首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new fluoro analog of 1,25-dihydroxyvitamin D3, i.e., 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3, has been compared with the native hormone, 1,25-dihydroxyvitamin D3, in its biological potency, duration of action, and binding to the vitamin D transport protein and intestinal receptor protein. The fluoro analog is about 5 times more active than the native hormone in healing rickets and elevating serum inorganic phosphorus levels of rachitic rats. It is about 10 times more active than 1,25-dihydroxyvitamin D3 in increasing intestinal calcium transport and bone calcium mobilization of vitamin D-deficient rats fed a low-calcium diet. Furthermore, the higher biopotency is manifested in animals after oral dosing. Of great importance is that the action of the fluoro analog is longer lasting than that of 1,25-dihydroxyvitamin D3. This is especially apparent in the elevation of serum phosphorus and bone mineralization responses. The fluoro analog is only slightly less competent than 1,25-dihydroxyvitamin D3 in binding to the vitamin D transport protein in rat blood, and is one-third as competent as 1,25-dihydroxyvitamin D3 in binding to the chick intestinal cytosol receptor for 1,25-dihydroxyvitamin D3. These results suggest that the basis for increased potency of this analog is likely the result of less rapid metabolism.  相似文献   

2.
To study general stimulatory effects of 1,25-dihydroxyvitamin D3 on intestinal protein synthesis, slices of duodenal villi from 1,25-dihydroxyvitamin D3-treated and vitamin D-deficient rats were incubated in vitro for 90 min at the surface of medium containing [3H]leucine. Incorporation of the [3H]leucine into TCA-precipitated protein, which was shown to be linear for 12 h and 90% inhibited by cycloheximide, was increased by 50-60% at 26 h after a single injection of 125 ng of 1,25-dihydroxyvitamin D3 (three experiments, P less than 0.001). The increase, which was not due to circadian rhythm fluctuations of the intestine, was in synchrony with the second Ca2+ transport response observed by Halloran and DeLuca (Arch. Biochem. Biophys. 208, 477-486, 1981). However, no significant difference in [3H]leucine incorporation was observed before or during the initial Ca2+ transport response observed by Halloran and DeLuca, i.e., at 1.0, 3.0, and 6.5 h following an injection of 1,25-dihydroxyvitamin D3. The late onset of the 1,25-dihydroxyvitamin D3-induced increase in total protein synthesis implies that it is an indirect rather than a direct effect of the hormone.  相似文献   

3.
We synthesized 3 beta-thiovitamin D3 from 7-dehydrocholesterol and tested its biological activity and protein binding properties. The thiovitamin was found to be a weak vitamin D agonist at high doses in vivo. It was poorly bound by both vitamin D-binding protein as well as by the intestinal cytosol receptor for 1,25-dihydroxyvitamin D. It did not increase the synthesis of calcium binding protein in the chick embryonic duodenum and did not block the activity of 1,25-dihydroxyvitamin D3 in this system. We conclude that 3 beta-thiovitamin D3 is a weak vitamin D agonist in vivo with no agonist activity or antagonist activity to 1,25-dihydroxyvitamin D3 in the chick embryonic duodenum.  相似文献   

4.
5.
24-Keto-1,25-dihydroxyvitamin D3 has been identified as an intestinal metabolite of 1,25-dihydroxyvitamin D3 by ultraviolet absorbance, mass spectroscopy, and chemical reactivity. The metabolite was produced from 1,25-dihydroxyvitamin D3 and 1,24R,25-trihydroxyvitamin D3 in rat intestinal mucosa homogenates. 24-Keto-1,25-dihydroxyvitamin D3 is present in vivo in the plasma and small intestinal mucosa of rats fed a stock diet, receiving no exogenous 1,25-dihydroxyvitamin D3, and in the plasma and small intestinal mucosa of rats dosed chronically with 1,25-dihydroxyvitamin D3. 24-Keto-1,25-dihydroxyvitamin D3 has affinity equivalent to 1,24R,25-trihydroxyvitamin D3 for the 3.7 S cytosolic receptor specific for 1,25-dihydroxyvitamin D3 in the intestine and thymus. In cytosolic preparations contaminated with the 5 S vitamin D-binding protein, both metabolites are about 7-fold less potent than 1,25-dihydroxyvitamin D3. In contrast, in cytosolic preparations largely free of the 5 S binding protein, both metabolites are equipotent with the parent compound. No evidence was obtained supporting a substantial presence of 23-keto-1,25-dihydroxyvitamin D3 in vivo; nor was the latter compound generated in detectable amounts from 1,25-dihydroxyvitamin D3 by intestinal homogenates. Thus, C-24 oxidation is a significant pathway of intestinal 1,25-dihydroxyvitamin D3 metabolism that produces metabolites with high affinity for the cytosolic receptor which mediates vitamin D action.  相似文献   

