首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
An extremely-high-CO2-tolerant alga, Chlorococcum littorale, showed high quantum efficiency of PSII (PhiII) in the light at 40% CO2, as well as at 5% CO2. However, PhiII decreased greatly when chloramphenicol (CAP) was added at 40% CO2, while no such decrease was observed at 5% CO2. Cycloheximide showed no effect on PhiII at either 5% or 40% CO2. The amount of a 76 kDa polypeptide (p76) on SDS-PAGE decreased markedly in the presence of CAP at 40% CO2 but not at 5% CO2. A partial amino acid sequence of p76 was 71-100% identical (10-14 identical residues out of 14 amino acids determined) to those of transketolases (TKLs) reported in higher plants and a cyanobacterium. In agreement with these observations, the TKL activity in C. littorale was decreased by CAP at 40% CO2, but not at 5% CO2. The transient decrease in TKL activity caused by CAP under 40% CO2 was well correlated with that in PhiII. These results indicate that the addition of CAP directly or indirectly influences the stability of TKL in C. littorale at 40% CO2, but not at 5% CO2, and that photosynthetic activity was reduced by a decrease in TKL activity.  相似文献   

2.
The photosynthetic characteristics of coffee ( Coffea arabusta) plantlets cultured in vitro in response to different CO2 concentrations inside the culture vessel and photosynthetic photon flux (PPF) were investigated preliminarily. The estimation of net photosynthetic rate (Pn) of coffee plantlets involved three methods: (1) estimating time courses of actual Pn in situ based on measuring CO2 concentrations inside and outside the vessel during a 45-day period, (2) estimating Pn in situ at different CO2 concentrations and PPFs using the above measuring approach for 10-day and 30-day old in vitro plantlets, and (3) estimating Pn of a single leaf at different CO2 concentrations and PPFs by using a portable photosynthesis measurement system for 45-day old in vitro coffee plantlets. The results showed that coffee plantlets in vitro had relatively high photosynthetic ability and that the Pn increased with the increase in CO2 concentration inside the vessel. The CO2 saturation point of in vitro coffee plantlets was high (4500–5000 μmol mol-1); on the other hand, the PPF saturation point was not so high as compared to some other species, though it increased with increasing CO2 concentration inside the vessel. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
1) The wavelength effects on 14CO2-fixation by Chlorella cellswere studied, using monochromatic light of different light intensities. 2) Blue light (453 mµ) stimulated the incorporation of14C into aspartate, glutamate and malate. Red light (679 mµ),on the other hand, stimulated its incorporation into P-esters,free sugars and insoluble material. 3) The blue light effect was observed in the presence of CMUat concentrations completely suppressing ordinary photosyntheticCO2-fixation. 4) The blue light effect in the presence of CMU was inducedat very low intensities. At 453 mµ, 300 erg cm–2sec–1 was sufficient for complete saturation. 5) Time courses of 14C-incorporation into individual compoundswere investigated. Irrespective of the wavelength of the illuminatinglight, the first stable CO2-fixation product formed under weaklight (400–500 erg cm–2 sec–1) was citrulline.At higher light intensities (4,000–7,000 erg cm–2sec–1), PGA was the first stable CO2-fixation product.The incorporation of 14C into citrulline was not inhibited byCMU. 6) Experimental results indicate that both blue light-inducedincorporation of 14C into amino and organic acids and the incorporationof 14C into citrulline induced by low intensity light are operatedby a mechanism(s) independent of ordinary photosynthetic CO2-fixation.Possible effects of light regulating the carbon metabolism inalgal cells are discussed. (Received July 24, 1969; )  相似文献   

4.
In order to develop an effective CO2 mitigation process using microalgae for potential industrial application, the growth and physiological activity of Chlorella vulgaris in photobioreactor cultures were studied. C. vulgaris was grown at two CO2 concentrations (2 and 13% of CO2 v/v) and at three incident light intensities (50, 120 and 180 μmol m?2 s?1) for 9 days. The measured specific growth rate was similar under all conditions tested but an increase in light intensity and CO2 concentration affected the biomass and cell concentrations. Although carbon limitation was observed at 2% CO2, similar cellular composition was measured in both conditions. Light limitation induced a net change in the growth behavior of C. vulgaris. Nitrogen limitation seemed to decrease the nitrogen quota of the cells and rise the intracellular carbon:nitrogen ratio. Exopolysaccharide production per cell appeared to be affected by light intensity. In order to avoid underestimation of the CO2 biofixation rate of the microalgae, exopolysaccharide production was taken into account. The maximum CO2 removal rate (0.98 g CO2 L?1 d?1) and the highest biomass concentration (4.14 g DW L?1) were determined at 13% (v/v) CO2 and 180 μmol m?2 s?1. Our results show that C. vulgaris has a real potential for industrial CO2 remediation.  相似文献   

