首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new strategy for the detection of infectious Cryptosporidium parvum oocysts in water samples, which combines immunomagnetic separation (IMS) for recovery of oocysts with in vitro cell culturing and PCR (CC-PCR), was field tested with a total of 122 raw source water samples and 121 filter backwash water grab samples obtained from 25 sites in the United States. In addition, samples were processed by Percoll-sucrose flotation and oocysts were detected by an immunofluorescence assay (IFA) as a baseline method. Samples of different water quality were seeded with viable C. parvum to evaluate oocyst recovery efficiencies and the performance of the CC-PCR protocol. Mean method oocyst recoveries, including concentration of seeded 10-liter samples, from raw water were 26.1% for IMS and 16.6% for flotation, while recoveries from seeded filter backwash water were 9.1 and 5.8%, respectively. There was full agreement between IFA oocyst counts of IMS-purified seeded samples and CC-PCR results. In natural samples, CC-PCR detected infectious C. parvum in 4.9% (6) of the raw water samples and 7.4% (9) of the filter backwash water samples, while IFA detected oocysts in 13.1% (16) of the raw water samples and 5.8% (7) of the filter backwash water samples. All CC-PCR products were confirmed by cloning and DNA sequence analysis and were greater than 98% homologous to the C. parvum KSU-1 hsp70 gene product. DNA sequence analysis also revealed reproducible nucleotide substitutions among the hsp70 fragments, suggesting that several different strains of infectious C. parvum were detected.  相似文献   

2.
The protozoan parasite Cryptosporidium parvum is known to occur widely in both raw and drinking water and is the cause of waterborne outbreaks of gastroenteritis throughout the world. The routinely used method for the detection of Cryptosporidium oocysts in water is based on an immunofluorescence assay (IFA). It is both time-consuming and nonspecific for the human pathogenic species C. parvum. We have developed a TaqMan polymerase chain reaction (PCR) test that accurately quantifies C. parvum oocysts in treated and untreated water samples. The protocol consisted of the following successive steps: Envirochek capsule filtration, immunomagnetic separation (IMS), thermal lysis followed by DNA purification using Nanosep centrifugal devices and, finally, real-time PCR using fluorescent TaqMan technology. Quantification was accomplished by comparing the fluorescence signals obtained from test samples with those from standard dilutions of C. parvum oocysts. This IMS-real-time PCR assay permits rapid and reliable quantification over six orders of magnitude, with a detection limit of five oocysts for purified oocyst solutions and eight oocysts for spiked water samples. Replicate samples of spiked tap water and Seine River water samples (with approximately 78 and 775 oocysts) were tested. C. parvum oocyst recoveries, which ranged from 47.4% to 99% and from 39.1% to 68.3%, respectively, were significantly higher and less variable than those reported using the traditional US Environmental Protection Agency (USEPA) method 1622. This new molecular method offers a rapid, sensitive and specific alternative for C. parvum oocyst quantification in water.  相似文献   

3.
A protocol for the quantitative detection of Escherichia coli O157 in raw and concentrated surface waters using immunomagnetic electrochemiluminescence (IM-ECL) was developed and optimized. Three antibody sandwich formats were tested: commercial anti-O157:H7 IM beads, IM beads made in-house with a polyclonal anti-O157:H7 immunoglobulin G (IgG), or IM beads made in-house with a monoclonal anti-O157:H7 IgG coupled with a polyclonal anti-O157:H7 IgG to which an electrochemiluminescent label (TAG) was attached. The monoclonal IM bead-polyclonal TAG format was chosen for optimization because it gave lower background levels and linear regression slopes of ca. 1.0, indicative of a constant ECL signal per cell. The dynamic range was ca. 10(1) to 10(5) cells ml(-1) in phosphate-buffered saline and in raw water samples. The monoclonal IM beads selectively captured E. coli O157 cells in the presence of ca. 10(8) cells of a non-O157 strain of E. coli ml(-1). Background ECL signals from concentrated (100-fold) water samples were substantially higher and more variable than raw water samples. The background signal was partially eliminated by the addition of polyvinylpolypyrrolidone. Successive cell capture incubations, termed sequential bead capture (SBC), were optimized for establishing baseline ECL values for individual water samples. The linear dynamic range with SBC was ca. 10(2) to 10(5) E. coli O157 cells ml of concentrated water(-1). To validate the protocol, 10-liter surface water samples were spiked with ca. 5,000 E. coli O157 (Odwalla) cells and concentrated by vortex filtration, and 1- or 3-ml aliquots were analyzed by IM-ECL. Differential ECL signals (SBC) from 1- and 3-ml samples were statistically significant and were generally consistent with standard curves for these cell concentrations. Enrichments were conducted with aliquots of spiked raw water and concentrated water using EC broth and minimal lactose broth (MLB). All tubes with concentrated water became turbid and gave a positive ECL response for E. coli O157 (>10,000 ECL units); MLB gave a somewhat higher detection rate with spiked raw water. The potential sensitivity of the IM-ECL assay is ca. 25 E. coli O157 cells ml of raw water(-1), 25 cells 100 ml of 100-fold concentrated water(-1), or 1 to 2 viable cells liter(-1) with concentration and enrichment. The IM-ECL assay appears suitable for routine analysis and screening of water samples.  相似文献   