6.
Concentrations of intestinal 1,25-dihydroxyvitamin D receptor were measured in rats receiving pharmacological amounts (25,000 IU/rat daily for 6 days) of either vitamin D2 or vitamin D3. The data showed that both hypervitaminosis D2 and hypervitaminosis D3 resulted in significant up-regulation of intestinal 1,25-dihydroxyvitamin D receptor (fmol/mg protein) relative to controls (409 +/- 24, vitamin D2-treated; 525 +/- 41, vitamin D3-treated; and 249 +/- 19, control). The 1,25-dihydroxyvitamin D receptor enhancement also was accompanied by elevated plasma 25-hydroxyvitamin D and hypercalcemia. These data suggest that increased target-tissue 1,25-dihydroxyvitamin D receptor may play a role in enhancing target-tissue responsiveness and, thus, have a significant role in mediating the toxic effects of hypervitaminosis D.  相似文献   

7.
Ascorbic acid deficiency in vitamin D-supplied guinea pigs caused a moderate decrease of Ca in the blood and osseous tissue, a 1.5-fold decrease of 2.5-hydroxyvitamin D (25-OH D) in blood serum, a 2-fold decrease of the 25-OH D 1-hydroxylase activity in kidneys and a 1.6-fold increase of the 24-hydroxylase activity. The concentration of 1.25-dihydroxyvitamin D3 (1.25-(OH)2D3) nuclear receptors in small intestinal mucosa diminished by 20-30%; in this case the percentage of occupied hormone receptors reduced from 11.8 to 8.6%. The affinity of receptors for 1.25-(OH)2D3 did not change thereby (Kd = 0.25-0.26 nM; Kd2 = 0.06-0.10 nM). At the same time the value of cooperativity coefficient showed a decrease-from 1.7 to 1.4, which was accompanied by a reduction of the maximum capacity of receptors (1.2-1.5-fold). Vitamin C depletion augmented the manifestation of vitamin D deficiency in guinea pigs and impeded their correction after administration of cholecalciferol. This markedly retarded the restoration of the 25-OH D level in the blood as well as the number of occupied and unoccupied nuclear receptors for 1.25-(OH)2D3. The experimental results illustrate the effects of ascorbic acid on the vitamin D hormonal system function, which is manifested both at the level of 1.25-(OH)2D3 synthesis in the kidneys and of its receptor binding in target tissues.  相似文献   

8.
In order to investigate the subcellular distribution of unoccupied 1,25-dihydroxyvitamin D3 receptors, highly purified cytoplasts and nucleoplasts were prepared from two kidney cell lines (PK1 and MDBK). This was accomplished utilizing the technique of enucleation by cytochalasin B and density gradient centrifugation. Unoccupied 1,25-dihydroxyvitamin D3 receptors were found in both the nuclear and cytosolic compartments, with approximately 70% of the receptors localized in the cytoplasm. When cells were pretreated with 1,25-[3H]dihydroxyvitamin D, prior to enucleation, it was found that 90% of the receptor-hormone complex was associated with nucleoplasts, thus demonstrating that cytochalasin B treatment does not alter the high-affinity association of the receptor-hormone complex with the nucleus. The ratio of unoccupied receptor/protein was found to be the same in whole cells, cytoplasts, and nucleoplasts for both cell types. The ratio of unoccupied receptor/DNA was highest in cytoplasts and lowest in nucleoplasts. Taken together, these data indicate that the unoccupied 1,25-dihydroxyvitamin D receptor is generally associated with cell proteins and not specifically associated with cell DNA. We therefore propose, at least for these cells, that the unoccupied 1,25-dihydroxyvitamin D receptor exists in equilibrium between the nuclear and cytosolic compartments of the whole cell, and receptor-hormone binding shifts this equilibrium to favor nuclear localization.  相似文献   

9.
The hepatic uptake of the hormone 1,25-dihydroxyvitamin D3 has been studied, in vivo, using the multiple indicator dilution technique. The fractional uptake of 1,25-dihydroxyvitamin D3 during a single circulatory passage across the dog liver has been estimated at 34.4 +/- 3.3% while its hepatic clearance was estimated at 364.3 +/- 94.1 mL/min. The hepatic uptake of 1,25-dihydroxyvitamin D3 is discussed in relation to its systemic bioavailability following intravenous or oral administration as well as in relation to the hepatic uptake of other vitamin D sterols; it is postulated that the hepatic uptake of vitamin D sterols does not seem to be mediated by specific receptors on the liver plasma membrane; it seems, however, that the hepatic uptake of vitamin D sterols may be inversely related to their relative affinity for the circulating carrier, the vitamin D binding protein.  相似文献   

