首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D) structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its catalytic activity. Here, we describe an effective strategy to deregulate the allosteric inhibition of enzymes based on the molecular evolution and physicochemical characteristics of allosteric ligand-binding sites. We found that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We applied our findings to design mutations in selected target residues that deregulate the allosteric activity of fructose-1,6-bisphosphatase (FBPase). Specifically, charged amino acids at less conserved positions were substituted with hydrophobic or neutral amino acids with similar sizes. The engineered proteins successfully diminished the allosteric inhibition of E. coli FBPase without affecting its catalytic efficiency. We expect that our method will aid the rational design of enzyme allosteric regulation strategies and facilitate the control of metabolic flux.  相似文献   

2.
Arginine deiminase (ADI) is a therapeutic protein for cancer therapy of arginine-auxotrophic tumors. However, its application as anticancer drug is hampered by its poor stability under physiological conditions in the bloodstream. Commonly, random PEGylation is being used for increasing the stability of ADI and in turn the improved half-life. However, the traditional random PEGylation usually leads to poor PEGylation efficiency due to the limited number of Lys on the protein surface. To boost the PEGylation efficiency and enhance the stability of ADI further, surface engineering of PpADI (an ADI from Pseudomonas plecoglossicida) to increase the suitable PEGylation sites was carried out. A new in silico approach for increasing the PEGylation sites was developed. The validation of this approach was performed on previously identified PpADI variant M31 to increase potential PEGylation sites. Four Arg residues on the surface of PpADI M31 were selected through three criteria and subsequently substituted to Lys, aiming for providing primary amines for PEGylation. Two out of the four substitutions (R299K and R382K) enhanced the stability of PEGylated PpADI in human serum. The average numbers of PEGylation sites were increased from ~12 (tetrameric PpADI M31, starting point) to ~20 (tetrameric PpADI M36, final variant). Importantly, the PEGylated PpADI M36 after PEGylation exhibited significantly improved Tm values (M31: 40°C; M36: 40°C; polyethylene glycol [PEG]-M31: 54°C; PEG-M36: 64°C) and half-life in human serum (M31: 1.9 days; M36: 2.0 days; PEG-M31: 3.2 days; PEG-M36: 4.8 days). These proved that surface engineering is an effective approach to increase the PEGylation efficiency which therefore enhances the stability of therapeutic enzymes. Furthermore, the PEGylated PpADI M36 represents a highly attractive candidate for the treatment of arginine-auxotrophic tumors.  相似文献   

3.
For the past decades, several bioadhesives have been developed to replace conventional wound closure medical tools such as sutures, staples, and clips. The bioadhesives are easy to use and can minimize tissue damage. They are designed to provide strong adhesion with stable mechanical support on tissue surfaces. However, this monofunctionality of the bioadhesives hinders their practical applications. In particular, a bioadhesive can lose its intended function under harsh tissue environments or delay tissue regeneration during wound healing. Based on several natural and synthetic biomaterials, functional bioadhesives have been developed to overcome the aforementioned limitations. The functional bioadhesives are designed to have specific characteristics such as antimicrobial, cell infiltrative, stimuli-responsive, electrically conductive, and self-healing to ensure stability under harsh tissue conditions, facilitate tissue regeneration, and effectively monitor biosignals. Herein, we thoroughly review the functional bioadhesives from their fundamental background to recent progress with their practical applications for the enhancement of tissue healing and effective biosignal sensing. Furthermore, the future perspectives on the applications of functional bioadhesives and current challenges in their commercialization are also discussed.  相似文献   

4.
5.
The meta-cleavage pathway of Pseudomonas putida mt-2 was simulated using a biochemical systems simulation developed by Regan (1996). A non-competitive inhibition term for catechol-2,3-dioxygenase (C23O) by 2-OH-pent-2,4-dienoate (Ki = 150 μM) was incorporated into the model. The simulation predicted steady state accumulation levels in the μM range for metabolites pre-meta-cleavage, and in the mM range for metabolites post-meta-cleavage. The logarithmic gains L[V-i, Xj] and L[X-i, Xj] clearly indicated that the pathway was most sensitive to the concentration of the starting substrate, benzoate, and the first enzyme of the pathway, toluate-1, 2-dioxygenase (TO). The simulation was validated experimentally; it was found that the amplification of TO increased the steady state flux from 0.024 to 0.091 (mmol/g cell dwt)/h. This resulted in an increased accumulation of a number of the pathway metabolites (intra- and extracellularly), especially cis-diol, 4-OH-2-oxovalerate, and 4-oxalocrotonate. Metabolic control analysis indicated that C23O was, in fact, the major controling enzymic step of the pathway with a scaled control coefficient of 0.83. The amplification of TO resulted in a shift of some of the control away from C23O. Catechol-2,3-dioxygenase, however, remained as the major controling element of the pathway. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