4.
A sensitive and rapid method was developed to detect Cryptosporidium parvum oocysts in drinking water. This molecular assay combined immunomagnetic separation with polymerase chain reaction amplification to detect very low levels of C. parvum oocysts. Magnetic beads coated with anti-cryptosporidium were used to capture oocysts directly from drinking water membrane filter concentrates, at the same time removing polymerase chain reaction inhibitory substances. The DNA was then extracted by the freeze-boil Chelex-100 treatment, followed by polymerase chain reaction. The immunomagnetic separation-polymerase chain reaction product was identified by non-radioactive hybridization using an internal oligonucleotide probe labelled with digoxigenin. This immunomagnetic separation-polymerase chain reaction assay can detect the presence of a single seeded oocyst in 5-100-1 samples of drinking water, thereby assuring the absence of C. parvum contamination in the sample under analysis.  相似文献   

5.
Cryptosporidium parvum has emerged as one of the most important new contaminants found in drinking water. Current protocols for the detection of cryptosporidia are time-consuming and rather inefficient. We recently described an immunomagnetic separation-polymerase chain reaction (IMS-PCR) assay permitting highly sensitive detection of C. parvum oocysts in drinking water samples. In this study, a second IMS-PCR assay to detect all cryptosporidial oocysts was developed, and both IMS-PCR assays were optimized on river water samples. A comparative study of the two IMS-PCR assays and the classical detection method based on an immunofluorescence assay (IFA) was carried out on 50 environmental samples. Whatever the type of water sample, the discrepancy in C. parvum detection between the IFA and IMS-PCR took the form of IFA-negative/IMS-PCR-positive results, and was caused mainly by the greater sensitivity of IMS-PCR as compared with IFA. Of the 50 water samples, only five tested positive for C. parvum using IMS-PCR, and could constitute a threat to human health. These results show that both IMS-PCR assays provide a rapid (1 d) and sensitive means of screening environmental water samples for the presence of cryptosporidia and C. parvum oocysts.  相似文献   

6.
Cryptosporidium parvum is a waterborne pathogen that poses potential risk to drinking water consumers. The detection of Cryptosporidium oocysts, its transmissive stage, is used in the latest U.S. Environmental Protection Agency method 1622, which utilizes organic fluorophores such as fluorescein isothiocyanate (FITC) to label the oocysts by conjugation with anti-Cryptosporidium sp. monoclonal antibody (MAb). However, FITC exhibits low resistance to photodegradation. This property will inevitably limit the detection accuracy after a short period of continuous illumination. In view of this, the use of inorganic fluorophores, such as quantum dot (QD), which has a high photobleaching threshold, in place of the organic fluorophores could potentially enhance oocyst detection. In this study, QD605-streptavidin together with biotinylated MAb was used for C. parvum oocyst detection. The C. parvum oocyst detection sensitivity increased when the QD605-streptavidin concentration was increased from 5 to 15 nM and eventually leveled off at a saturation concentration of 20 nM and above. The minimum QD605-streptavidin saturation concentration for detecting up to 4,495 +/- 501 oocysts (mean +/- standard deviation) was determined to be 20 nM. The difference in the enumeration between 20 nM QD605-streptavidin with biotinylated MAb and FITC-MAb was insignificant (P > 0.126) when various C. parvum oocyst concentrations were used. The QD605 was highly photostable while the FITC intensity decreased to 19.5% +/- 5.6% of its initial intensity after 5 min of continuous illumination. The QD605-based technique was also shown to be sensitive for oocyst detection in reservoir water. This observation showed that the QD method developed in this study was able to provide a sensitive technique for detecting C. parvum oocysts with the advantage of having a high photobleaching threshold.  相似文献   

