共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function 总被引:16,自引:0,他引:16
Cheng H Qin L Lee S Fu X Richards DE Cao D Luo D Harberd NP Peng J 《Development (Cambridge, England)》2004,131(5):1055-1064
The phytohormone gibberellin (GA) regulates the development and fertility of Arabidopsis flowers. The mature flowers of GA-deficient mutant plants typically exhibit reduced elongation growth of petals and stamens. In addition, GA-deficiency blocks anther development, resulting in male sterility. Previous analyses have shown that GA promotes the elongation of plant organs by opposing the function of the DELLA proteins, a family of nuclear growth repressors. However, it was not clear that the DELLA proteins are involved in the GA-regulation of stamen and anther development. We show that GA regulates cell elongation rather than cell division during Arabidopsis stamen filament elongation. In addition, GA regulates the cellular developmental pathway of anthers leading from microspore to mature pollen grain. Genetic analysis shows that the Arabidopsis DELLA proteins RGA and RGL2 jointly repress petal, stamen and anther development in GA-deficient plants, and that this function is enhanced by RGL1 activity. GA thus promotes Arabidopsis petal, stamen and anther development by opposing the function of the DELLA proteins RGA, RGL1 and RGL2. 相似文献
5.
6.
7.
Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid 总被引:21,自引:0,他引:21
下载免费PDF全文

The mechanisms imposing a gibberellin (GA) requirement to promote the germination of dormant and non-dormant Arabidopsis seeds were analyzed using the GA-deficient mutant ga1, several seed coat pigmentation and structure mutants, and the abscisic acid (ABA)-deficient mutant aba1. Testa mutants, which exhibit reduced seed dormancy, were not resistant to GA biosynthesis inhibitors such as tetcyclacis and paclobutrazol, contrarily to what was found before for other non-dormant mutants in Arabidopsis. However, testa mutants were more sensitive to exogenous GAs than the wild-types in the presence of the inhibitors or when transferred to a GA-deficient background. The germination capacity of the ga1-1 mutant could be integrally restored, without the help of exogenous GAs, by removing the envelopes or by transferring the mutation to a tt background (tt4 and ttg1). The double mutants still required light and chilling for dormancy breaking, which may indicate that both agents can have an effect independently of GA biosynthesis. The ABA biosynthesis inhibitor norflurazon was partially efficient in releasing the dormancy of wild-type and mutant seeds. These results suggest that GAs are required to overcome the germination constraints imposed both by the seed coat and ABA-related embryo dormancy. 相似文献
8.
Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability 总被引:9,自引:0,他引:9
Laubinger S Marchal V Le Gourrierec J Gentilhomme J Wenkel S Adrian J Jang S Kulajta C Braun H Coupland G Hoecker U 《Development (Cambridge, England)》2006,133(16):3213-3222
9.
10.
Fu Xujun Wang Jian Shangguan Tengwei Wu Rong Li Sujuan Chen Guang Xu Shengchun 《Plant Growth Regulation》2022,96(3):397-408
Plant Growth Regulation - Soybeans are one of the most important crops worldwide, but yield and quality can be severely affected by abiotic stresses. Genes in the Suppressor of MAX2 1-Like (SMXL)... 相似文献
11.
12.
13.
Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways 总被引:8,自引:0,他引:8
Gerhard Leubner-Metzger 《Planta》2001,213(5):758-763
Seed germination of Nicotiana tabacum L. cv. Havana 425 is determined by the balance of forces between the growth potential of the embryo and the mechanical restraint of the micropylar endosperm. In contrast to the gibberellin GA4, the brassinosteroid (BR) brassinolide (BL) did not release photodormancy of dark-imbibed photodormant seeds. Brassinolide promoted seedling elongation and germination of non-photodormant seeds, but did not appreciably affect the induction of class I beta-1,3-glucanase (betaGLU I) in the micropylar endosperm. Brassinolide, but not GA4, accelerated endosperm rupture of tobacco seeds imbibed in the light. Brassinolide and GA4 promoted endosperm rupture of dark-imbibed non-photodormant seeds, but only GA4 enhanced betaGLU I induction. Promotion of endosperm rupture by BL was dose-dependent and 0.01 microM BL was most effective. Brassinolide and GA4 promoted abscisic acid (ABA)-inhibited dark-germination of non-photodormant seeds, but only GA4 replaced light in inducing betaGLU I. These results indicate that BRs and GAs promote tobacco seed germination by distinct signal transduction pathways and distinct mechanisms. Gibberellins and light seem to act in a common pathway to release photodormancy, whereas BRs do not release photodormancy. Induction of betaGLU I in the micropylar endosperm and promotion of release of 'coat-enhanced' dormancy seem to be associated with the GA-dependent pathway, but not with BR signalling. It is proposed that BRs promote seed germination by directly enhancing the growth potential of the emerging embryo in a GA- and betaGLU I-independent manner. 相似文献
14.
15.