5.
The pigment composition of two species of green-colored BChl c-containing green sulfur bacteria (Chlorobium limicola and C. chlorovibrioides) and two species of brown-colored BChl e-containing ones (C. phaeobacteroides and C. phaeovibrioides) incubated at different light intensities have been studied. All species responded to the reduction of light intensity from 50 to 1 Einstein(E) m–2 s–1 by an increase in the specific content of light harvesting pigments, bacteriochlorophylls and carotenoids. At critical light intensities (0.5 to 0.1 E m–2 s–1) only brown-colored chlorobia were able to grow, though at low specific rates (0.002 days–1 mg prot–1). High variations in the relative content of farnesyl-bacteriochlorophyll homologues were found, in particular BChl e 1 and BChl e 4, which were tentatively identified as [M, E] and [I, E] BChlF e, respectively. The former was almost completely lost upon reduction of light intensity from 50 to 0.1 E m–2 s–1, whereas the latter increased from 7.2 to 38.4% and from 13.6 to 42.0% in C. phaeobacteroides and C. phaeovibrioides, respectively. This increase in the content of highly alkylated pigment molecules inside the chlorosomes of brown species is interpreted as a physiological mechanism to improve the efficiency of energy transfer towards the reaction center. This study provides some clues for understanding the physiological basis of the adaptation of brown species to extremely low light intensities.Abbreviations BChl bacteriochlorophyll - [M, E] BChlF e 8-methyl, 12-ethyl BChl e, esterified with farnesol (F). Analogously: I - isobutyl - Pr propyl - Car carotenoids - Chlb chlorobactene - HPLC high performance liquid chromatography - Isr isorenieratene - LHP light harvesting pigments - PDA photodiode array detector - RC reaction center - RCH relative content of homologues  相似文献   

6.
7.
Effects of growth light intensity on the temperature dependence of CO2 assimilation rate were studied in tobacco (Nicotiana tabacum) because growth light intensity alters nitrogen allocation between photosynthetic components. Leaf nitrogen, ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) and cytochrome f (cyt f) contents increased with increasing growth light intensity, but the cyt f/Rubisco ratio was unaltered. Mesophyll conductance to CO2 diffusion (gm) measured with carbon isotope discrimination increased with growth light intensity but not with measuring light intensity. The responses of CO2 assimilation rate to chloroplast CO2 concentration (Cc) at different light intensities and temperatures were used to estimate the maximum carboxylation rate of Rubisco (Vcmax) and the chloroplast electron transport rate (J). Maximum electron transport rates were linearly related to cyt f content at any given temperature (e.g. 115 and 179 µmol electrons mol?1 cyt f s?1 at 25 and 40 °C, respectively). The chloroplast CO2 concentration (Ctrans) at which the transition from RuBP carboxylation to RuBP regeneration limitation occurred increased with leaf temperature and was independent of growth light intensity, consistent with the constant ratio of cyt f/Rubisco. In tobacco, CO2 assimilation rate at 380 µmol mol?1 CO2 concentration and high light was limited by RuBP carboxylation above 32 °C and by RuBP regeneration below 32 °C.  相似文献   

8.
Gross LJ  Chabot BF 《Plant physiology》1979,63(6):1033-1038
The response of whole leaf photosynthetic rate in Fragaria virginiana to sudden changes in photosynthetically active radiation (PAR) is described. Two components of the response, consisting of a time lag and time constant, are estimated under varying PAR changes for plants grown under two different light regimes. Both the time lag and time constant are found to vary with PAR but not with growth light regime. A model of Thornley for leaf photosynthetic response is refuted and an alternative form is discussed.  相似文献   

9.
Summary Elodea canadensis grows over a wide range of inorganic carbon, nutrient, and light conditions in lakes and streams. Affinity for HCO 3 - use during photosynthesis ranged from strong to weak in Elodea collected from seven localities with different HCO 3 - and CO2 concentrations. The response to HCO 3 - was also very plastic in plants grown in the laboratory at high HCO 3 - concentrations and CO2 concentrations varying from 14.8 to 2,200 M. Bicarbonate affinity was markedly reduced with increasing CO2 concentrations in the growth medium so that ultimately HCO 3 - use was not detectable. High CO2 concentrations also decreased CO2 affinity and induced high CO2 compensation points (360M CO2) and tenfold higher half-saturation values (800 M CO2).The variable HCO 3 - affinity is probably environmentally based. Elodea is a recently introduced species in Denmark, where it reproduces only vegetatively, leaving little opportunity for genetic variation. More important, local populations in the same water system had different HCO 3 - affinities, and a similar variation was created by exposing one plant collection to different laboratory conditions.Bicarbonate use enabled Elodea to photosynthesize rapidly in waters of high alkalinity and enhanced the carbon-extracting capacity by maintaining photosynthesis above pH 10. On the other hand, use of HCO 3 - represents an investment in transport apparatus and energy which is probably not profitable when CO2 is high and HCO 3 - is low. This explanation is supported by the findings that HCO 3 - affinity was low in field populations where HCO 3 - was low (0.5 and 0.9 m M) or CO2 was locally high, and that HCO 3 - affinity was suppressed in the laboratory by high CO2 concentrations.Abbreviations DIC dissolved inorganic carbon (CO2+ HCO 3 - +CO 3 - ) - CO2 compensation point - K 1/2 apparent halfsaturation constant - PHCO 3 interpolated photosynthesis in pure HCO 3 - and zero CO2 - Pmax photosynthetic rate under carbon and light saturation  相似文献   

