首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study is to differentiate roles of several growth factors and cytokines in proliferation and differentiation of pulp cells during development and repair. In human pulp cell cultures, laminin and type I collagen levels per cell remained almost constant during the whole culture period (22 days). On the other hand, secreted protein, acidic and rich in cysteine (SPARC/osteonectin) and alkaline phosphatase (ALPase) levels markedly increased after the cultures reached confluence. Laminin and type I collagen, as well as fibronectin, stimulated the spreading of pulp cells within 1 h. Adding transforming growth factor-β (TGF-β) decreased laminin and ALPase levels, whereas it increased SPARC and fibronectin levels 3- to 10-fold. Western and Northern blots showed that TGF-β enhanced SPARC synthesis at the protein and mRNA levels. Basic fibroblast growth factor (bFGF) decreased type I collagen, laminin, SPARC, and ALPase levels without changing the fibronectin level. Platelet-derived growth factor (PDGF) selectively decreased laminin, SPARC, and ALPase levels. Epidermal growth factor (EGF) also decreased SPARC and ALPase levels. Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) decreased type I collagen and laminin levels, and abolished SPARC and ALPase syntheses. Of these peptides, bFGF and PDGF showed the greatest stimulation of [3H]thymidine incorporation into DNA. TGF-β, EGF, and TNF-α had less effect on DNA synthesis, whereas IL-1β inhibited DNA synthesis. These findings demonstrated that TGF-β, bFGF, EGF, PDGF, TNF-α, and IL-1β have characteristically different patterns of actions on DNA, laminin, type I collagen, fibronectin, ALPase, and SPARC syntheses by pulp cells. J. Cell. Physiol. 174:194–205, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Transforming growth factor-beta(1) (TGF-beta(1)) increases synthesis of secreted protein, acidic and rich in cysteine (SPARC), as well as fibronectin (FN) and type I collagen. However, little is known about the regulatory mechanism of SPARC expression. We examined the effect of FN on SPARC expression by TGF-beta(1) in cultures of human periodontal ligament cells (HPL cells). TGF-beta(1) increased the SPARC and SPARC mRNA levels in HPL cells. Extracellular matrix (ECM) produced by HPL cells in the presence of TGF-beta(1) also increased the SPARC levels. Contents of FN and type I collagen in the ECM were increased by TGF-beta(1). HPL cells cultured on FN-coated plates secreted more SPARC than those on non-coated plates. However, type I collagen had little effect on SPARC levels. The addition of anti-alpha5 antibody to the cultures abolished the increase in SPARC mRNA expression by TGF-beta(1). This study demonstrated that FN may be partly involved in the increase in SPARC expression by TGF-beta(1) in HPL cells.  相似文献   

3.
Monolayer cultures of human mesothelial cells made quiescent by serum deprivation are induced to undergo one round of DNA synthesis by platelet-derived growth factor (PDGF), epidermal growth factor (EGF), or transforming growth factor type beta 1 (TGF-beta 1). This one-time stimulation is independent of other serum components. The kinetics for induction of DNA synthesis observed for PDGF, EGF, and TGF-beta 1 are all similar to one another, with a peak of DNA synthesis occurring 24-36 h after the addition of the growth factors. Repetitive rounds of DNA synthesis and cell division do not ensue after addition of PDGF, EGF, or TGF-beta 1 alone or in combination; however, in media supplemented with chemically denatured serum, each of these factors is capable of sustaining continuous replication of mesothelial cells. Stimulation of growth by PDGF and TGF-beta 1 is unusual for an epithelial cell type, and indicates that mesothelial cells have growth regulatory properties similar to connective tissue cells.  相似文献   

