首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been established that the forces resulting from bubbles rupturing at the free air (gas)/liquid surface injure animal cells in agitated and/or sparged bioreactors. Although it has been suggested that bubble coalescence and breakup within agitated and sparged bioreactors (i.e., away from the free liquid surface) can be a source of cell injury as well, the evidence has been indirect. We have carried out experiments to examine this issue. The free air/liquid surface in a sparged and agitated bioractor was eliminated by completely filling the 2-L reactor and allowing sparged bubbles to escape through an outlet tube. Two identical bioreactors were run in parallel to make comparisons between cultures that were oxygenated via direct air sparging and the control culture in which silicone tubing was used for bubble-free oxygenation. Thus, cell damage from cell-to-bubble interactions due to processes (bubble coalescence and breakup) occurring in the bulk liquid could be isolated by eliminating damage due to bubbles rupturing at the free air/liquid surface of the bioreactor. We found that Chinese hamster ovary (CHO) cells grown in medium that does not contain shear-protecting additives can be agitated at rates up to 600 rpm without being damaged extensively by cell-to bubble interactions in the bulk of the bioreactor. We verified this using both batch and high-density perfusion cultures. We tested two impeller designs (pitched blade and Rushton) and found them not to affect cell damage under similar operational conditions. Sparger location (above vs. below the impeller) had no effect on cell damage at higher agitation rates but may affect the injury process at lower agitation intensities (here, below 250 rpm). In the absence of a headspace, we found less cell damage at higher agitation intensities (400 and 600 rpm), and we suggest that this nonintuitive finding derives from the important effect of bubble size and foam stability on the cell damage process. (c) 1996 John Wiley & Sons, Inc.  相似文献   

2.
Bursting bubbles are thought to be the dominant cause of cell death in sparged animal or insect cell cultures. Cells that die during the bubble burst can come from three sources: cells suspended near the bubble; cells trapped in the bubble lamella; and cells that attached to the rising bubble. This article examines cell attachment to rising bubbles using a model in which cell attachment depends on cell radius, bubble radius, and cell–bubble attachment time. For bubble columns over 1 m in height and without protective additives, the model predicts significant attachment for 0.5‐ to 3‐mm radius bubbles, but no significant attachment in the presence of protective additives. For bubble columns over 10 cm in height, and without protective additives, the model predicts significant attachment for 50‐ to 100‐μm radius bubbles, but not all protective additives prevent attachment for these bubbles. The model is consistent with three sets of published data and with our experimental results. Using hybridoma cells, serum‐free medium with antifoam, and 1.60 ± 0.05 mm (standard error) radius bubbles, we measured death rates consistent with cell attachment to rising bubbles, as predicted by the model. With 1.40 ± 0.05 mm (SE) radius bubbles and either 0.1% w/v Pluronic‐F68 or 0.1% w/v methylcellulose added to the medium, we measured death rates consistent with no significant cell attachment to rising bubbles, as predicted by the model. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 62: 468–478, 1999.  相似文献   

3.
Cell-microcarrier adhesion to gas-liquid interfaces and foam   总被引:1,自引:0,他引:1  
The interaction of microcarriers, both with and without cells attached, with gas bubbles was studied. These studies consisted of qualitative microscopic observations of microcarriers with bubbles, quantitative measurements of microcarrier entrapment in foam, and quantitative measurements of the effect of bubble rupture at gas-medium interfaces. Ten different "protective additives" were evaluated for their ability to change the dynamic surface tension of the culture media and to prevent microcarrier adhesion to air bubbles during gas sparging and to prevent entrapment in the foam layer. These studies indicate that microcarriers, with and without cells, readily attach to gas-medium interfaces; yet unlike suspended cells, cells attached to microcarriers are not damaged by bubble ruptures at gas-medium interfaces. Only one surfactant was found to substantially prevent microcarrier entrapment in the foam layer; however, this surfactant was toxic to cells. No correlation was observed between surface tension and the prevention of microcarrier adhesion to gas-liquid interfaces. It is suggested that cell damage as a result of sparging in microcarrier cultures is the result of cells, attached to microcarriers, attaching to rising bubbles and then detaching from the microcarrier as this combination rises through the medium. It is further suggested that the hydrodynamic drag force of the rising microcarrier is sufficiently high to remove the bubble-attached cell from the microcarrier.  相似文献   

