首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many antitumor drugs act as topoisomerase inhibitors, and the inhibitions are usually related to DNA binding. Here we designed and synthesized DNA-intercalating Ru(II) polypyridyl complexes Δ--[Ru(bpy)2(uip)]2+ and Λ-[Ru(bpy)2(uip)]2+ (bpy is 2,2′-bipyridyl, uip is 2-(5-uracil)-1H-imidazo[4,5-f][1,10]phenanthroline). The DNA binding, photocleavage, topoisomerase inhibition, and cytotoxicity of the complexes were studied. As we expected, the synthesized Ru(II) complexes can intercalate into DNA base pairs and cleave the pBR322 DNA with high activity upon irradiation. The mechanism studies reveal that singlet oxygen (1O2) and superoxide anion radical (O2•−) may play an important role in the photocleavage. The inhibition of topoisomerases I and II by the Ru(II) complexes has been studied. The results suggest that both complexes are efficient inhibitors towards topoisomerase II by interference with the DNA religation and direct topoisomerase II binding. Both complexes show antitumor activity towards HELA, hepG2, BEL-7402, and CNE-1 tumor cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
New mixed polypyridyl {NMIP = 2′-(2″-nitro-3″,4″-methylenedioxyphenyl)imidazo-[4′,5′-f][1,10]-phenanthroline, dmb = 4,4′-dimethyl-2,2′-bipyridine, bpy = 2,2′-bipyridine} ruthenium(II) complexes [Ru(dmb)2(NMIP)]2+ (1) and [Ru(bpy)2(NMIP)]2+ (2) have been synthesized and characterized. The binding of these complexes to calf thymus DNA (CT-DNA) has been investigated with spectroscopic methods, viscosity and electrophoresis measurements. The experimental results indicate that both complexes could bind to DNA via partial intercalation from the minor/major groove. In addition, both complexes have been found to promote the single-stranded cleavage of plasmid pBR 322 DNA upon irradiation. Under comparable experimental conditions compared with [Ru(phen)2(NMIP)]2+, during the course of the dialysis at intervals of time, the CD signals of both complexes started from none, increased to the maximum magnitude, then no longer changed, and the activity of effective DNA cleavage dependence upon concentration degree lies in the following order: [Ru(phen)2NMIP]2+ > complex 2 > complex 1.  相似文献   

3.
The lipophilic ligand-bridged dinuclear cation Rubb?? is significantly cytotoxic and preferentially accumulates in the mitochondria of the L1210 murine leukemia cancer cell line.  相似文献   

4.
A series of mixed-ligand ruthenium(II) complexes of the type [Ru(en)(2)bpy](2+) (bpy=2,2-bipyridine; 1), [Ru(en)(2)phen](2+) (phen=1,10-phenantroline; 2), [Ru(en)(2)IP](2+) (IP=imidazo[4,5-f][1,10]phenanthroline; 3), and [Ru(en)(2)PIP](2+) (PIP=2-phenylimidazo[4,5-f][1,10]phenanthroline; 4) have been isolated and characterized by UV/VIS, IR, and (1)H-NMR spectral methods. The binding of the complexes with calf thymus DNA has been investigated by absorption, emission spectroscopy, viscosity measurements, DNA melting, and DNA photo-cleavage. The spectroscopic studies together with viscosity measurements and DNA melting studies support that complexes 1 and 2 bind to CT DNA (=calf thymus DNA) by groove mode. Complex 2 binds more avidly to CT DNA than complex 1, complexes 3 and 4 bind to CT DNA by intercalation mode, 4 binds more avidly to CT DNA than 3. Noticeably, the four complexes have been found to be efficient photosensitisers for strand scissions in plasmid DNA.  相似文献   