10.
Yu Q  Zhang Y  Liu Y  Shi P 《Annals of botany》2004,93(4):435-441
BACKGROUND AND AIMS: The stomata are a key channel of the water cycle in ecosystems, and are constrained by both physiological and environmental elements. The aim of this study was to parameterize stomatal conductance by extending a previous empirical model and a revised Ball-Berry model. METHODS: Light and CO(2) responses of stomatal conductance and photosynthesis of winter wheat in the North China Plain were investigated under ambient and free-air CO(2) enrichment conditions. The photosynthetic photon flux density and CO(2) concentration ranged from 0 to 2000 micro mol m(-2) s(-1) and from 0 to 1400 micro mol mol(-1), respectively. The model was validated with data from a light, temperature and CO(2) response experiment. RESULTS: By using previously published hyperbolic equations of photosynthetic responses to light and CO(2), the number of parameters in the model was reduced. These response curves were observed diurnally with large variations of temperature and vapour pressure deficit. The model interpreted stomatal response under wide variations in environmental factors. CONCLUSIONS: Most of the model parameters, such as initial photon efficiency and maximum photosynthetic rate (P(max)), have physiological meanings. The model can be expanded to include influences of other physiological elements, such as leaf ageing and nutrient conditions, especially leaf nitrogen content.  相似文献   

11.
12.
13.
The energetics of cell-cell and cell-substrate interactions has been analyzed in terms of the lyophobic colloid stability theory adapted to biological conditions. Some important differences that exist between lyophobic particles and living cells are recognized and taken into account. The protein-aceous coat exterior to the lipid cell membrane (glycocalyx) is treated as a very thick Stern layer which has a constant electric capacitance. The cell itself is viewed as a fluid droplet due to the semi-fluid state of the cell membrane, and its outer boundary is assumed to have a constant electric charge density. When particles with constant surface charge density interact, their surface potential increases. Then the potential at the lipid-protein interface will also increase, hence the interfacial tension should decrease. The magnitude of the interfacial tension change at the lipid-protein interface occurring during the interaction of cells has been calculated for various thicknesses of the glycocalyx. This term, obtained for cells with a relatively thin proteinaceous coat, was found to dominate the energy balance, making the total energy of interaction negative.  相似文献   

14.
15.
Vugts  H. F. 《Plant Ecology》1993,(1):321-328
A Penman-Monteith equation has been used to evaluate a change in canopy resistance on the evapotranspiration of a savannah and agricultural area in Botswana. After a short introduction, some problems concerning the K-theory or first order closure are indicated when one uses it for transport modelling within and above a canopy. The Penman-Monteith equation was used to calculate the canopy resistance for a savannah vegetation and sorghum under the same environmental conditions. After that, by changing the stomatal resistance due to an increase of the CO2 content, the change in the evapotranspiration was estimated.Finally some recommendations for future research are given and an outline of a proposed FACE experiment is presented.  相似文献   

16.
Summary Young cockerels injected 24 h earlier with 0.9% saline,para-chorophenylalanine (pCPA, brain serotonin depletor) or alpha-methylpara-tyrosine (AMPT, brain catecholamine depletor) were deprived of access to water for 24 h. Plasma prolactin concentrations were markedly elevated by water deprivation and returned to normal on rehydration. pCPA, but not AMPT, significantly reduced the increase in prolactin. Concentrations of growth hormone were not affected by water deprivation. Brain serotonin concentrations were reduced by treatment with pCPA. Groups of cockerels were maintained under normal conditions or without access to drinking water for 12 h or 24h. Some were injected with the monoamine oxidase inhibitor pargyline, which increased the prolactin and decreased the growth hormone concentration in the plasma of the hydrated birds. The inhibitory effect of pargyline on growth hormone was augmented following water deprivation. Serotonin levels were not significantly affected by water deprivation but turnover (defined as accumulation of serotonin after pargyline treatment) was increased in the hypothalamus but not in remaining tissue. Injecting 30% saline solution intravenously markedly increased plasma prolactin whilst growth hormone concentrations were decreased. Serotonin turnover was increased in the hypothalamus but not in other brain regions. The results show that secretion of prolactin and growth hormone by the pituitary gland during osmotic imbalance in the fowl may be mediated by changes in hypothalamic scrotonin turnover.  相似文献   