Dan Luo Lina Qu Ming Zhong Xinmei Li Han Wang Jiahui Miao 《Bioscience, biotechnology, and biochemistry》2020,84(7):1384-1393
ABSTRACT Seed germination is regulated by light. Phytochromes (Phys) act as red and far-red light photoreceptors to mediate seed germination. However, the mechanism of this process is not well understood. In this study, we found that the Arabidopsis thaliana mutants vascular plant one-zinc finger 1 (voz1) and voz2 showed higher seed germination percentage than wild type when PhyB was inactivated by far-red light. In wild type, VOZ1 and VOZ2 expression were downregulated after seed imbibition, repressed by PhyB, and upregulated by Phytochrome-interacting factor 1 (PIF1), a key negative regulator of seed germination. Red light irradiation and the voz1voz2 mutation caused increased expression of Gibberellin 3-oxidase 1 (GA3ox1), a gibberellin (GA) biosynthetic gene. We also found that VOZ2 is bound directly to the promoter of GA3ox1 in vitro and in vivo. Our findings suggest that VOZs play a negative role in PhyB-mediated seed germination, possibly by directly regulating GA3ox1 expression. 相似文献
16.
17.
He JX Fujioka S Li TC Kang SG Seto H Takatsuto S Yoshida S Jang JC 《Plant physiology》2003,131(3):1258-1269
Sterols are important not only for structural components of eukaryotic cell membranes but also for biosynthetic precursors of steroid hormones. In plants, the diverse functions of sterol-derived brassinosteroids (BRs) in growth and development have been investigated rigorously, yet little is known about the regulatory roles of other phytosterols. Recent analysis of Arabidopsis fackel (fk) mutants and cloning of the FK gene that encodes a sterol C-14 reductase have indicated that sterols play a crucial role in plant cell division, embryogenesis, and development. Nevertheless, the molecular mechanism underlying the regulatory role of sterols in plant development has not been revealed. In this report, we demonstrate that both sterols and BR are active regulators of plant development and gene expression. Similar to BR, both typical (sitosterol and stigmasterol) and atypical (8, 14-diene sterols accumulated in fk mutants) sterols affect the expression of genes involved in cell expansion and cell division. The regulatory function of sterols in plant development is further supported by a phenocopy of the fk mutant using a sterol C-14 reductase inhibitor, fenpropimorph. Although fenpropimorph impairs cell expansion and affects gene expression in a dose-dependent manner, neither effect can be corrected by applying exogenous BR. These results provide strong evidence that sterols are essential for normal plant growth and development and that there is likely a BR-independent sterol response pathway in plants. On the basis of the expression of endogenous FK and a reporter gene FK::beta-glucuronidase, we have found that FK is up-regulated by several growth-promoting hormones including brassinolide and auxin, implicating a possible hormone crosstalk between sterol and other hormone-signaling pathways. 相似文献
18.
As sessile organisms, plants have evolved a multitude of developmental responses to cope with the ever-changing environmental conditions that challenge the plant throughout its life cycle. Of the many environmental cues that regulate plant development, light is probably the most important. From determining the developmental pattern of the emerging seedling, to influencing the organization of organelles to best maximize energy available for photosynthesis, light has dramatic effects on development during all stages of plant life. In plants, three classes of photoreceptors that mediate light perception have been characterized at the molecular level. The phytochromes recognize light in the red portion of the spectrum, while cryptochromes and phototropins perceive blue and UVA light. In this review, we discuss the different aspects of development that are regulated by these photoreceptors in the model plant species Arabidopsis thaliana and how the phytochromes, cryptochromes, and phototropins bring about changes in development seen in the growing plant. 相似文献
19.
20.
Arabidopsis nudix hydrolase 7 (Atnudt7) mutants exhibit reduced seed germination phenotype following after-ripening. The role of AtNUDT7 in seeds and during early stages of imbibition was examined. Seeds of Atnudt7-1 and Col-0 following 3 days of imbibition were used to profile changes in NADH- and ADP-ribose pyrophosphohydrolase enzyme activities, expression of nudix family genes closely related to AtNudt7, and AtNUDT7 protein levels. Changes in pyridine nucleotides, phytohormones, reactive oxygen species and poly(ADP-ribose) levels in after-ripened seeds and 1 day after imbibition were also analyzed. Changes in AtNUDT7 gene expression, protein levels and enzyme activities in WT seeds and during early stages of imbibition were correlated. Atnudt7-1 seeds lacked NADH pyrophosphohydrolase activity that led to very high catabolic redox charge. Abscisic acid (ABA) levels were higher in Atnudt7-1 mutant while salicylic acid, gibberellic acid, and reactive oxygen species (ROS) levels were higher in WT seeds. In Atnudt7-1, there was excess ROS accumulation 1 day after imbibition. PAR levels were significantly higher in Atnudt7-1 mutant when compared to WT during imbibition. Based on these observations, we conclude NADH pyrophosphohydrolase activity conferred by AtNUDT7 is important for NAD:NADH homeostasis in seeds. Perturbations to this key redox couple alter ABA and ROS levels in the seeds that in turn lowers germination. 相似文献