5.
Three hexaaza macrocyclic copper (II) complexes with different functional groups have been synthesized and characterized by elemental analysis and infrared spectra. Absorption and fluorescence spectral, cyclic voltammetric and viscometric studies have been carried out on the interaction of [CuL(1)]Cl(2) (L(1)[double bond]3,10-bis(2-methylpyridine)-1,3,5,8,10,12-hexaazacyclotetradecane), [CuL(2)]Cl(2) (L(2)[double bond]3,10-bis(2-propionitrile)-1,3,5,8,10,12-hexaazacyclotetradecane) and [CuL(3)]Cl(2) (L(3)=3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane) with calf thymus DNA. The results suggest that three complexes can bind to DNA by different binding modes. The spectroscopic studies together with viscosity experiments and cyclic voltammetry suggest that [CuL(1)](2+) could bind to DNA by partial intercalation via pyridine ring into the base pairs of DNA. [CuL(2)](2+) may bind to DNA by hydrogen bonding and hydrophobic interaction while [CuL(3)](2+) may be by weaker hydrogen bonding. The functional groups on the side chain of macrocycle play a key role in deciding the mode and extent of binding of complexes to DNA. Noticeably, the three complexes have been found to cleave double-strand pUC18 DNA in the presence of 2-mercaptoethanol and H(2)O(2).  相似文献   

6.
Ruthenium(II) bis(2,2″-pyridyl) complexes with bridging ligands: 6,7-dichloro-2,3-di(2-pyridyl)quinoxaline; 2,3-di(2-pyridyl)-quinoxaline; 5-methyl-2,3-di(2-pyridyl) quinoxaline; 6,7-dibenzo-2,3-di(2-pyridyl)quinoxaline have been prepared. The electrochemical and spectroscopic properties of these complexes are reported. The resonance Raman spectroelectrochemical results indicate the presence of oxidation state sensitive marker bands in the resonance Raman spectra of the oxidized complexes. The spectroscopic data for the reduced complexes is similar for all four species. The resonance Raman data for the reduced species are dominated by 2,2″-bipyridyl vibrations.  相似文献   

7.
8.
Metal complexes that establish interactions with DNA are being studied not only because of their potential use as therapeutic agents but also as tools for biochemistry and molecular biology. Searching for drugs with anti-trypanosome activity, we previously synthesized a series of ruthenium mixed ligand dimethyl sulfoxide complexes of the type [Ru(II)Cl(2)(DMSO)(2)L], where L is 5-nitrofurylsemicarbazone derivatives and DMSO is dimethyl sulfoxide. Though they present the ability to bind DNA, no activity against parasites in cell culture was observed. Considering their potential application as molecular tools we further analyzed the interactions with DNA through an electrophoretic approach. Non covalent withdrawal of superhelicity and a rapid nicking activity upon covalent interaction was observed. Inhibition of both effects was observed in the presence of distamycin suggesting the involvement of the DNA minor groove in the interaction with the nitrofurylsemicarbazone ruthenium complexes. In addition cleavage inhibition by dimethyl sulfoxide suggests an oxidative mechanism of action.  相似文献   

9.
Two series of ruthenium(II) polypyridyl complexes [Ru(bipy)(2)(phpytr)](+) and [Ru(bipy)(2)(phpztr)](+) (where Hphpytr = 2-(5-phenyl-1H-[1,2,4]triazol-3-yl)-pyridine and Hphpztr = 2-(5-phenyl-1H-[1,2,4]triazol-3-yl)-pyrazine) are examined by electrochemistry, UV/Vis, emission, resonance Raman, transient resonance Raman and transient absorption spectroscopy, in order to obtain a more comprehensive understanding of their excited state electronic properties. The interpretation of the results obtained is facilitated by the availability of several isotopologues of each of the complexes examined. For the pyridine-1,2,4-triazolato based complex the lowest emissive excited state is exclusively bipy based, however, for the pyrazine based complexes excited state localisation on particular ligands shows considerable solvent and pH dependency.  相似文献   

10.
Interest in binuclear ruthenium(II) polypyridyl complexes as luminescent cellular imaging agents and for biomedical applications is increasing rapidly. We have investigated the cellular localization, uptake, and biomolecular interactions of the pure enantiomers of two structural isomers of [μ-bipb(phen)4Ru2]4+ (bipb is bis(imidazo[4,5-f]-1,10-phenanthrolin-2-yl)benzene and phen is 1,10-phenanthroline) using confocal laser scanning microscopy, emission spectroscopy, and linear dichroism. Both complexes display distinct enantiomeric differences in the staining pattern of fixed cells, which are concluded to arise from chiral discrimination in the binding to intracellular components. Uptake of complexes in live cells is efficient and nontoxic at 5 μM, and occurs through an energy-dependent mechanism. No differences in uptake are observed between the structural isomers or the enantiomers, suggesting that the interactions triggering uptake are rather insensitive to structural variations. Altogether, these findings show that the complexes investigated are promising for future applications as cellular imaging probes. In addition, linear dichroism shows that the complexes exhibit DNA-condensing properties, making them interesting as potential gene delivery vectors.  相似文献   