4.
Pluronic F-68 (PF-68) is routinely used as a shear-protection additive in mammalian cell cultures. However, most previous studies of its shear protection mechanisms have typically been qualitative in nature and have not covered a wide range of PF-68 and cell concentrations. In this study, interactions between air bubbles along with the associated cell damage were investigated using the novel adenovirus-producing cell line PER.C6, a human embryonic retinoblast transfected with the adenovirus type 5 E1 gene. A wide range of PF-68 and cell concentrations (approximately 3 orders of magnitude) were used in these studies. At low PF-68 concentrations (0.001 g/L), cells had a very high affinity for bubbles, indicated by a more than 10-fold increase in cell concentration in the foam layer liquid versus the bulk liquid. At high PF-68 concentrations ( approximately 3 g/L), however, the cell concentration in the foam layer liquid was only approximately 40% of that in the bulk cell suspension. The number of cells associated with each bubble decreased from approximately 1000 cells at 0.001 g/L PF-68 to approximately 120 cells at 3 g/L PF-68. Despite the lower cell affinity for bubbles at a high PF-68 concentration, at high cell concentrations (10(7) cells/mL and 1 g/L PF-68) significant cell entrapment occurred in the foam layer, on the order of 1000 cells/bubble. For the cells carried by the bubbles, quantitative cell damage data revealed that the probability of cell death from bubble rupture was independent of bulk cell concentration but was affected by PF-68 concentration. These quantitative studies further indicated that even at a low PF-68 concentration of 0.03 g/L, approximately 30% of the attached cells were killed during the bubble rupture process. At the same time, at low PF-68 concentration (<0.1 g/L), significant cell death occurred prior to bubble rupture. On average, a bubble disrupted more cells in the bulk liquid and/or foam layer than during rupture. For both mechanisms, the number of cells damaged by each bubble increased with decreasing PF-68 concentration and increasing bulk cell concentration.  相似文献   

5.
A perfusion culture system was developed to investigate the oxygenation of high-density hybridoma cell cultures. The culture system was composed of a stirred-tank bioreactor and an external microfiltration hollow fiber cartridge for medium perfusion. Cell growth and antibody production were examined with large bubble ( approximately 5 mm in diameter), micron-sized bubble ( approximately 80 mum in diameter), and silicone tubing oxygenation techniques. Comparable cell growth and monoclonal antibody (MAb) production were found for both the micron-sized and large oxygenation methods, provided that large bubbles were enriched with pure oxygen. Relatively low cell growth and MAb production were attained with the bubble-free silicone tubing oxygenation. It is concluded that direct bubble oxygenation can be applied successfully in high-density animal cell cultures, provided that the culture medium is supplemented with Pluronic F-68. The accumulation of ammonia in the culture medium rather than oxygen limitation was found to be one of the possible problems that eventually inhibited cell growth. This and the fouling of the filtration cartridge during long-term cultivation were found to be more problematic than simple bubble oxygenation of high-density cell culture. The micron-sized bubble oxygenation method is highly recommended for high-density animal cell cultures, provided that Pluronic F-68 is supplemented into the culture medium. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
Physical damage of animal cells in suspension culture, due to stirring and sparging, is coupled with complex metabolic responses. Nylon microcapsules, therefore, were used as a physical model to study the mechanisms of damage in a stirred bioreactor and in a bubble column. Microcapsule breaskage folowed first-order kinetices in all experiments Entrainment of bubbles into the liquid phase in the stirred bioreactor gave more microcapsule breakage. In the bubble column, the bubble bursting zone at gas-liquid interface was primarilu responsible for microcapsule breakage. The forces on the microcapsules were equivalent to an external pressure of approximately 4 x 10(4) N . m(-2), based on the critical microcapsule diameter for survival of 190 mum. A stable foam layer, however, was found to be effective in protecting microcapsules from damage. The microcapsule transport to the gas-liquid interface and entrainment into the foam phase was consistent with flotation by air bubbles. This result implies that additives and operation of bioreactors should be selected to minimize flotation of cells. (c) 1992 John Wiley & Sons, Inc.  相似文献   

