首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autocrine production of growth factors can have significant effects on cell activity. We report for the first time that autocrine production of insulin-like growth factor-I (IGF-I) alters paracellular transport across bovine mammary epithelial cells in vitro. Paracellular transport was assessed by measuring phenol red transport across mammary alveolar cells-large T antigen (MAC-T cells) derived from parental mammary epithelial cells, cultured on porous membranes and compared with two different transfected MAC-T cell lines that constitutively secrete IGF-I. Phenol red transport was essentially blocked in parental cell culture after six days, while IGF-I secreting cells provided essentially no barrier. Surprisingly, neither co-culture studies between parental and IGF-I-secreting cells nor addition of exogenous IGF-I or IGF-binding protein-3 reversed the phenol red transport properties. IGF-I-secreting cells did however express lower levels of the junction components occludin and E-cadherin than parental cells, suggesting that localized autocrine IGF-I activity might lead to increased permeability via changes in both the tight and adherens junction protein levels.  相似文献   

2.
To test the hypothesis that insulin-like growth factor-I (IGF-I) affects the growth of bovine mammary epithelial cells through an autocrine and/or paracrine pathway, a cell line (MD-IGF-I) was originated from MAC-T cells by cotransfection with a construct containing the cDNA for an ovine exon 2-encoded prepro-IGF-I under control of the mouse mammary tumor virus-long terminal repeat promoter. Clone MD-IGF-I contained multiple copies of the plasmid integrated into the genome, expressed the highest level of IGF-I mRNA, and secreted radioimmunoactive IGF-I into the medium. The mitogenic activity of MD-IGF-I cells was stimulated 80% by dexamethasone (DEX). The total DNA in MD-IGF-I cells was 2.5-fold higher than that in parental MAC-T cells in the presence of DEX. Conditioned medium from MD-IGF-I cells, induced with DEX, stimulated [3H]thymidine incorporation into DNA of MAC-T cells and uninduced MD-IGF-I cells. These data provide evidence that IGF-I was secreted into medium by MD-IGF-I cells. It is suggested that IGF-I can stimulate the growth of mammary epithelial cells by an autocrine and/or paracrine mode of action. The MD-IGF-I cell line may be a suitable system to study translational and posttranslational modifications of IGF-I peptides.  相似文献   

3.
In a prior report we presented evidence that insulin-like growth factor-I (IGF-I) can act in an autocrine fashion by demonstrating that FRTL-5 cells transfected with hIGF-IA fusion genes express and secrete biologically active IGF-I that renders the stimulation of DNA synthesis in FRTL-5 cells independent of their requirement for exogenous IGFs or insulin. To determine if IGF-I's autocrine actions require secretion or can be mediated by interactions with intracellular receptors, we have created a new line of FRTL-5 cells that express a mutant IGF-IA precursor containing the endoplasmic reticulum retention amino acid sequence, Lys-Asp-Glu-Leu (KDEL), at its carboxyl terminus. The mutant IGF-IA/KDEL precursor expressed by stably transfected FRTL-5 cells was shown to be retained intracellularly and to have biological activity comparable with mature IGF-I, as judged by the activity of partially purified IGF-IA/KDEL in wild type FRTL-5 cells. Expression of IGF-IA/KDEL in FRTL-5 cells, however, neither augmented TSH-stimulated DNA synthesis nor stimulated IGF-binding protein-5 expression, as does IGF-IA expression in transfected FRTL-5 cells and the addition of exogenous IGF-I to wild type FRTL-5 cells. IGF-IA/KDEL expression, however, desensitized FRTL-5 cells to the actions of exogenous IGF-I despite having only minimal effects on cell surface type I receptor number, suggesting that intracellular IGF-I is capable of significant biological actions. The failure of IGF-IA/KDEL to replicate the actions of secreted IGF-I, taken together with the findings that a monoclonal antibody against IGF-I blocked IGF-I's actions in IGF-I-secreting transfected FRTL-5 cells, provides evidence that IGF-I secretion and interaction with cell surface type I IGF receptors is the dominant mechanism of IGF-I's autocrine actions.  相似文献   