17.
18.
The tuberous sclerosis tumor suppressors TSC1 and TSC2 regulate the mTOR pathway to control translation and cell growth in response to nutrient and growth factor stimuli. We have recently identified the stress response REDD1 gene as a mediator of tuberous sclerosis complex (TSC)-dependent mTOR regulation by hypoxia. Here, we demonstrate that REDD1 inhibits mTOR function to control cell growth in response to energy stress. Endogenous REDD1 is induced following energy stress, and REDD1-/- cells are highly defective in dephosphorylation of the key mTOR substrates S6K and 4E-BP1 following either ATP depletion or direct activation of the AMP-activated protein kinase (AMPK). REDD1 likely acts on the TSC1/2 complex, as regulation of mTOR substrate phosphorylation by REDD1 requires TSC2 and is blocked by overexpression of the TSC1/2 downstream target Rheb but is not blocked by inhibition of AMPK. Tetracycline-inducible expression of REDD1 triggers rapid dephosphorylation of S6K and 4E-BP1 and significantly decreases cellular size. Conversely, inhibition of endogenous REDD1 by short interfering RNA increases cell size in a rapamycin-sensitive manner, and REDD1-/- cells are defective in cell growth regulation following ATP depletion. These results define REDD1 as a critical transducer of the cellular response to energy depletion through the TSC-mTOR pathway.  相似文献   

19.
When cells of Chlorococcum littorale that had been grown in air (air-grown cells) were transferred to extremely high CO2 concentrations (>20%), active photosynthesis resumed after a lag period which lasted for 1–4 days. In contrast, C. littorale cells which had been grown in 5% CO2 (5% CO2-grown cells) could grow in 40% CO2 without any lag period. When air-grown cells were transferred to 40% CO2, the quantum efficiency of PS II (ΦII) decreased greatly, while no decrease in ΦII was apparent when the 5% CO2-grown cells were transferred to 40% CO2. In contrast to air-grown cells, 5% CO2-grown cells showed neither extracellular nor intracellular carbonic anhydrase (CA) activity. Upon the acclimation of 5% CO2-grown cells to air, photosynthetic susceptibility to 40% CO2 was induced. This change was associated with the induction of CA. In addition, neither suppression of photosynthesis nor arrest of growth was apparent when ethoxyzolamide (EZA), a membrane-permeable inhibitor of CA, had been added before transferring air-grown cells of C. littorale to 40% CO2. The intracellular pH value (pHi) decreased from 7.0 to 6.4 when air-grown C. littorale cells were exposed to 40% CO2 for 1–2 h, but no such decrease in pHi was apparent in the presence of EZA. Both air- and 5% CO2-grown cells of Chlorella sp. UK001, which was also resistant to extremely high CO2 concentrations, grew in 40% CO2 without any lag period. The activity of CA was much lower in air-grown cells of this alga than those in air-grown C. littorale cells. These results prompt us to conclude that intracellular CA caused intracellular acidification and hence inhibition of photosynthetic carbon fixation when air-grown C. littorale cells were exposed to excess concentrations of CO2. No such harmful effect of intracellular CA was observed in Chlorella sp. UK001 cells. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Weak red light-induced changes in chlorophyll fluorescence parameters and in the distribution of PS I and PS II in thylakoid membranes were measured in wheat leaves to investigate effective ways to alter the excitation energy distribution between the two photosystems during state transition in vivo. Both the chlorophyll fluorescence parameter Fm/Fo and F685/F735, the ratio of fluorescence yields of the two photosystems at low temperature (77 K), decreased when wheat leaves were illuminated by weak red light of 640 nm, however, Fm/Fo decreased to its minimum in a shorter time than F685/F735. When Photosystem (PS II) thylakoid (BBY) membranes from adequately dark-adapted leaves (control) and from red light-illuminated leaves were subjected to SDS-polyacrylamide gel electrophoresis under mildly denaturing conditions, PS I was almost absent in the control, but was present in the membranes from the leaves preilluminated with the weak red light. In consonance with this result, the content of Cu, measured by means of the energy dispersive X-ray microanalysis (EDX), increased in the central region, but decreased in the margin of the grana stacks from the leaves preilluminated by the red light as compared with the control. It is therefore suggested that: (i) both spillover and absorption cross-section changes are effective ways to alter the excitation energy distribution between the two photosystems during state transitions in vivo, and the change in spillover has a quicker response to the unbalanced light absorption of the two photosystems than the change in light absorption cross-section, and (ii) the migration of PS I towards the central region of grana stack during the transition to state 2 leads to the enhancement of excitation energy spillover from PS II to PS I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号