7.
The detrimental effect of direct gas sparging on insect cells was investigated in bubble columns with various gas flow rates and bubble sizes. The first-order cell death rate was shown to be directly proportional to the gas flow rate and inversely proportional to the bubble size. The specific killing volume of a bubble, killing volume per unit volume of bubble, was found to have a linear correlation with the specific interfacial area of a bubble. Based on these experimental results and the analysis of a bursting bubble at the liquid surface, it was concluded that the killing volume of a bubble is in the liquid layer surrounding the bubble before its rupture, and most important, in the liquid layer beneath the bubble cavity. Cell damage in the bubble film cap was relatively insignificant compared to that in the liquid layer underneath the bubble cavity, except for very large bubbles (i.e., bubble diameter over 5 mm).  相似文献   

8.
Gas transfer and mixing were characterized in a 32-L bubble column reactor equipped with a commercially available rubber membrane diffuser. The performance of the membrane diffuser indicates that the slits in the membrane are best described as holes with elastic lids, acting as valves cutting off bubbles from the gas stream. The membrane diffuser thus functions as a one-way valve preventing backflow of liquid. Our design of the bottom plate of the reactor enabled us to optimize the aeration by changing the tension of the membrane. We thereby achieved mass transfer coefficients higher than those previously reported in bubble columns. A strong dependence of mass transfer on gas holdup and bubble size was indicated by estimates based on these two variables. The microalga, Rhodomonas sp. , sensitive to chemical and physical stress, was maintained for 8 months in continuous culture with a productivity identical to cultures grown in stirred tank reactors. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

9.
Volumetric oxygen transfer rates and power inputs were estimated by a model of the formation of primary gas bubbles at the static sparger (sinter plate) of small-scale bubble columns and a common mass-transfer correlation for bubbles rising in a non-coalescent Newtonian electrolyte solution of low viscosity. Estimations were used to assess the dimensioning and possibilities of small-scale bubble column application with an height/diameter ratio of about 1. Estimations of volumetric oxygen transfer rates (<0.16 s-1) and power inputs (<100 W m-3) with a mean pore diameter of the static sparger of 13 µm were confirmed as function of the superficial air velocity (<0.6 cm s-1) by measurements using an Escherichia coli fermentation medium. Small-scale bubble columns are thus to be classified between shaking flasks and stirred-tank reactors with respect to the oxygen transfer rate, but the maximum volumetric power input is more than one magnitude below the power input in shaking flasks, which is of the same order of magnitude as in stirred-tank reactors. A small-scale bubble columns system was developed for microbial process development, which is characterized by handling in analogy to shaking flasks, high oxygen transfer rates and simultaneous operation of up to 16 small-scale reactors with individual gas supply in an incubation chamber.  相似文献   

10.
To enhance oxygen transfer in surface-aeration bioreactors, stabilized foams were generated to increase the gas-liquid interfacial area by slowly introducing coarse bubbles into media containing fetal bovine serum. The bubble sparging rates were so low (i.e., 20 and 50 mL/h) that the contribution to oxygen transfer from these bubbles was due to foaming instead of bubbling. Furthermore, no physical cell damage caused by bubble sparging was observed. Oxygen transfer coefficients, kLa, in the bioreactors were measured in cell-free media. Without the foam-stabilizing agent (i.e., serum), no appreciable change in kLa was observed due to the bubble sparging. On the other hand, with serum, kLa increased with increasing serum content and bubble sparging rate and corresponded well with the degree of foaming. With 10% fetal bovine serum and a bubble sparging rate of 50 mL/h, kLa increased approximately 90% compared with no foaming. The enhancing effect of foam on oxygen transfer in surface aeration bioreactors has been further demonstrated with hybridoma cultures simultaneously grown in three identical bioreactors with and without stabilized foams.  相似文献   