6.
《Current biology : CB》2022,32(18):3925-3938.e6
  1. Download : Download high-res image (276KB)
  2. Download : Download full-size image
  相似文献   

7.
分子酶工程的研究进展   总被引:1,自引:0,他引:1  
随着基因工程和蛋白质工程的进展和应用,酶工程在分子水平上的研究与应用也得到了迅猛发展。本着重介绍了酶基因克隆与异源表达、酶分子的定向改造和进化、融合蛋白与融合酶、酶的人工模拟(抗体酶、分子印迹技术)和端粒酶,综述了分子酶工程的研究进展、趋势及其应用。  相似文献   

8.
Protein crystallization constitutes a limiting step in structure determination by X-ray diffraction. Even if single crystals are available, inadequate physical quality may seriously limit the resolution of the available data and consequently the accuracy of the atomic model. Recent studies show that targeted mutagenesis of surface patches containing residues with large flexible side chains and their replacement with smaller amino acids lead to effective preparation of X-ray quality crystals of proteins otherwise recalcitrant to crystallization. Furthermore, this technique can also be used to obtain crystals of superior quality as compared to those grown for the wild-type protein, sometimes increasing the effective resolution by as much as 1 A or more. Several recent examples of this new methodology suggest that the method has the potential to become a routine tool in protein crystallography.  相似文献   

9.
Directed evolution of enzyme stability   总被引:7,自引:0,他引:7  
Modern enzyme development relies to an increasing extent on strategies based on diversity generation followed by screening for variants with optimised properties. In principle, these directed evolution strategies might be used for optimising any enzyme property, which can be screened for in an economically feasible way, even if the molecular basis of that property is not known. Stability is an interesting property of enzymes because (1) it is of great industrial importance, (2) it is relatively easy to screen for, and (3) the molecular basis of stability relates closely to contemporary issues in protein science such as the protein folding problem and protein folding diseases. Thus, engineering enzyme stability is of both commercial and scientific interest. Here, we review how directed evolution has contributed to the development of stable enzymes and to new insight into the principles of protein stability. Several recent examples are described. These examples show that directed evolution is an effective strategy to obtain stable enzymes, especially when used in combination with rational or semi-rational engineering strategies. With respect to the principles of protein stability, some important lessons to learn from recent efforts in directed evolution are (1) that there are many structural ways to stabilize a protein, which are not always easy to rationalize, (2) that proteins may very well be stabilized by optimizing their surfaces, and (3) that high thermal stability may be obtained without forfeiture of catalytic performance at low temperatures.  相似文献   

10.
Evolving strategies for enzyme engineering   总被引:18,自引:0,他引:18  
Directed evolution is a common technique to engineer enzymes for a diverse set of applications. Structural information and an understanding of how proteins respond to mutation and recombination are being used to develop improved directed evolution strategies by increasing the probability that mutant sequences have the desired properties. Strategies that target mutagenesis to particular regions of a protein or use recombination to introduce large sequence changes can complement full-gene random mutagenesis and pave the way to achieving ever more ambitious enzyme engineering goals.  相似文献   

11.
Dehydro-enkephalins [ΔAla2]-, [ΔAla3]-, [ΔPhe4]-, and [ΔLeu5]enkephalins, were examined for their stability to enzymatic hydrolysis by carboxypeptidase Y [EC 3.4.16.1]. The successively liberated amino acids were determined quantitatively by amino acid analyses. The saturated leucine-enkephalin was rapidly hydrolyzed from the COOH-terminus. However, peptide linkages with ,β-dehydroamino acid residues placed in the enkephalin molecule were strongly resistant to the enzyme at the carboxyl side and completely resistant at the amino side of the dehydro residue.  相似文献   

12.
A pentapeptide, Z-Gly-Gly-Phe-Phe-Ala · OH (1b) and the corresponding unsaturated pentapeptide, Z-Gly-Gly-Phe-ΔZPhe-Ala · OH (1a), have been synthesized. The saturated compound (1b) was rapidly hydrolyzed by both chymotrypsin and thermolysin to the expected products, but the dehydropeptide was completely unhydrolyzed by either enzyme even after thirty hours. A new method of peptide stabilization to enzymolysis is made available.  相似文献   