7.
8.
Cryptosporidium parvum can be found in both source and drinking water and has been reported to cause serious waterborne outbreaks which threaten public health safety. The U.S. Environmental Protection Agency has developed method 1622 for detection of Cryptosporidium oocysts present in water. Method 1622 involves four key processing steps: filtration, immunomagnetic separation (IMS), fluorescent-antibody (FA) staining, and microscopic evaluation. The individual performance of each of these four steps was evaluated in this study. We found that the levels of recovery of C. parvum oocysts at the IMS-FA and FA staining stages were high, averaging more than 95%. In contrast, the level of recovery declined significantly, to 14.4%, when the filtration step was incorporated with tap water as a spiking medium. This observation suggested that a significant fraction of C. parvum oocysts was lost during the filtration step. When C. parvum oocysts were spiked into reclaimed water, tap water, microfiltration filtrate, and reservoir water, the highest mean level of recovery of (85.0% +/- 5.2% [mean +/- standard deviation]) was obtained for the relatively turbid reservoir water. Further studies indicated that it was the suspended particles present in the reservoir water that contributed to the enhanced C. parvum oocyst recovery. The levels of C. parvum oocyst recovery from spiked reservoir water with different turbidities indicated that particle size and concentration could affect oocyst recovery. Similar observations were also made when silica particles of different sizes and masses were added to seeded tap water. The optimal particle size was determined to be in the range from 5 to 40 micro m, and the corresponding optimal concentration of suspended particles was 1.42 g for 10 liters of tap water.  相似文献   

9.
We report here the use of immunomagnetic (IM) electrochemiluminescence (ECL) for quantitative detection of Esherichia coli O157:H7 in water samples following enrichment in minimal lactose broth (MLB). IM beads prepared in-house with four commercial anti-O157 monoclonal antibodies were compared for efficiency of cell capture. IM-ECL responses for E. coli O157:H7 (strain SEA13B88) were similar for all four commercial anti-O157 LPS monoclonal antibodies. The ECL signal was linearly correlated with E. coli O157:H7 cell concentration, indicating a constant ECL response per cell. Twenty-two strains of E. coli O157:H7 or O157:NM gave comparable ECL signals using IM beads prepared in-house. To assess the potential for interference from background bacteria in MLB-enriched water samples, 10(4) cells of E. coli O157:H7 (strain SEA13B88) were added to enriched samples prior to analysis. There was considerable variability in recovery of E. coli O157:H7 cells; net ECL signals ranged from 1% to 100% of expected values (i.e., percent inhibition from 0% to 99%). Cultures of Klebsiella pneumoniae, Klebsiella oxytoca, and Enterobacter cloacae, subsequently isolated from MLB-enriched water samples via IM separation (IMS), were observed to interfere with the binding of E. coli O157:H7 cells to IM beads. Recoveries of 10(4) E. coli O157:H7 cells were 相似文献   

10.
Cryptosporidium parvum and C. hominis have been the cause of large and serious outbreaks of waterborne cryptosporidiosis. A specific and sensitive recovery-detection method is required for control of this pathogen in drinking water. In the present study, nested PCR-restriction fragment length polymorphism (RFLP), which targets the divergent Cpgp40/15 gene, was developed. This nested PCR detected only the gene derived from C. parvum and C. hominis strains, and RFLP was able to discriminate between the PCR products from C. parvum and C. hominis. To evaluate the sensitivity of nested PCR, C. parvum oocysts inoculated in water samples of two different turbidities were recovered by immunomagnetic separation (IMS) and detected by nested PCR and fluorescent antibody assay (FA). Genetic detection by nested PCR and oocyst number confirmed by FA were compared, and the results suggested that detection by nested PCR depends on the confirmed oocyst number and that nested PCR in combination with IMS has the ability to detect a single oocyst in a water sample. We applied an agitation procedure with river water solids to which oocysts were added to evaluate the recovery and detection by the procedure in environmental samples and found some decrease in the rate of detection by IMS.  相似文献   