11.
The effect of mechanical agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum was investigated in aerated continuous cultures with and without the added shear protectant Pluronic F68. Damage to cells was quantified through a decrease in the steady state concentration of the biomass in the photobioreactor. For a given aeration rate, the steady state biomass concentration rose with increasing rate of mechanical agitation until an upper limit on agitation speed was reached. This maximum tolerable agitation speed depended on the microalgal species. Further increase in agitation speed caused a decline in the steady state concentration of the biomass. An impeller tip speed of >1.56 m s–1 damaged P. tricornutum in aerated culture. In contrast, the damage threshold tip speed for P. cruentum was between 2.45 and 2.89 m s–1. Mechanical agitation was not the direct cause of cell damage. Damage occurred because of the rupture of small gas bubbles at the surface of the culture, but mechanical agitation was instrumental in generating the bubbles that ultimately damaged the cells. Pluronic F68 protected the cells against damage and increased the steady state concentration of the biomass relative to operation without the additive. The protective effect of Pluronic was concentration-dependent over the concentration range of 0.01–0.10% w/v.  相似文献   

12.
Dinoflagellate bioluminescence , a common source of bioluminescence in coastal waters , is stimulated by flow agitation . Although bubbles are anecdotally known to be stimulatory , the process has never been experimentally investigated . This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater . Cells were stimulated by isolated bubbles of 0 . 3–3 mm radii rising at their terminal velocity , and also by bubble clouds containing bubbles of 0 . 06–10 mm radii for different air flow rates . Stimulation efficiency , the proportion of cells producing a flash within the volume of water swept out by a rising bubble , decreased with decreasing bubble radius for radii less than approximately 1 mm . Bubbles smaller than a critical radius in the range 0 . 275–0 . 325 mm did not stimulate a flash response . The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud , with lower stimulation levels observed for clouds with smaller bubbles . An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates . High air flow rates stimulated more light emission than expected , presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud . These results are relevant to bioluminescence stimulation by bubbles in two‐phase flows , such as in ship wakes , breaking waves , and sparged bioreactors . Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Foam formation and the subsequent cell damage/losses in the foam layer were found to be the major problems affecting cell growth and monoclonal antibody (MAb) production in stirred and sparged bioreactors for both serum-supplemented and serum-free media. Surfactants in the culture media had a profound effect on cell growth by changing both the properties of bubbles and the qualities of foam formed. Comparable cell growth and MAb production in sparged bioreactors and in stirred and surface-aerated control cultures were observed only in Pluronic F-68 containing culture media. In media devoid of Pluronic F-68, cells became more sensitive to direct bubble aeration in the presence of antifoam agent which was used to suppress foam formation. Compared with serum-supplemented medium, more severe cell damage effects were observed in serum-free medium. In addition, serum-free medium devoid of cells was partially degraded under continuous air sparging. The mechanism of this damage effect was not clear. Pluronic F-68 provided protective effect to cells but not to the medium. A theoretical model based on the surface active properties of Pluronic F-68 was proposed to account for its protective effect on cell growth. Optimum media surfactant composition in terms of maximum cell growth and minimum foam formation was proposed for stirred and sparged animal cell bioreactor.  相似文献   