10.
R P Link  H F DeLuca 《Steroids》1988,51(5-6):583-598
The binding activity of four vitamin D metabolites and/or analogs for the intestinal 1,25-dihydroxyvitamin D3 receptor was evaluated after incubation at 25 degrees C for 1 h or at 0-4 degrees C for 18 h. The incubation conditions, which had no effect on the binding of 1,25-dihydroxyvitamin D3, had a dramatic effect on the binding of 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3 and a small but reproducible effect on 24,25-dihydroxyvitamin D3 binding to receptor. Affinities 10- to 20-fold higher were obtained for 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, and affinities 3-fold higher were obtained for 24,25-dihydroxyvitamin D3 at the 0-4 degrees C/18-h incubation. A comparison of intestinal receptor from chick and pig with nine vitamin D compounds showed no major differences between the two species. The relative affinity of the vitamin D analogs to compete with tritiated 1,25-dihydroxyvitamin D3 for the receptor in pig nuclear extract, expressed as ratios of the molar concentration required for 50% binding of the tritiated 1,25-dihydroxyvitamin D3 compared to nonradioactive 1,25-dihydroxyvitamin D3, are as follows: 1,25-dihydroxyvitamin D3 (1) = 1,25-dihydroxyvitamin D2 = 24-homo-1,25-dihydroxyvitamin D3 greater than 1,24,25-trihydroxyvitamin D3 (4) greater than 25-hydroxyvitamin D3 (21) = 10-oxo-19-nor-25-hydroxyvitamin D3 = 1 alpha-hydroxyvitamin D3 (37) greater than 24,25-dihydroxyvitamin D2 (257) much much greater than vitamin D3 (greater than 10(6)).  相似文献   

11.
We synthesized a novel vitamin D analog, 22-hydroxyvitamin D3 9 and tested its biologic activity (and antivitamin properties) in vivo in vitamin D-deficient rats, and in vitro in the chick embryonic duodenum. We examined its ability to bind to the sterol carrier protein, vitamin D binding protein and the chick intestinal cytosol receptor for 1,25-dihydroxyvitamin D3. The new vitamin 9 was synthesized from 3 beta-hydroxy-22,23-dinorcholenic acid 1 in 12 steps. The vitamin 9 displayed no vitamin D agonist activity in the intestine or in bone in vivo and did not block the activity of vitamin D3 or 25-hydroxyvitamin D3. It was a weak vitamin D3 agonist in the chick embryonal duodenum in vitro. It did not antagonize the activity of 1,25-dihydroxyvitamin D3. Vitamin 9 bound to the chick intestinal cytosol receptor with low affinity. 22-Hydroxyvitamin D3 and various vitamin D sterols were bound to vitamin D binding protein in the following order: 25-hydroxyvitamin D3. (24R)-24,25-dihydroxyvitamin D3, and (25S)-25,26-dihydroxyvitamin D3 greater than 22-hydroxyvitamin D3 greater than 11 alpha-hydroxyvitamin D3 greater than 1,25-dihydroxyvitamin D3 greater than vitamin D3. We conclude that the introduction of a hydroxyl group at C-22 in the side chain of the vitamin D3 molecule decreases its biological activity.  相似文献   

12.
13.
A series of 24-homologated 1,25-dihydroxyvitamin D3 compounds have been chemically synthesized and studied with regard to their activity in inducing differentiation of human promyelocyte HL-60 cells to monocytes and in calcium mobilizing activity in vitamin D deficient rats. Homologation of 1,25-dihydroxyvitamin D3 or its delta 22 analogue by one or two carbons increases by 10-fold and three-carbon homologation reduces by half the activity in causing differentiation of HL-60. On the other hand, homologation causes a substantial decrease in in vivo calcium mobilization activity. The addition of each carbon at the 24-position decreases binding to the HL-60 receptor or rat intestinal receptor by 5-10-fold so that binding affinity of the trihomo compound for the receptors is 130 times less that of 1,25-dihydroxyvitamin D3. Thus, binding affinity for the receptor cannot account for the preferential activity of the 24-homologated compounds in inducing cell differentiation.  相似文献   