11.
A method to detect viable Cryptosporidium parvum oocysts was developed. Polyclonal immunoglobulin G against C. parvum oocyst and sporozoite surface antigens was purified from rabbit immune serum, biotinylated, and bound to streptoavidin-coated magnetic particles. C. parvum oocysts were captured by a specific antigen-antibody reaction and magnetic separation. The oocysts were then induced to excyst, and DNA was extracted by heating at 95 degrees C for 10 min. A 452-bp fragment of C. parvum DNA was amplified by using a pair of C. parvum-specific primers in PCR. The method detected as few as 10 oocysts in purified preparations and from 30 to 100 oocysts inoculated in fecal samples. The immunomagnetic capture PCR (IC-PCR) product was identified and characterized by a nested PCR that amplified a 210-bp fragment, followed by restriction endonuclease digestion of the IC-PCR and nested-PCR products at the StyI site and a nonradioactive hybridization using an internal oligonucleotide probe labeled with biotin. PCR specificity was also tested, by using DNAs from other organisms as templates. In the control experiments, inactivated oocysts were undetectable, indicating the ability of this method to differentiate between viable and nonviable oocysts. Thus, this system can be used to specifically detect viable C. parvum oocysts in environmental samples with great sensitivity, providing an efficient way to monitor the environment for C. parvum contamination.  相似文献   

12.
The purpose of this study was to characterize the viral symbiont (CPV) of Cryptosporidium parvum sporozoites and evaluate the CPV capsid protein (CPV40) as a target for sensitive detection of the parasite. Recombinant CPV40 was produced in Escherichia coli, purified by affinity chromatography, and used to prepare polyclonal rabbit sera specific for the viral capsid protein. Anti-rCPV40 recognized a 40 kDa and a 30 kDa protein in C. parvum oocysts and appeared to localize to the apical end of the parasite. Anti-rCPV40 serum was capable of detecting as few as 1 C. parvum oocyst in a dot blot assay, the sensitivity being at least 1000-fold greater than sera reactive with total native C. parvum oocyst protein or specific for the 41 kDa oocyst surface antigen. Water samples were seeded with C. parvum oocysts and incubated at 4, 20, or 25 degrees C for greater than 3 months to determine if CPV levels were correlated with oocyst infectivity. Samples were removed monthly and subjected to mouse and cell culture infectivity, as well as PCR analysis for infectivity and viral particle presence. While sporozoite infectivity declined by more than 75% after 1 month at 25 degrees C, the CPV signal was similar to that of control samples at 4 degrees C. By 3 months at 20 degrees C, the C. parvum oocysts were found to be non-infectious, but retained a high CPV signal. This study indicates that CPV is an excellent target for sensitive detection of C. parvum oocysts in water, but may persist for an indefinite time after oocysts become non-infectious.  相似文献   

13.
A protocol for the quantitative detection of Escherichia coli O157 in raw and concentrated surface waters using immunomagnetic electrochemiluminescence (IM-ECL) was developed and optimized. Three antibody sandwich formats were tested: commercial anti-O157:H7 IM beads, IM beads made in-house with a polyclonal anti-O157:H7 immunoglobulin G (IgG), or IM beads made in-house with a monoclonal anti-O157:H7 IgG coupled with a polyclonal anti-O157:H7 IgG to which an electrochemiluminescent label (TAG) was attached. The monoclonal IM bead-polyclonal TAG format was chosen for optimization because it gave lower background levels and linear regression slopes of ca. 1.0, indicative of a constant ECL signal per cell. The dynamic range was ca. 101 to 105 cells ml−1 in phosphate-buffered saline and in raw water samples. The monoclonal IM beads selectively captured E. coli O157 cells in the presence of ca. 108 cells of a non-O157 strain of E. coli ml−1. Background ECL signals from concentrated (100-fold) water samples were substantially higher and more variable than raw water samples. The background signal was partially eliminated by the addition of polyvinylpolypyrrolidone. Successive cell capture incubations, termed sequential bead capture (SBC), were optimized for establishing baseline ECL values for individual water samples. The linear dynamic range with SBC was ca. 102 to 105 E. coli O157 cells ml of concentrated water−1. To validate the protocol, 10-liter surface water samples were spiked with ca. 5,000 E. coli O157 (Odwalla) cells and concentrated by vortex filtration, and 1- or 3-ml aliquots were analyzed by IM-ECL. Differential ECL signals (SBC) from 1- and 3-ml samples were statistically significant and were generally consistent with standard curves for these cell concentrations. Enrichments were conducted with aliquots of spiked raw water and concentrated water using EC broth and minimal lactose broth (MLB). All tubes with concentrated water became turbid and gave a positive ECL response for E. coli O157 (>10,000 ECL units); MLB gave a somewhat higher detection rate with spiked raw water. The potential sensitivity of the IM-ECL assay is ca. 25 E. coli O157 cells ml of raw water−1, 25 cells 100 ml of 100-fold concentrated water−1, or 1 to 2 viable cells liter−1 with concentration and enrichment. The IM-ECL assay appears suitable for routine analysis and screening of water samples.  相似文献   