14.
A significant degree of cell damage is observed during suspension cell culture with air sparging. Protective agents can be added to the culture medium to protect the cells from damage. It has been observed that cells tend to adhere to air-medium interfaces and cell damage is mainly due to this cell-bubble interaction; protective additives have been found to prevent this cell adhesion to the bubble surfaces. In this article, it is demonstrated that the interfacial tension between the air and medium is related to the effectiveness of the protective additives to prevent adhesion of cells to this interface. Five different types of additives (Pluronic F-68, Methocels, dextran, Polyvinyl alcohol, and polyethylene glycols) were studied in an effort to determine their protective characteristics. Liquid-vapor interfacial tensions of the culture medium, with and without the additives, were measured by two different techniques (maximum bubble pressure method and Wilhelmy plate method). In addition, visualization techniques showed that in the presence of certain protective additives cells do not adhere to the bubble surface. Results obtained from these experiments indicate that the additives which rapidly lower the liquid-vapor interfacial tension of the culture medium also prevent adhesion of cells to the bubble surface. Experiments have also been conducted to determine the number of cells killed due to bubble rupture, and it was observed that this number is related to the amount of cells adhering to the bubble surface. (c) 1995 John Wiley & Sons, Inc.This article is a US Government Work and, as such, is in the public domain in the United States of America.  相似文献   

15.
Engineering analyses combined with experimental observations in horizontal tubular photobioreactors and vertical bubble columns are used to demonstrate the potential of pneumatically mixed vertical devices for large-scale outdoor culture of photosynthetic microorganisms. Whereas the horizontal tubular systems have been extensively investigated, their scalability is limited. Horizontal tubular photobioreactors and vertical bubble column type units differ substantially in many ways, particularly with respect to the surface–to–volume ratio, the amount of gas in dispersion, the gas–liquid mass transfer characteristics, the nature of the fluid movement and the internal irradiance levels. As illustrated for eicosapentaenoic acid production from the microalga Phaeodactylum tricornutum, a realistic commercial process cannot rely on horizontal tubular photobioreactor technology. In bubble columns, presence of gas bubbles generally enhances internal irradiance when the Sun is low on the horizon. Near solar noon, the bubbles diminish the internal column irradiance relative to the ungassed state. The optimal dimensions of vertical column photobioreactors are about 0.2 m diameter and 4 m column height. Parallel east–west oriented rows of such columns located at 36.8°N latitude need an optimal inter-row spacing of about 3.5 m. In vertical columns the biomass productivity varies substantially during the year: the peak productivity during summer may be several times greater than in the winter. This seasonal variation occurs also in horizontal tubular units, but is much less pronounced. Under identical conditions, the volumetric biomass productivity in a bubble column is 60% of that in a 0.06 m diameter horizontal tubular loop, but there is substantial scope for raising this value.  相似文献   

16.
Hydrodynamic stress and lethal events in sparged microalgae cultures   总被引:3,自引:0,他引:3  
The effect of high superficial gas velocities in continuous and batch cultures of the strains Dunaliella tertiolecta, Chlamydomonas reinhardtii wild-type and cell wall-lacking mutant was studied in bubble columns. No cell damage was found for D. tertiolecta and C. reinhardtii (wild-type) up to superficial gas velocities of 0.076 and 0.085 m s(-1), respectively, suggesting that high superficial gas velocities alone cannot be responsible for cell death and, consequently, bubble bursting cannot be the sole cause for cell injury. A death rate of 0.46 +/- 0.08 h(-1) was found for C. reinhardtii (cell wall-lacking mutant) at a superficial gas velocity of 0.076 m s(-1), and increased to 1.01 +/- 0.29 h(-1) on increasing superficial gas velocity to 0.085 m s(-1). Shear sensitivity is thus strain-dependent and to some extent the cell wall plays a role in the protection against hydrodynamic shear. When studying the effect of bubble formation at the sparger in batch cultures of D. tertiolecta by varying the number of nozzles, a death rate of 0.047 +/- 0.016 h(-1) was obtained at high gas entrance velocities. D. tertiolecta was cultivated in a pilot-plant reactor under different superficial gas velocities of up to 0.026 m s(-1), with relatively low gas entrance velocities and no cell damage was observed. There is some indication that the main parameter causing cell death and damage was the gas entrance velocity at the sparger.  相似文献   

