and common reed during summer. Lastly, we found that, irrespective of habitat type, habitat edges had higher total relative abundance and species richness of birds than did habitat interiors. Our results show that common reed provides suitable habitat for a diversity of landbirds during summer and autumn but only limited habitat for many marsh-nesting birds during summer. Based on these results, we recommend restoration of meadow marsh habitat through reduction of common reed in Great Lakes wetlands where providing habitat for breeding marsh-nesting birds is an objective. Managers also might consider reducing the size of nonnative common reed stands to increase edge effect and use by birds, possibly including wetland birds.  相似文献   

19.
Abstract. Exotic plants were surveyed in 208 plots within the Dungeness and Hoh river watersheds on the Olympic Peninsula, Washington, USA. Landscape patch types included uplands (clearcuts, young and mature forests) and riparian zones (cobble bars, shrub patches, riparian forests, and alder flats). Patterns of exotic plant invasions were assessed between watersheds, between riparian and upland areas, among patch types, and within clearcuts. 52 exotic plant species were encountered, accounting for 23% of the flora in each watershed. In both watersheds, exotic species richness was approximately 33% greater in riparian zones than in uplands, and mean number and cover of exotic species were > 50% greater in riparian zones than in uplands. Among landscape patch types, richness and mean number and cover of exotics was highest in young riparian patches, intermediate in clearcuts and riparian forests, and lowest in young and mature forests. The exception to this was Hoh alder flats, which had the highest mean cover of exotic plants. Cover of exotic plants peaked in uplands 3 to 7 yr after clearcutting, then decreased with increased canopy closure. Disturbance type and time since disturbance were major factors influencing invasibility. Landscape patch size, position within watershed (distance from patch to human population centers, major highway, or river mouth), and environmental variables (slope, aspect, and elevation) were not important indicators of landscape patch invasibility. Riparian zones facilitated movement of exotic plants through landscapes, but did not appear to act as sources of exotic plants for undisturbed upland areas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号