11.
Two complexes of [Co(phen)2IP]3+ (IP=imidazo[4,5-f][l,10]phenanthroline) and [Co(phen)2PIP]3+ (PIP=2-phenylimidazo[4,5-f][1,10]phenanthroline) have been synthesized and characterized by UV/VIS, IR, EA and mass spectra. The binding of the two complexes with calf thymus DNA has been investigated by absorption spectroscopy, cyclic voltammetry, viscosity measurements and DNA cleavage assay. The spectroscopic studies together with cyclic voltammetry and viscosity experiments support that both of the complexes bind to CT DNA by intercalation via IP or PIP into the base pairs of DNA. [Co(phen)2PIP]3+ binds more avidly to CT DNA than [Co(phen)2IP]3+, which is consistent with the extended planar and pi system of PIP. Noticeably, the two complexes have been found to be efficient photosensitisers for strand scissions in plasmid DNA.  相似文献   

12.
Capillary zone electrophoresis (CZE) and micellar capillary electrophoresis (MCE) were applied for the enantiomeric separation of nine mononuclear tris(diimine)ruthenium(II) complexes as well as the separation of all stereoisomers of a dinuclear tris(diimine)ruthenium(II) complex. Nine cyclodextrin (CD) based chiral selectors were examined as run buffer additives to evaluate their effectiveness in the enantiomeric separation of tris(diimine)ruthenium(II) complexes. Seven showed enantioselectivity. Sulfated gamma-cyclodextrin (SGC), with four baseline and three partial separations, was found to be the most useful chiral selector. In CZE mode, the derivatized gamma-CDs were more effective than beta-CDs while sulfated CDs work better than carboxymethyl CDs. In MCE mode, hydroxypropyl beta-CD separated the greatest number of tris(diimine) ruthenium(II) complexes. The effects of chiral selector concentration, run buffer pH and concentration, the concentration ratio between chiral selector and other factors were investigated.  相似文献   

13.
The processes that are photoinduced by [Ru(bpz)(3)](2+) (bpz = 2,2'-bipyrazyl) in the presence of Cu/Zn superoxide dismutase (Cu/Zn SOD) are investigated by laser flash photolysis and electron paramagnetic resonance (EPR) spectroscopy; they are compared to those of the system [Ru(bpy)(3)(2+)-Cu/Zn SOD]. Although the mechanism is complicated, primary and secondary reactions can be evidenced. First, the excited [Ru(bpz)(3)](2+) complex is quenched reductively by Cu/Zn SOD with the production of a reduced complex and an oxidized enzyme. The oxidation site of Cu/Zn SOD is proposed to correspond to amino acids located on the surface of the protein. Afterward and only when this reductive electron transfer to the excited complex has produced enough oxidized protein, another electron-transfer process can be evidenced. In this case, however, the charge-transfer process takes place in the other direction, i.e., from the excited complex to the Cu(II) center of the SOD with the formation of Ru(III) and Cu(I) species. This proposed mechanism is supported by the fact that [Ru(bpy)(3)](2+), which is less photo-oxidizing than [Ru(bpz)(3)](2+), exhibits no photoreaction with Cu/Zn SOD. Because Ru(III) species are generated as intermediates with [Ru(bpz)(3)](2+), they are proposed to be responsible for the enhancement of [poly(dG-dC)](2) and [poly(dA-dT)](2) oxidation observed when Cu/Zn SOD is added to the [Ru(bpz)(3)](2+)-DNA system.  相似文献   