17.
Microbial cells are more readily rendered nonviable by the combined action of air sparging and mechanical agitation than by either action along. A. bubble breakup/coalescence model that incorporates the cell-bubble encounter rate, bubble breakup rate, and death probability is proposed to describe cell inactivation in the presence of bubbles maintained through the joint action of agitation and air, which is continually fed into the impeller stream region via passive vortex entrainment from the surface above or via active sparging from below. Experimental results obtained from a fragile algal (Ochromonas malhamensis) culture are consistent with the model prediction. In particular, the specific cell death rate is linearly related to the specific bubble interfacial surface area. It is shown that cells exhibit sparging-sensitive characteristics when agitation is mild, but become sensitive to surface vortexing when agitation turns vigorous enough to introduce air entrainment. Experimental data obtained from different stirrer sizes are in good agreement with the model (c) 1992 John Wiley & Sons, Inc.  相似文献   

18.
W. S. Tan  Y. L. Chen 《Cytotechnology》1994,15(1-3):321-328
Previous work by the authors and others has shown that suspended animal cell damage in bioreactors is caused by cell-bubble interactions, regardless whether the bubbles are from bubble entrainment or direct gas sparging. As approach to measure the adsorptivity of animal cells to bubbles, a modified batch foam fractionation technique has been developed in this work and proven to be applicable. By using this technique, the number of cells adsorbed per unit bubble surface area and the adsorption coefficients have been measured to quantify hybridoma cell-bubble interactions, and the prevetive effects of serum and Pluronic F68 on these interactions. It was demonstrated quantitatively that the hybridoma cells adhere to bubbles spontaneously and significant numbers exist in the foam, and that both the serum and Pluronic F68 provide strong prevention to these cell-bubble interactions. The results obtained provide criteria for bioreactor operation and medium formulation to prevent cell-bubble interactions and cell damage in the culture processes.Abbreviations NBCS new born calf serum - SFM serum-free medium  相似文献   

19.
The influence of fluid-dynamic conditions on the yield of Phaeodactylum tricornutum microalgal cultures was analyzed in two stages: first, the influence of air flow rate; second, the influence of using fluid-moving pumps for recirculating the culture. With respect to the air flow rate, the yield of the cultures increased with the aeration rate up to values of 2.0 v/v/min, then stress was observed and the yield of the cultures decreased. With respect to the influence of mechanical power supply for liquid impulsion, three different types of pumps--centrifugal, pulse, and peristaltic--were essayed at different power supplies. The cultures were stressed for the three types of pumps essayed. For each pump, the higher the power supply the lower was the Fv/Fm value and the higher was the stress at which cells were exposed. The highest measured stress was when the culture was moved with the centrifugal pump. Despite measured stress, for all the experiments stable steady states were reached, thus indicating that cells reduced their yield but did not die, as was verified by cell viability measurements. It was observed that the increase of the power supply improved the frequency of light exposition thus enhancing the yield of the cultures. However, the higher the power supply, the lower the microeddy length scale; therefore, stress could appear. Data demonstrated that the microeddy length scale was always much higher than cell size and therefore the turbulence was not responsible for stress. Also, the mass transfer was discarded as responsible for yield reduction. It was concluded that the shear rate was the factor determining the existence of stress phenomena. The evaluation of these shear rates demonstrated that values above 30-80 s(-1) damaged the cells strongly. These data were verified in an outdoor pilot-scale tubular photobioreactor that was implemented with the same type of pumps, thus demonstrating the necessity to take into account this factor in the design and scale-up of microalgal photobioreactors.  相似文献   

20.
Ever since animal cells have been grownin-vitro, various techniques have been used to supply the cells with oxygen. The most simple and commonly used large-scale technique to provide oxygen is through the introduction of gas bubbles. However, almost since the beginning ofin-vitro cell culture, empirical observations have indicated that bubbles can be detrimental to the cells. This review will discuss the background of the problem, review the relevant research on the topic, attempt to provide a coherent summary of what we know from all of this research, and finally outline what still needs to be investigated. Specific topics to be covered include: experimental correlations of cell damage with bubbles, cell attachment to bubbles, the hydrodynamics of bubble repture, bioreactor studies, visualization studies, and computer simulations and qualification of cell death as a result of bubble rupture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号