14.
Two-dimensional electrophoresis together with radiolabeling experiments was used to examine cytosolic proteins of embryonic chick duodenum for responses to 1,25-dihydroxyvitamin D3. 1,25-Dihydroxyvitamin D3 caused a striking decrease in [3H]leucine content of an 18,000-dalton protein (approximate pI, 5.1) after a 10-min pulse with radioisotope followed by a 4-h chase. Decreased [14C]leucine content of the same protein was also observed at various times following 1,25-dihydroxyvitamin D3 addition to culture media; a significant decrease in radiolabel incorporation occurred within 30 min after addition of the hormone. The results argue that 1,25-dihydroxyvitamin D3 causes either a decreased synthesis rate or a post-translational modification of this protein. This change joins the biosynthesis of calcium-binding protein as an early event in the response of chick embryonic intestine to 1,25-dihydroxyvitamin D3.  相似文献   

15.
We have used specific cDNAs to the rat vitamin D receptor (VDR) and to the mammalian vitamin D-dependent calcium-binding proteins (calbindin-D9k in intestine and calbindin-D28k in kidney) in order to obtain a better understanding of the regulation of the VDR gene and its relationship to calbindin gene expression. Hormonal regulation and development expression of the rat VDR gene were characterized by both Northern and slot blot analyses. Administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3; 25 ng/day for 7 days) to vitamin D-deficient rats resulted in an increase in calbindin mRNA in intestine and kidney but no change in VDR mRNA in these tissues. Vitamin D-deficient rats responded to dexamethasone treatment (100 micrograms/100 g of body weight/day for 4 days) with a 2.5-fold increase in intestinal VDR mRNA which was accompanied by a 4-fold decrease in intestinal calbindin-D9k mRNA. Developmental studies indicated a pronounced increase in renal VDR mRNA and calbindin-D28k mRNA between birth and 1 week of age. In the intestine, an induction of VDR and calbindin-D9k gene expression was observed at a later time, during the 3rd postnatal week (the period of increased duodenal active transport of calcium). Taken collectively, our data indicate that in the adult rat, target tissue response to hormone is not modified by a corresponding alteration in new receptor synthesis. However, developmental studies indicate that the induction of 1,25(OH)2D3 receptor mRNA is correlated with the induction of calbindin gene expression. Our results also demonstrate that glucocorticoid administration can result in an alteration in intestinal calbindin and VDR gene expression.  相似文献   

16.
Dogma for the past three decades has dictated that parathyroid hormone (PTH) has no direct effect on intestine with regard to calcium or phosphate absorption, but rather that PTH acts to promote the synthesis of a hormonally active form of vitamin D, namely 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. However, diverse laboratories have each provided some evidence to suggest PTH does indeed have a direct effect on intestine. We will briefly review the evidence for biological effects, biochemical effects, and the presence of intestinal receptors for PTH, and conclude with the implications for biomedical research.  相似文献   

17.
We synthesized 25-hydroxy-26,27-dimethylvitamin D3, 9, and 1,25-dihydroxy-26,27-dimethylvitamin D3, 14, from chol-5-enic acid-3 beta-ol and tested their biological activity in vivo and in vitro. 9 was found to be highly potent vitamin D analog with bioactivity similar to that of 25-hydroxyvitamin D3. 9 bound to rat plasma vitamin D binding protein with approximately one-third the affinity of 25-hydroxyvitamin D3. In a duodenal organ culture system and in a competitive binding assay with chick intestinal 1,25-dihydroxyvitamin D receptor, 9 was significantly more potent than 25-hydroxyvitamin D3. 1,25-Dihydroxy-26,27-dimethylvitamin D3, 14 was also highly active in vivo. At doses of 1000-5000 pmol/rat, its action was more sustained than that of 1,25-dihydroxyvitamin D3. 14 bound to vitamin D binding protein about 18 times less effectively than 1,25-dihydroxyvitamin D3. 14 bound to the chick intestinal cytosol receptor with an affinity one-half that of 1,25-dihydroxyvitamin D3. In a duodenal organ culture system, 14 was about half as active as 1,25-dihydroxyvitamin D3. Extension of the sterol side chain, at C-26 and C-27, by methylene groups, prolongs the bioactivity of a vitamin D sterol hydroxylated at C-1 and C-25; the corresponding sterol, hydroxylated only at C-25, does not show any alteration of its bioactivity in vivo. These newly synthesized analogs may potentially be of therapeutic use in various mineral disorders.  相似文献   