4.
5.
MCF-7 human breast cancer cells have been studied for hormonal regulation of secretion of an insulin growth factor-I (IGF-I)-related growth factor. 17 beta-Estradiol, which is required for tumorigenesis of the cell line in the nude mouse and which stimulates proliferation in vitro, was able to significantly induce IGF-I secretion at 10(-13) M, with maximal induction at 10(-11) M. Under optimal conditions IGF-I could be induced 4-fold after 4 days. Demonstration of estrogenic stimulations required removal of phenol red, a weak estrogen, from the cell culture medium. In addition to estrogen, insulin, epidermal growth factor, and transforming growth factor alpha induce both cellular proliferation and IGF-I secretion, while growth inhibitory antiestrogens, transforming growth factor beta, and glucocorticoids have the opposite effect. In each case, modulations in IGF-I secretion preceeded effects on cellular proliferation. IGF-I was not regulated by human GH, basic fibroblast growth factor, platelet-derived growth factor, or PRL, none of which affected proliferation rate. Thus, regulation of IGF-I secretion in human breast cancer is controlled by different hormones from those previously reported in human fibroblasts. Regulation of IGF-I by neither estrogen nor antiestrogen was associated with changes in steady-state mRNA levels; thus regulation may occur at a step beyond mRNA. We conclude that IGF-I production is tightly coupled to growth regulation by estrogens, antiestrogens, and other hormones and may contribute to autocrine and/or paracrine growth regulation by these agents in breast cancer.  相似文献   

6.
Insulin-like growth factor I (IGF-I) activity has been reported to be produced by several human cancers. Identification of RNAs transcribed from the IGF-I gene has been complicated by the detection of multiple hybridizing bands on Northern analysis. To determine if any of these RNAs are transcribed from the IGF-I gene, we have used a sensitive and specific ribonuclease (RNAse) protection assay for IGF-I. We have also studied the breast cancer tissue expression of IGF-I using in situ hybridization histochemistry. We have found no IGF-I mRNA in breast (zero of 11) or colon cancer (zero of 9) cell lines; both of these tumors have been previously reported to express IGF-I mRNA. However, three of three neuroepithelioma and one of two Ewing's sarcoma cell lines express IGF-I mRNA; therefore, in these tumors IGF-I may be an autocrine growth factor. In contrast to breast cancer cell lines, RNA extracted from breast tissues has easily detectable IGF-I mRNA. In situ hybridizations show that IGF-I mRNA is expressed in the stromal cells, and not by normal or malignant epithelial cells. These findings suggest that although IGF-I is not produced by breast epithelial cells it may function as either a paracrine stimulator of epithelial cells or an autocrine stimulator of stromal cells.  相似文献   

7.
Parathyroid hormone-related protein (PTHrP) plays a major role in the pathogenesis of malignant hypercalcemia, but has also been found in fetal and adult non-neoplastic tissues. Among them, lactating mammary gland was shown to produce PTHrP, and high levels of PTHrP were measured in milk. However, the regulation of PTHrP production by breast cells is still unknown. Primary cultures of mammary cells isolated from rat lactating glands were grown on collagen gels in an insulin/epidermal growth factor (EGF)-supplemented medium. Under these conditions, mammary cells displayed an epithelial phenotype and their number increased more than twofold after 1 week in culture. At that time, the cells were capable of producing immunoreactive PTHrP (range: 25 to 150 pg/10(5) cells x 24 h) and PTH-like bioactivity, as indicated by a 60% increase in cyclic adenosine monophosphate (cAMP) production induced by mammary epithelial cell conditioned medium in the PTH-responsive osteoblast-like UMR-106 cell line. When cell proliferation was hindered by lowering plating density, by removing medium supplements, or by adding transforming growth factor (TGF)-beta, a well-known autocrine inhibitor of mammary epithelial cell growth. PTHrP production was increased. In contrast, the omission of EGF or addition of specified anti-EGF antibodies decreased PTHrP production. In conclusion, primary cultures of mammary epithelial cells isolated from lactating rat were shown for the first time to produce PTHrP in vitro. This production was higher in the presence of EGF and could be modulated by cell growth rate.  相似文献   

8.
9.
Lactation-dependent regulation of leptin expression in mouse mammary gland and parametrial adipose tissue was estimated by RT-PCR analysis for virgin, pregnant, lactating and post-lactating mice, and the serum and milk leptin levels of these mice were also determined by ELISA. Leptin gene expression in mammary gland as well as in adipose tissue was obviously detected before pregnancy, markedly decreased to 30-50% after parturition and kept at the low level during lactation period, and restored to the original level after weaning. The leptin concentration of milk collected just before weaning was about two-fold higher than that of the milk collected at mid-lactating stages. The serum leptin levels of the mid- and late-lactating mice were not significantly higher than those of non-pregnant mice. These results suggested that the lactation-induced down regulation of leptin was associated with autocrine/paracrine action of leptin in mammary and adipose tissues, and that the milk leptin, especially at the latter stages of lactation, was not only ascribed to diffusive transport from maternal blood stream, but also regional production and secretion by mammary epithelial cells. This possible production of leptin by mammary epithelial cells was further supported by the fact that leptin was expressed by cultured cells of mammary epithelial cell line, COMMA-1D, in a manner negatively dependent on the lactogenic hormones.  相似文献   

10.
MCF-7 cells were grown in serum free medium (Dulbecco MEM without phenol red, supplemented with Costar SF-1 without insulin). Insulin was added as required and gave dose dependent growth stimulation at concentrations between 5 and 10,000 nM. Identical growth response curves were obtained for thymidine uptake and cell number. Oestradiol and insulin-like growth factor I (IGF-I) added individually both gave a dose dependent stimulation of cell growth in serum free medium containing 50 nM insulin. The growth stimulatory effect of oestradiol was to a large extent inhibited with suramine, a general inhibitor of growth factors, indicating that the effect of oestradiol was mediated through stimulating autocrine secretion of a growth factor.