4.
Anchorage-independent growth, i.e., growth in semi-solid medium is considered a marker of cellular transformation of fibroblast cells. Diploid human fibroblasts ordinarily do not exhibit such growth but can grow transiently when medium contains high concentrations of fetal bovine serum. This suggests that some growth factor(s) in serum is responsible for anchorage-independent growth. Much work has been done to characterize the peptide growth factor requirements of various rodent fibroblast cells for anchorage-independent growth; however, the requirements of human fibroblasts are not known. To determine the peptide growth factor requirements of human fibroblasts for anchorage-independent growth, we used medium containing serum that had had its peptide growth factors inactivated. We found that either platelet-derived growth factor (PDGF) or the basic form of fibroblast growth factor (bFGF) induced anchorage-independent growth. Epidermal growth factor (EGF) did not enhance the growth induced by PDGF, or did so only slightly. Transforming growth factor beta (TGF-beta) decreased the growth induced by PDGF. EGF combined with TGF-beta induced colony formation in semi-solid medium at concentrations at which neither growth factor by itself was effective, but the combination was much less effective in stimulating anchorage-independent growth than PDGF or bFGF. This work showed that PDGF, or bFGF, or EGF combined with TGF-beta can stimulate anchorage-independent growth of nontransformed human fibroblasts. The results support the idea that cellular transformation may reduce or eliminate the need for exogenous PDGF or bFGF.  相似文献   

5.
Bone morphogenetic proteins (BMPs) have multiple functions in the development and growth of skeletal and extraskeletal tissues. Therefore, BMPs may regulate the regeneration of periodontal tissue. To investigate this issue, we examined the effects of BMP-4, -5 and -6 on DNA synthesis and the expression of bone-related proteins in cultures of human periodontal ligament (HPL) cells. The expression of bone-related proteins was determined by Real-time polymerase chain reaction and enzyme linked immunosorbent assay in cultures of HPL cells. DNA synthesis was estimated by measuring bromoderoxyuridine incorporation. It was found that BMP-4, -5 and -6 enhanced DNA synthesis dose-dependently. BMP-4 and -5 increased the levels of osteopontin, BMP-2, alkaline phosphatase and core binding factor alpha 1 mRNAs. BMP-6 stimulated the expression of osteopontin, BMP-2, ALPase and osteoprotegerin. These findings show that BMP-4, -5 and -6 have different actions on the expression of bone-related proteins and may play a role in the regeneration of periodontal tissue by promoting cell proliferation and protein expression.  相似文献   

6.
In a search of the growth factors possibly involved in brain ontogenesis we have examined the effects of transforming growth factor beta 1 (TGF-beta 1) on the growth and phenotypic expression of rat astroblasts in primary culture. Along TGF-beta 1 elicited only a slight negative effect on the growth of these cells. However, this factor was found to modulate the mitogenic effects of other growth factors. On quiescent cells it potentiates the mitogenic effect of basic fibroblast growth factor (bFGF) but not that of other growth factors, namely, epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and thrombin. TGF-beta 1 did not modulate significantly the stimulatory effect of these growth factors on the activity of the enzyme glutamine synthetase (GS); but kinetic studies showed that TGF-beta 1 delays the stimulation of GS activity. DNA synthesis monitored by the incorporation of [125I]iododeoxyuridine (125I-dUrd) was maximum after 24-30 h of treatment with bFGF. With bFGF plus TGF-beta 1 the maximum was shifted to 30-36 h. This shift is compatible with the idea that TGF-beta 1 induces responsiveness in some cells which are otherwise unresponsive to the mitogenic action of bFGF, and that this induction requires some time. This hypothesis is sustained by the observation that in cells treated for only 12 h with bFGF, the treatment with TGF-beta 1 for the same 12 h or for longer time did not stimulate significantly the cell growth. Stimulation occurred only when the bFGF treatment was continued after 12 h. Potentiation of the mitogenic effect of bFGF and shift of the maximum 125I-dUrd incorporation towards 24 h was seen with cells pretreated with TGF-beta 1. This potentiation effect decreased with increasing time between the two treatments. The potentiation effect of TGF-beta 1 is not mediated by an induction of new bFGF membrane receptors as seen by binding studies.  相似文献   