18.
Cytosol prepared from vitamin D3-deficient kidney cells in culture contains a 3.7 S protein that specifically binds 1,25-dihydroxyvitamin D3 with high affinity and low capacity. Whole kidney homogenate cytosol preparations are shown to possess two 1,25-dihydroxyvitamin D3 binding macromolecules. One of the binding proteins sediments at 3.5 to 3.7 S while the second sediments at 6.0 S. The 6.0 S component has a greater affinity for 25-dihydroxyvitamin D3 than for 1,25-dihydroxyvitamin D3. Cultured cell cytosol was found to have little 6.0 S 25-hydroxyvitamin D3 binding protein. Scatchard analysis of the cultured cell cytosol reveals an equilibrium binding constant (KD) of 5.6 x 10 (-11) with 57 fmol of sites/mg of protein. The receptor-like protein has a Mr = 72,000 and as with other steroid receptors it aggregates in the presence of low potassium concentrations. Analog competition for receptor binding reveals the following potency order: 1,25-dihydroxyvitamin D3 > 25-hydroxyvitamin D3 > 1 alpha-hydroxyvitamin D3 > 24(R),25-dihydroxyvitamin D3; the receptor had no detectable affinity for vitamin D3. The kidney cells respond to 1,25-dihydroxyvitamin D3 by diminishing 25-hydroxyvitamin D3 1 alpha-hydroxylation and increasing 24R-hydroxylation. Cultured cells provide a preparation of cytosol which has allowed extensive characterization of the renal 1,25-dihydroxyvitamin D3 receptor and should facilitate investigations into the role this receptor plays in renal control of vitamin D3 metabolism.  相似文献   

19.
We confirmed our previous observation that duodenal Ca2+ absorption and serum 1,25-dihydroxyvitamin D (1,25-(OH)2D) levels declined concurrently in old (24 months old) rats as compared to young (6 months old) rats. It is well known that 1,25-dihydroxyvitamin D-3 (1,25-(OH)2D3) expresses its action after binding to specific receptor molecules. In this paper, we compared certain properties of rat duodenal 1,25-(OH)2D3 receptors from old and young animals. Receptor preparations were incubated with [3H]1,25-(OH)2D3 to quantitate the number of unoccupied and total receptor sites and showed that total and unoccupied receptor sites decreased by 22 and 16%, respectively in old rats. Endogenously occupied sites were reduced by 43% in duodenum of the old rat and, consequently, the percentage of receptor occupancy also declined. Age did not affect the dissociation constant (KD) of 1,25-(OH)2D3 from the receptor; the sedimentation coefficient (3.3 S) of the tritiated 1,25-(OH)2D3-receptor complex in sucrose density centrifugation; or its affinity for DNA. The data are consistent with the hypothesis that the age-related decline in Ca2+ absorption in the intestine may be due, in part, to the decrement in the circulating level of 1,25-(OH)2D and a reduction of intestinal 1,25-(OH)2D3 receptor occupancy status.  相似文献   

20.
The effect of 1,25-dihydroxyvitamin D3 on adenylate cyclase responsiveness was studied in the clonal osteogenic sarcoma cell line, UMR 106-06, which responds to several bone active hormones. 1,25-dihydroxyvitamin D3 treatment had no consistent effect on basal formation of cyclic AMP in intact cells, but the responses to parathyroid hormone, isoproterenol, prostaglandin E2, salmon calcitonin and the plant diterpene, forskolin, were all attenuated, by up to 90%. The effect of 1,25-dihydroxyvitamin D3 was dose-dependent, with half-maximal effectiveness at 0.1 nM, and required 48 h treatment of cells before it became apparent. The relative potencies of other vitamin D3 compounds correlated closely with their relative affinities for the 1,25-dihydroxyvitamin D3 receptor and their biological activities in other systems. 1,25-dihydroxyvitamin D3 treatment had no effect on the kinetics of labelled calcitonin binding to UMR 106-06 cells. Furthermore, the fact that such a range of hormones was affected made a receptor mediated mechanism unlikely. Nucleotide stimulatory (Ns) unit activity was assayed after 1,25-dihydroxyvitamin D3 treatment and found to be unchanged. Islet activating protein, an inhibitor of nucleotide inhibitory unit (Ni) activity, failed to modify the 1,25-dihydroxyvitamin D3 effect. Thus the effect of 1,25-dihydroxyvitamin D3 appeared to be exerted beyond hormone receptor and nucleotide regulatory components of the adenylate cyclase complex. It is concluded that 1,25-dihydroxyvitamin D3 attenuates adenylate cyclase response to hormones by a direct or indirect action on the catalytic component of adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号