14.
15.
Numerous studies have documented the presence of Cryptosporidium parvum, an anthropozoonotic enteric parasite, in molluscan shellfish harvested for commercial purposes. Getting accurate estimates of Cryptosporidium contamination levels in molluscan shellfish is difficult because recovery efficiencies are dependent on the isolation method used. Such estimates are important for determining the human health risks posed by consumption of contaminated shellfish. In the present study, oocyst recovery was compared for multiple methods used to isolate Cryptosporidium parvum oocysts from oysters (Crassostrea virginica) after exposure to contaminated water for 24 h. The immunomagnetic separation (IMS) and immunofluorescent antibody procedures from Environmental Protection Agency method 1623 were adapted for these purposes. Recovery efficiencies for the different methods were also determined using oyster tissue homogenate and hemolymph spiked with oocysts. There were significant differences in recovery efficiency among the different treatment groups (P < 0.05). We observed the highest recovery efficiency (i.e., 51%) from spiked samples when hemolymph was kept separate during the homogenization of the whole oyster meat but was then added to the pellet following diethyl ether extraction of the homogenate, prior to IMS. Using this processing method, as few as 10 oocysts could be detected in a spiked homogenate sample by nested PCR. In the absence of water quality indicators that correlate with Cryptosporidium contamination levels, assessment of shellfish safety may rely on accurate quantification of oocyst loads, necessitating the use of processing methods that maximize oocyst recovery. The results from this study have important implications for regulatory agencies charged with determining the safety of molluscan shellfish for human consumption.  相似文献   

16.
The protozoan parasite Cryptosporidium parvum is known to occur widely in both source and drinking water and has caused waterborne outbreaks of gastroenteritis. To improve monitoring, the U.S. Environmental Protection Agency developed method 1622 for isolation and detection of Cryptosporidium oocysts in water. Method 1622 is performance based and involves filtration, concentration, immunomagnetic separation, fluorescent-antibody staining and 4',6-diamidino-2-phenylindole (DAPI) counterstaining, and microscopic evaluation. The capsule filter system currently recommended for method 1622 was compared to a hollow-fiber ultrafilter system for primary concentration of C. parvum oocysts in seeded reagent water and untreated surface waters. Samples were otherwise processed according to method 1622. Rates of C. parvum oocyst recovery from seeded 10-liter volumes of reagent water in precision and recovery experiments with filter pairs were 42% (standard deviation [SD], 24%) and 46% (SD, 18%) for hollow-fiber ultrafilters and capsule filters, respectively. Mean oocyst recovery rates in experiments testing both filters on seeded surface water samples were 42% (SD, 27%) and 15% (SD, 12%) for hollow-fiber ultrafilters and capsule filters, respectively. Although C. parvum oocysts were recovered from surface waters by using the approved filter of method 1622, the recovery rates were significantly lower and more variable than those from reagent grade water. In contrast, the disposable hollow-fiber ultrafilter system was compatible with subsequent method 1622 processing steps, and it recovered C. parvum oocysts from seeded surface waters with significantly greater efficiency and reliability than the filter suggested for use in the version of method 1622 tested.  相似文献   