7.
We have recently demonstrated the formation of interconnecting canalicular cell processes in bone cells upon contact with basement membrane components. Here we have determined whether growth factors in the reconstituted basement membrane (Matrigel) were active in influencing the cellular network formation. Various growth factors including transforming growth factor beta (TGF-beta), epidermal growth factor (EGF), insulin-like growth factor 1, bovine fibroblast growth factor (bFGF), and platelet-derived growth factor (PDGF) were identified in Matrigel. Exogenous TGF-beta blocked the cellular network formation. Conversely, addition of TGF-beta 1 neutralizing antibodies to Matrigel stimulated the cellular network formation. bFGF, EGF, and PDGF all promoted cellular migration and organization on Matrigel. Addition of bFGF to MC3T3-E1 cells grown on Matrigel overcame the inhibitory effect of TGF-beta. Some TGF-beta remained bound to type IV collagen purified from the Engelbreth-Holm-Swarm tumor matrix. These data demonstrate that reconstituted basement membrane contains growth factors which influence cellular behavior, suggesting caution in the interpretation of experiments on cellular activity related to Matrigel, collagen type IV, and possibly other extracellular matrix components.  相似文献   

8.
9.
Type beta transforming growth factor (TGF-beta) is found in large amounts in bone tissue, and is a potent mitogen for osteoblast-enriched cell cultures obtained from fetal rat parietal bone. Because other local and systemic factors may be presented to bone cells simultaneously with TGF-beta, it is important to understand the effects of this complex growth regulator in such circumstances. Unlike the effects observed in many tissue systems, TGF-beta does not invariably inhibit the mitogenic response of bone cells to other growth promoters. In contrast, other factors such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and type alpha tumor necrosis factor (TNF-alpha) limit the response of osteoblastic bone cells to TGF-beta. TGF-beta is a much weaker mitogen for fibroblastic cells obtained from fetal rat bone, whereas fetal bovine serum, EGF, bFGF, and TNF-alpha are more potent stimulators. In addition, TGF-beta does not significantly impair the response of the fibroblastic bone cells to the other tested agents. These findings reinforce a role of TGF-beta as an anabolic bone growth regulator, and suggest that its function may be modified by other local or systemic agents that can also affect bone cells.  相似文献   

10.
When stimulated with increasing amounts of interleukin 1 beta (IL 1 beta) rheumatoid arthritis (RA), as compared with osteoarthritis (OA), synovial cells grown in RPMI plus fetal bovine serum (FBS), released significantly more prostaglandin E2 (PGE2) (p less than 0.05; paired t test, two-tailed). PGE2 release by IL 1 beta-stimulated RA synovial cells grown for 14 days in serum-free RPMI was significantly less than that released by the same cells grown in medium plus 10% FBS (p less than 0.03; two-tailed). Since these data suggest that growth factors present in FBS may augment the effects of IL 1 beta, experiments were conducted to study the influence of four polypeptide growth factors--transforming growth factor-beta (TGF-beta), platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF), on IL 1 beta-induced release of PGE2 by cultured RA synovial cells. Both EGF and bFGF significantly enhanced IL 1 beta-induced release of PGE2 (p less than 0.05; paired t test, one-tailed), while PDGF was synergistic with IL 1 beta, significantly increasing release of PGE2 by these cultured cells (p less than 0.02; two-tailed). No such effect was seen when TGF-beta was added to the culture medium. Taken together, these data lend support to the concept that within the synovial micro-environment small quantities of individual growth factors may potentiate the effects of IL 1 beta to amplify intra-articular inflammation.  相似文献   

11.
M Boes  B L Dake  R S Bar 《Life sciences》1991,48(8):811-821
Endothelial cells in culture synthesize the growth factors transforming growth factor beta (TGF-beta), basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF) and, perhaps, insulin like growth factor I (IGF-I). We have previously demonstrated that IGF-I and PDGF have both high affinity receptors and stimulate glucose and AIB uptake in the microvessel cells under study and that IGF-I, but not PDGF, has similar high affinity receptors in cultured large vessel endothelial cells. In the present study, cultured bovine endothelial cells were exposed to these four growth factors to determine a) their effects on the acute metabolic processes of neutral amino acid (AIB) and glucose uptake and b) their interactions at the endothelial cell surface. In microvessel endothelial cells, each growth factor stimulated AIB and glucose uptake 2-4 fold whereas in large vessel endothelial cells only bFGF stimulated glucose uptake. Each growth factor had specific high affinity binding to the microvessel cells that was not influenced by the presence of the other growth factors. In large vessel endothelial cells, similar high affinity binding was present only for IGF-I and to a lesser degree TGF-beta. When cells were exposed to a given growth factor for 18 hours, homologous receptor downregulation was observed, with a maximal 60-95% decrease in surface binding. These findings suggest several potential levels of interaction of the growth factors TGF-beta, bFGF, PDGF and IGF-I in cultured vascular endothelial cells.  相似文献   