14.
15.
A series of ruthenium(II) mixed ligand complexes of the type [Ru(NH(3))(4)(L)](2+), where L=imidazo[4,5-f][1,10]phenanthroline (ip), 2-phenylimidazo[4,5-f][1,10]phenanthroline (pip), 2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline (hpip), 4,7-diphenyl-1,10-phenanthroline (dip), naphtha[2,3-a]dipyrido[3,2-h:2',3'-f]phenazine-5,18-dione (qdppz), 5,18-dihydroxynaphtho[2,3-a]dipyrido[3,2-H:2',3'-f]phenazine (hqdppz), have been isolated and characterized. The interaction of these complexes with calf thymus DNA (CT DNA) has been explored by using absorption, emission, and circular dichroic spectral methods, thermal denaturation studies and viscometry. All these studies suggest the involvement of the modified phenanthroline 'face' rather than the ammonia 'face' of the complexes in DNA binding. An intercalative mode of DNA binding, which involves the insertion of the modified phenanthroline ligands in between the base pairs, is suggested. The results from absorption spectral titration and circular dichroism (CD), thermal denaturation and viscosity experiments indicate that the qdppz and hqdppz complexes (K(b) approximately 10(6) and Delta T(m)=11-13 degrees C) bind more avidly than the ip, pip and hpip complexes (K(b) approximately 10(5), Delta T(m)=6-8 degrees C). Intramolecular hydrogen bonding in the hpip and hqdppz complexes increases the surface area of the intercalating diimines and enhances the DNA binding affinity substantially. The ammonia co-ligands of the complexes are possibly involved in hydrogen bonding with the intrastrand nucleobases to favour intercalation of the extended aromatic ligands. Circular dichroism spectral studies reveal that all the complexes effect certain structural changes on DNA duplex; [Ru(NH(3))(4)(ip)](2+) induces a B to A transition while [Ru(NH(3))(4)(qdppz)](2+) a B to Psi conformational change on CT DNA. Cleavage efficiency of the complexes were determined using pBR322 supercoiled plasmid DNA. All the complexes, except hqdppz complex, promote the cleavage of supercoiled plasmid (form I) to relaxed circular form (form II).  相似文献   

16.
Two new porphyrins, meso-tris-3,4-dimethoxyphenyl-mono-(4-pyridyl)porphyrin (H2MPy3,4DMPP) and meso-tris-3-methoxy-4-hydroxyphenyl-mono-(4-pyridyl)porphyrin (H2MPy3M4HPP), and their ruthenium analogs obtained by coordination of [Ru(bpy)2Cl]+ groups (where bpy = 2,2′-bipyridine) to the pyridyl nitrogens have been synthesized and studied by electronic absorption spectroscopy, cyclic voltammetry and spectroelectrochemistry. These ruthenated porphyrins couple Ru chromophores to porphyrins containing electroactive meso-substituents. The highest energy electronic absorption for the ruthenated complexes is assigned as a bpy(π) → bpy(π*) intraligand charge transfer while the next lowest energy electronic absorption is assigned as Ru(dπ) → bpy(π*) metal-to-ligand charge transfer (MLCT) transition. The RuIII/II couples occur at approximately 0.95 V versus the SHE reference electrode in acetonitrile solutions. The first oxidation of the porphyrin is localized on the 3,4-dimethoxyphenyl and 3-methoxy-4-hydroxyphenyl substituents, respectively. Electroactive surfaces result from adsorption of these compounds onto glassy carbon electrodes followed by anodic cycling in acidic media.  相似文献   

17.
The effect of deuteriation on the photophysical properties of two series of regioselectively deuteriated Ru(II) complexes ([Ru(bipy)x(ph2phen)3−x]2+, where x = 0-3 and ph2phen is 4,7-diphenyl-1,10-phenanthroline and [Ru(bipy)2(dcbipy2−)], where H2dcbipy is 4,4′-dicarboxy-2,2′-bipyridyl) is reported. Although overall, deuteriation results in an increase in emission lifetime for all complexes, the effect of substitution of hydrogen for deuterium shows strong regioselectivity both in terms of the ligand and the position on individual ligands that are exchanged.  相似文献   