13.
Monoclonal antibodies have significantly advanced our ability to treat cancer, yet clinical studies have shown that many patients do not adequately respond to monospecific therapy. This is in part due to the multifactorial nature of the disease, where tumors rely on multiple and often redundant pathways for proliferation. Bi- or multi-specific antibodies capable of blocking multiple growth and survival pathways at once have a potential to better meet the challenge of blocking cancer growth, and indeed many of them are advancing in clinical development.1 However, bispecific antibodies present significant design challenges mostly due to the increased number of variables to consider. In this perspective we describe an innovative integrated approach to the discovery of bispecific antibodies with optimal molecular properties, such as affinity, avidity, molecular format and stability. This approach combines simulations of potential inhibitors using mechanistic models of the disease-relevant biological system to reveal optimal inhibitor characteristics with antibody engineering techniques that yield manufacturable therapeutics with robust pharmaceutical properties. We illustrate how challenges of meeting the optimal design criteria and chemistry, manufacturing and control concerns can be addressed simultaneously in the context of an accelerated therapeutic design cycle. Finally, to demonstrate how this rational approach can be applied, we present a case study where the insights from mechanistic modeling were used to guide the engineering of an IgG-like bispecific antibody.Key words: design, antibody, bispecific, stability, simulation, cancer therapeutics  相似文献   

14.
15.
  1. Download : Download high-res image (161KB)
  2. Download : Download full-size image
  相似文献   

16.
中国酶工程的兴旺与崛起   总被引:1,自引:0,他引:1  
酶工程是生物工程的重要组成部分,工业生物催化技术被认为是继医药、农业之后的第三个浪潮。在25年中,中国在酶工程领域研究中取得很大进展,本综述集中介绍在中国酶工程会议上,酶的基因工程、酶的蛋白质工程、生物合成、微生物转化和生物传感器方面的成果和我国酶制剂工业的进展。  相似文献   

17.
Strategy of the development of model for enzyme reactor at laboratory scale with respect to the modelling of kinetics is presented. The recent literature on the mathematic modelling on enzyme reaction rate is emphasized.  相似文献   

18.
Plasmid DNA (pDNA) has become very attractive as a biopharmaceutical, especially for gene therapy and DNA vaccination. Currently, there are a few products licensed for veterinary applications and numerous plasmids in clinical trials for use in humans. Recent work in both academia and industry demonstrates a need for technological and economical improvement in pDNA manufacturing. Significant progress has been achieved in plasmid design and downstream processing, but there is still a demand for improved production strains. This review focuses on engineering of Escherichia coli strains for plasmid DNA production, understanding the differences between the traditional use of pDNA for recombinant protein production and its role as a biopharmaceutical. We will present recent developments in engineering of E. coli strains, highlight essential genes for improvement of pDNA yield and quality, and analyze the impact of various process strategies on gene expression in pDNA production strains.  相似文献   

19.
The anticalin FluA is an artificial lipocalin with novelspecificity for the fluorescein group, which was engineered from an insect bilin-binding protein by targeted random mutagenesis and selection. Based on the crystal structure of FluA, an attempt was made to improve the complementarity of its ligand pocket to fluorescein by rational protein design. Several side chains participating in sub-optimal interactions with the ligand were identified and replaced by residues that promised a better steric fit. As a result, the substitution of Ala45 by Ile and of Ser114 by Thr or Arg led to a tight affinity of ca. 1 nM, which is approximately 30-fold better than that of the parental anticalin. Similar to the original FluA, the improved version shows almost complete quenching of the bound ligand fluorescence. Interestingly, the quenching effect was significantly reduced when Trp129 was replaced by Tyr, thus supporting the previously postulated role of this residue, which closely packs against the bound ligand, for efficient electron transfer to the excited fluorescein. Circular dichroism spectra revealed that all variants investigated had retained the lipocalin fold. Corresponding thermal unfolding experiments confirmed similar folding stabilities, with melting temperatures ranging from 52.9 to 60.5 degrees C (i.e., for the high-affinity variant).  相似文献   

20.
Metabolic engineering efforts require enzymes that are both highly active and specific toward the synthesis of a desired output product to be commercially feasible. The 3‐hydroxyacid (3HA) pathway, also known as the reverse β‐oxidation or coenzyme‐A‐dependent chain‐elongation pathway, can allow for the synthesis of dozens of useful compounds of various chain lengths and functionalities. However, this pathway suffers from byproduct formation, which lowers the yields of the desired longer chain products, as well as increases downstream separation costs. The thiolase enzyme catalyzes the first reaction in this pathway, and its substrate specificity at each of its two catalytic steps sets the chain length and composition of the chemical scaffold upon which the other downstream enzymes act. However, there have been few attempts reported in the literature to rationally engineer thiolase substrate specificity. In this study, we present a model‐guided, rational design study of ordered substrate binding applied to two biosynthetic thiolases, with the goal of increasing the ratio of C6/C4 products formed by the 3HA pathway, 3‐hydroxy‐hexanoic acid and 3‐hydroxybutyric acid. We identify thiolase mutants that result in nearly 10‐fold increases in C6/C4 selectivity. Our findings can extend to other pathways that employ the thiolase for chain elongation, as well as expand our knowledge of sequence–structure–function relationship for this important class of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号