12.
The effect of various growth factors on the synthesis of hyaluronan in human fibroblasts was investigated. When tested in medium containing 0.5% fetal calf serum, platelet-derived growth factor (PDGF)-BB was found to stimulate hyaluronan synthesis; the maximal response was equal to or higher than that obtained with 10% fetal calf serum. PDGF-AA gave only a limited effect, indicating that the stimulatory effect of PDGF on hyaluronan synthesis was mainly transduced via the B-type PDGF receptor. Epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta 1 also stimulated hyaluronan synthesis; their effects were less than that of PDGF-BB, but combinations of factors produced potent stimulatory effects on hyaluronan synthesis. All factors stimulated hyaluronan synthesis in sparse as well as dense cultures. The effects of the factors on hyaluronan synthesis did not correlate with their mitogenic activities; PDGF-BB, EGF and bFGF are equipotent mitogens, but PDGF-BB had a much more potent effect on hyaluronan synthesis, and TGF-beta actually inhibits the growth of fibroblasts under the conditions of the assay.  相似文献   

13.
Anchorage-independent growth of normal rat kidney (NRK) fibroblast in soft agar depends on both transforming growth factor beta (TGF beta) and epidermal growth factor (EGF). To examine whether c-fos protein is involved in phenotypic transformation of NRK cells, we have transfected and isolated several NRK cell lines that carry the human c-fos gene fused to the metallothionein IIA promoter. A transfectant, Nf-1, had constitutive levels of the human c-fos expression. Anchorage-independent growth of Nf-1 was already stimulated by EGF alone, and the colony sizes of Nf-1 were comparable to those of the parental NRK in the presence of both EGF and TGF beta. Anchorage-independent growth of NRK could be observed in the presence of TGF beta or retinoic acid or platelet derived growth factor (PDGF) and EGF. No growth of NRK in soft agar appeared when basic fibroblast growth factor (bFGF) and EGF were present. By contrast, anchorage-independent growth of Nf-1 was surprisingly enhanced by EGF and TGF beta or retinoic acid or PDGF or bFGF. Expression of the human c-fos gene may compensate the signal to phenotypic transformation induced by TGF beta as well as retinoic acid or PDGF or bFGF.  相似文献   