18.
Six complexes (1-6) with the type of [Ru(bpy)2L]X2 (1-3: L = L1-L3, X = Cl; 4-6: L = L1-L3, X = PF6) were synthesized based on 2,2′-bipyridine and three 2,2′-bipyridine derivatives L1, L2 and L3 (L1 = 5,5′-dibromo-2,2′-bipyridine, L2 = 5-bromo-5′-carbazolyl-2,2′-bipyridine, L3 = 5,5′-dicarbazolyl-2,2′-bipyridine). The complexes 1-6 were characterized by 1H NMR, MS(ESI) and IR spectra, along with the X-ray crystal structure analysis for 1, 5 and 6. Their photophysical properties and electrochemiluminescence (ECL) properties were investigated in detail. In the UV-Vis absorption spectra, all complexes 1-6 show strong intraligand (π → π) transitions and metal-ligand charge transfer (MLCT, dπ (Ru) → π) bands. Upon the excitation wavelengths at ∼508 nm, all complexes 1-6 exhibit typical MLCT emission of ruthenium(II) polypyridyl complexes. The introduction of carbazole moieties improves the MLCT absorption and emission intensity. The ruthenium(II) complexes 1-6 exhibit good electrochemiluminescence (ECL) properties in [Ru(bpy)2L]2+/tri-n-propylamine (TPrA) acetonitrile solution and the complexes with PF6 showed higher ECL emission intensity than that of the complexes with Cl based on the same ligands.  相似文献   

19.
The substituted tris(bipyridine)ruthenium(II) complexes {[Ru(bpy)(2)(4,4'-bbob)](2+) and [Ru(bpy)(2)(5,5'-bbob)](2+) [where bpy=2,2'-bipyridine and bbob=bis(benzoxazol-2-yl)-2,2'-bipyridine] have been prepared and compared to the previously studied complex [Ru(bpy)(2)(4,4'-bbtb)](2+) [where bbtb=bis(benzothiazol-2-yl)-2,2'-bipyridine]. From the UV/VIS titration studies, Delta-[Ru(bpy)(2)(4,4'-bbob)](2+) displays a stronger association than the Lambda-isomer with calf-thymus DNA (ct-DNA). For [Ru(bpy)(2)(5,5'-bbob)](2+), there appears to be minimal interaction with ct-DNA. The results of fluorescence titration studies suggest that [Ru(bpy)(2)(4,4'-bbob)](2+) gives an increase in emission intensity with increasing ct-DNA concentrations, with an enantiopreference for the Delta isomer, confirmed by membrane dialysis studies. The fluorescent intercalation displacement studies revealed that [Ru(bpy)(2)(4,4'-bbob)](2+) and [Ru(bpy)(2)(5,5'-bbob)](2+) display a preference for more open DNA structures such as bulge and hairpin sequences. While Lambda-[Ru(bpy)(2)(4,4'-bbtb)](2+) has shown the most significant affinity for all the oligonucleotides sequences screened in previous studies, it is the Delta isomer of the comparable benzoxazole ruthenium(II) complex (Delta-[Ru(bpy)(2)(4,4'-bbob)](2+)) that preferentially binds to DNA.  相似文献   

20.
The complex cations [Ru(C7H16N2)(C10H14)Cl]+, [Ru(C7H16N2)(C6H6)Cl]+, [Ru(C9H18N2)(C6H6)Cl]+, [Ru(C9H18N2)(C10H14)Cl]+ and [Ru(C14H16N2)(C10H14)Cl]+ have been synthesised from the reaction between the ruthenium-arene complexes [with C6H6 (benzene) or C10H14 (p-cymene)] and the respective chiral diamines [C7H16N2=(S)-(−)-2-aminomethyl-1-ethylpyrrolidine, C9H18N2=(S)-(+)-2-(pyrrolidinylmethyl)-pyrrolidine, or C14H16N2=(1R,2R)-(+)-1,2-diphenylethylenediamine], isolated and characterised as chloride salts using single-crystal X-ray diffraction. All complexes were fully characterised by elemental analysis, mass spectrometry, 13C and 1H NMR, and also found to exhibit catalytic activity in the transfer hydrogenation of acetophenone to 1-phenylethanol at 50 °C (enantiomeric excesses range from ca. 25% to 60%, and conversions from ca. 30% to 50%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号