17.
Monoclonal antibodies (MAb) were prepared against the 40-kDa capsid protein of Cryptosporidium parvum virus (CPV) by immunizing mice with purified recombinant CPV40 protein. In immunoblotting analysis, MAbCPV40-1 bound to a 40-kDa protein in extracts of C. parvum oocysts. This 40-kDa protein was localized in the sporozoite cytoplasm by immunofluorescence (IFA) staining with MAbCPV40-1. In a dot-blot assay, MAbCPV40-1 was capable of detecting 10(2) non-bleach-treated and 10(2)-10(3) bleach-treated C. parvum oocysts. MAbCPV40-1 was capable of detecting CPV40 antigen in both soluble and total C. parvum oocyst protein extracts, indicating a potential use for detecting this parasite in environmental samples.  相似文献   

18.
An optimized cell culture immunofluorescence (IFA) procedure, using the HCT-8 cell line, was evaluated in blind trials to determine the sensitivity and reproducibility of measuring the infectivity of flow-cytometry-prepared inocula of Cryptosporidium parvum oocysts. In separate trials, suspensions consisting of between 0% and 100% viable oocysts were prepared at the US Environmental Protection Agency, shipped to the American Water Laboratory, and analyzed blindly by cell culture IFA. Data indicated the control (100% live) oocyst suspensions yielded statistically similar results to cell culture dose-response curve data developed previously at the American Water Laboratory. For test samples containing oocyst suspensions of unknown infectivity, cell culture IFA analyses indicated a high degree of correlation (r2 = 0.89; n = 26) with the values expected by the US Environmental Protection Agency. Cell culture infectivity correlates well with neonatal mouse infectivity assays, and these blind validation trials provide credibility for the cell culture IFA procedure as a cost-effective and expedient alternative to mouse infectivity assays for determining in vitro infectivity of C. parvum oocysts.  相似文献   

19.
A new strategy for the detection of infectious Cryptosporidium parvum oocysts in water samples, which combines immunomagnetic separation (IMS) for recovery of oocysts with in vitro cell culturing and PCR (CC-PCR), was field tested with a total of 122 raw source water samples and 121 filter backwash water grab samples obtained from 25 sites in the United States. In addition, samples were processed by Percoll-sucrose flotation and oocysts were detected by an immunofluorescence assay (IFA) as a baseline method. Samples of different water quality were seeded with viable C. parvum to evaluate oocyst recovery efficiencies and the performance of the CC-PCR protocol. Mean method oocyst recoveries, including concentration of seeded 10-liter samples, from raw water were 26.1% for IMS and 16.6% for flotation, while recoveries from seeded filter backwash water were 9.1 and 5.8%, respectively. There was full agreement between IFA oocyst counts of IMS-purified seeded samples and CC-PCR results. In natural samples, CC-PCR detected infectious C. parvum in 4.9% (6) of the raw water samples and 7.4% (9) of the filter backwash water samples, while IFA detected oocysts in 13.1% (16) of the raw water samples and 5.8% (7) of the filter backwash water samples. All CC-PCR products were confirmed by cloning and DNA sequence analysis and were greater than 98% homologous to the C. parvum KSU-1 hsp70 gene product. DNA sequence analysis also revealed reproducible nucleotide substitutions among the hsp70 fragments, suggesting that several different strains of infectious C. parvum were detected.  相似文献   

20.
Cryptosporidium parvum is a protozoan parasite responsible for an increasing number of outbreaks of gastrointestinal illness worldwide. In this report, we describe development of sample preparation protocols for polymerase chain reaction (PCR)-based detection of C. parvum in fecal material and environmental water samples. Two of these methods were found adequate for isolation of Cryptosporidium DNA from filtered water pellet suspensions. The first involved several filtration steps, immunomagnetic separation and freeze-thaw cycles. The second method involved filtration, addition of EnviroAmp lysis reagent, freeze-thaw cycles and precipitation of the DNA with isopropanol. Using nested PCR, we detected 100 oocysts/ml of filtered water pellet suspension, with either of the above sample preparation procedures. Nested PCR increased sensitivity of the assay by two to three orders of magnitude as compared to the primary PCR. The detection limit for seeded fecal samples was 10-fold higher than for filtered environmental water pellet suspension. Nested PCR results showed 62.4 and 91.1% correlation with immunofluorescence assay (IFA) for fecal samples and filtered environmental water pellet suspensions, respectively. This correlation decreased to 47.2% and 44.4%, respectively, when only IFA positive samples were analyzed. However, in fecal samples contaminated with a high number (> 10(5)/g) of C. parvum oocysts, this correlation was 100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号