14.
Extensive evidence indicate that platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) play a key role in the stimulation of the 3T3 fibroblast replication: in this connection, PDGF and EGF act as a competence and a progression factor, respectively. We have previously demonstrated that EGF alone leads density-arrested EL2 rat fibroblasts to synthesize DNA and proliferate in serum-free cultures. Here, we have analyzed the role of EGF in the control of EL2 cell proliferation. Our data show a dose-related effect of EGF on DNA synthesis and cell growth, with maximal stimulation for both parameters at 20 ng/ml. On the other hand, autocrine production of PDGF or PDGF-like substances by EL2 cells is seemingly excluded by experiments with anti-PDGF serum or medium conditioned by EL2 fibroblasts. EGF binding studies show that EL2 cells possess high affinity EGF receptors, at a density level 3 to 4-fold higher than other fibroblastic lines. In addition, EL2 cells show a normal down-regulation of EGF receptors, following exposure to EGF, but PDGF, fibroblast growth factor (FGF), transforming growth factor beta (TGF beta) and bombesin have not decreased the affinity of EGF receptor for its ligand. Moreover, in EL2 cells, the EGF is able to induce the synthesis of putative intracellular regulatory proteins that govern the PDGF-induced competence in 3T3 cells. Our data indicate that EGF in EL2 cells may act as both a competence and a progression factor, via induction of the mechanisms, regulated in other cell lines by cooperation between different growth factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
The effects of the transforming growth factor beta (TGF-beta) on the growth and glycosaminoglycan synthesis of rabbit growth plate-chondrocytes in culture were studied. In serum-free medium, TGF-beta caused dose-dependent inhibition of DNA synthesis by chondrocytes, measured as [3H]thymidine incorporation (ED50 = 0.1-0.3 ng/ml). The inhibitory effect was maximal at a dose of 1 ng/ml, and extended for a duration of 16-42 h. In contrast, TGF-beta potentiated the synthesis of DNA stimulated by fetal calf serum (FCS). Addition of TGF-beta (1 ng/ml) to cultures containing 10% FCS increased [3H]thymidine incorporation to 1.6-times that in cultures with 10% FCS alone. Consistent with this finding, TGF-beta potentiated DNA synthesis stimulated by the purified growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and fibroblast growth factor (FGF). The maximal stimulation of DNA synthesis by FGF (0.4 ng/ml) was further potentiated dose dependently by TGF-beta (ED50 = 0.1 ng/ml, maximum at 1 ng/ml). When the cultures were treated with the optimal concentrations of TGF-beta (1 ng/ml) and FGF (0.4 ng/ml), [3H]thymidine incorporation was 3-times higher than that of cultures treated with FGF alone. This TGF-beta-induced potentiation of DNA synthesis was associated with replication of chondrocytes, as shown by a marked increase in the amount of DNA during treatment of sparse cultures of the cells with the growth factors for 5 days. In contrast, TGF-beta caused dose-dependent stimulation of glycosaminoglycan synthesis in confluent cultures of growth-plate chondrocytes (ED50 = 0.3 ng/ml, maximum at 1 ng/ml). This stimulatory effect of TGF-beta was greater than that of insulin-like growth factor I (IGF-I) or PDGF. Furthermore, TGF-beta stimulated glycosaminoglycan synthesis additively with IGF-I or PDGF. Recently, it has been suggested that bone and articular cartilage are rich sources of TGF-beta, whereas epiphyseal growth cartilage is not. Thus, the present data indicate that TGF-beta may be important in bone formation by modulating growth and phenotypic expression of chondrocytes in the growth plate, possibly via a paracrine mechanism.  相似文献   

17.
Growth factors may play an important role in regulating the growth of the proximal tubule epithelium. To determine which growth factors could be involved, we have investigated the mitogenicity of various purified factors in rat kidney proximal tubule epithelial (RPTE) cells cultured in defined medium. Fibroblast growth factors, aFGF (acidic FGF) and bFGF (basic FGF), stimulate DNA synthesis in a dose-dependent manner, with ED50 values of 4.5 and 3.2 ng/ml, respectively; their effects are not additive. With cholera toxin in the medium, both aFGF and bFGF can replace insulin or epidermal growth factor (EGF) to attain the maximum level of cell growth, but they cannot replace cholera toxin. Cholera toxin specifically potentiates the effects of FGFs on DNA synthesis. At high cell density, both insulin and insulin-like growth factor 1 (IGF-1) induce DNA synthesis more effectively than EGF, FGFs and cholera toxin. The high concentration (0.2-1.0 microgram/ml) of insulin required for cell growth can be replaced by a low concentration of IGF-1 (10-20 ng/ml), indicating that insulin probably acts through a low affinity interaction with the IGF-1 receptor. Transforming growth factor-beta 1 (TGF-beta 1) inhibits DNA synthesis induced by individual factors and combinations of factors in a concentration-dependent manner. Northern blot analysis shows that mRNA for TGF-beta 1, IGF-1, and aFGF, but not bFGF are present in rat kidney. Western blot analysis and bioassay data confirmed that the majority of FGF-like protein in rat kidney is aFGF. The data suggest that in addition to EGF, IGFs, and TGF-beta, FGFs may also be important kidney-derived regulators of proximal tubule epithelial cell growth in vivo and in vitro.  相似文献   

18.
Growth regulators such as epidermal growth factor (EGF) and type beta transforming growth factor (TGF-beta) regulate the synthesis and secretion of certain proteins by cells in culture. The secretion pattern of each cell line and the effect of growth regulators on the secretion pattern are unique. EGF increased the secreted and intracellular levels of mitogen-regulated protein (MRP) and major excreted protein (MEP) by Swiss 3T3 cells. MRP is related by sequence to prolactin. MEP is a thiol protease located intracellularly in the lysosomes. EGF also selectively induced a 52,000-dalton mitogen-induced protein (MIP 52) secreted by human fibroblasts. Two types of TGF-betas were tested for their effects on the expression of secreted proteins in mouse and human fibroblasts: TGF-beta from human platelets and a growth inhibitor (GI/TGF-beta) secreted by BSC-1 cells. Each selectively decreased the levels of the two secreted proteins induced by growth factors in mouse embryo 3T3 cells and one secreted protein induced by growth factors in human fibroblasts. Platelet TGF-beta and GI/TGF-beta also induced one 48,000-dalton protein secreted by human fibroblasts. Synthesis of DNA and the incorporation of [35S]methionine into total protein in Swiss 3T3 cells were not affected by platelet TGF-beta or GI/TGF-beta. Thus, the inhibitory effect of platelet TGF-beta on the synthesis and secretion of these three proteins is due to a specific effect of platelet TGF-beta on the regulation of MRP and MEP that does not interfere with the ability of EGF to stimulate DNA or protein synthesis.  相似文献   

19.
Fibroblast migration, proliferation, extracellular matrix protein synthesis and degradation, all of which play important roles in inflammation, are themselves induced by various growth factors and cytokines. Less is known about the interaction of these substances on lung fibroblast function in pulmonary fibrosis. The goal of this study was to investigate the effects of PDGF alone and in combination with IL-1beta and TNF-alpha on the production of human lung fibroblast matrix metalloproteinases, proliferation, and the chemotactic response. The assay for MMPs activity against FITC labeled type I and IV collagen was based on the specificity of the enzyme cleavage of collagen. Caseinolytis and gelatinolytic activities of secreted proteinases were analyzed by zymography. Fibronectin in conditioned media was measured using human lung fibronectin enzyme immunoassay. Cell proliferation was measured by 3H-Thymidine incorporation assay. Cell culture supernatants were tested for PGE2 content by ELISA. Chemotactic activity was measured using the modified Boyden chamber. Matrix metalloproteinase assay indicated that IL-1beta, TNF-alpha and PDGF induced intestitial collagenase (MMP-1) production. MMP assay also indicated that IL-1beta and TNF-alpha had inhibitory effects on MMP-2,9(gelatinaseA,B) production. Casein zymography confirmed that IL-1beta stimulated stromlysin (matrix metalloproteinase 3; MMP-3) and gelatin zymography demonstrated that TNF-alpha induced MMP-9 production in human lung fibroblast, whereas PDGF alone did not. PDGF in combination with IL-1beta and TNF-alpha induced MMP-3 and MMP-9 activity, as demonstrated by zymography. PDGF stimulated lung fibroblast proliferation in a concentration-dependent manner, whereas IL-1beta and TNF-alpha alone had no effect. In contrast, the proliferation of human lung fibroblasts by PDGF was inhibited in the presence of IL-1beta and TNF-alpha, and this inhibition was not a consequence of any elevation of PGE2. PDGF stimulated fibroblast chemotaxis in a concentration-dependent manner, and this stimulation was augmented by combining PDGF with IL-1beta and TNF-alpha. These findings suggested that PDGF differentially regulated MMPs production in combination with cytokines, and further that MMP assay and zymography had differential sensitivity for detecting MMPs. The presence of cytokines with PDGF appears to modulate the proliferation and chemotaxis of human lung fibroblasts.  相似文献   

20.
This study evaluated the effects of bFGF and TGF-beta, individually and combined, on cell proliferation and collagen metabolism. Primary human periodontal ligament cells were stimulated with two concentrations (1 and 10 ng/ml) of each growth factor, both individually and combined. Proliferation was determined by a commercial biochemical assay. Real time RT-PCR determined gene expression of MMP-1 and -2, collagen types I and III, TIMP-1, -2 and -3. Autocrine effects on synthesis of bFGF and TGF-beta were evaluated by ELISA. Only TGF-beta, either isolated or associated with bFGF, significantly increased cell proliferation. TGF-beta had anabolic effects, increasing expression of type I and III collagen as well as of TIMPs, whereas bFGF had opposite effects. When bFGF and TGF-beta were associated, the anabolic effects prevailed. Synthesis of TGF-beta was induced only by the association of lower concentrations of the growth factors, whereas there was a dose-dependent production of bFGF. It is concluded that bFGF had a predominantly catabolic effect, and TGF-beta exerted an anabolic effect on hPDL cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号