To investigate a possible link between the effects of oestradiol and IGF-I, a specific IGF-I receptor antibody (IR-3), 10 μg/ml was used. These experiments were carried out with 2.5 nM insulin in the medium, a concentration at which insulin had no growth stimulatory effect. Stimulation was carried out for 18 h before assay of thymidine uptake. The effect of oestradiol was not significantly reduced by IR-3, indicating that IGF-I was not an autocrine mediator of oestradiol stimulation of cell growth under these conditions, whereas IR-3 extensively reduced growth stimulation by IGF-I. On long term stimulation (5 days) oestradiol had a marked stimulatory effect on cell number and IR-3 almost totally abrogated this effect. When oestradiol (1 nM) and IFG-I (2.5 nM) were added together, the combined effect on thymidine incorporation and cell number was significantly greater than additive. This synergistic effect on the IGF-I growth response was totally abolished by the IGF-I receptor antibody. The results suggest a cooperative interaction of oestradiol and IGF-I. It is concluded that growth stimulation of MCF-7 cells by long term treatment with oestradiol may be mediated through autocrine secretion of IGF-I.

The effect of short term stimulation of thymidine incorporation suggest that the growth response of oestradiol is more complex, and indicate that a cooperative interaction with IGF-I is involved, which is unrelated to stimulated autocrine secretion.  相似文献   


11.
Multiple aspects of the transformed phenotype induced in a murine mammary epithelial cell line scp-2 by expression of activated G22V M-Ras, including maintainance of cell number at low density, anchorage-independent growth, invasion of Matrigel, and secretion of matrix metalloproteinases (MMP) 2 and 9, were dependent on an autocrine mechanism. Conditioned medium from dense cultures of scp-2 cells expressing G22V M-Ras, but not from parental cells, induced activation of Erk and Akt in cells expressing G22V M-Ras, maintained the cell number and promoted anchorage-independent growth of cells expressing G22V M-Ras (although not the parental cells), and induced scattering of MDCK cells. The latter activities were blocked by neutralizing antibodies to hepatocyte growth factor/scatter factor (HGF/SF) and could be mimicked by HGF/SF. Anti-HGF/SF antibodies also inhibited invasion of Matrigel, and the production of MMP-2 and MMP-9, together with urokinase-type plasminogen activator, was secreted by G22V M-Ras scp-2 cells but not by parental cells. Invasion of Matrigel was blocked by an inhibitor of MMPs, BB94, and by the mitogen-activated protein kinase kinase 1/2 kinase inhibitor PD98059 but was only marginally affected by the phosphatidylinositol 3-kinase inhibitor LY294002. Autocrine HGF/SF was thus critical for expression of key features of the phenotype of mammary epithelial cells transformed by expression of activated M-Ras.  相似文献   

12.
The signals used by insulin-like growth factor I (IGF-I) to stimulate proliferation in human mammary epithelial cells have been investigated. IGF-I caused the activation of both ERKs and Akt. Activation of ERKs was slower and more transient than that of Akt. ZD1839, a specific epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, prevented activation of ERKs but not Akt by IGF-I. Inhibition of the EGFR with function-blocking monoclonal antibodies also specifically blocked IGF-I-induced ERK activation. These effects occurred in primary mammary epithelial cells and in two cell lines derived from normal mammary epithelium but not in mammary fibroblasts or IGF-I-responsive breast carcinoma cell lines. Although IGF-I stimulated the proliferation of both normal and carcinoma cell lines, ZD1839 blocked this only in the normal line. ZD1839 had no effect on IGF-I receptor (IGF-IR) autophosphorylation in intact cells. IGF-I-induced ERK activation was insensitive to a broad spectrum matrix-metalloproteinase inhibitor and to CRM-197, an inhibitor of the EGFR ligand heparin-bound epidermal growth factor. EGFR was detectable within IGF-IR immunoprecipitates from normal mammary epithelial cells. Treatment of cells with IGF-I led to an increase in the amount of tyrosine-phosphorylated EGFR within these complexes. ZD1839 had no effect on complex formation but completely abolished their associated EGFR tyrosine phosphorylation. These findings indicate that IGF-I utilizes a novel EGFR-dependent signaling pathway involving the formation of a complex between the IGF-IR and the EGFR to activate the ERK pathway and to stimulate proliferation in normal human mammary epithelial cells. This form of regulation may be lost during malignant progression.  相似文献   

13.
Growth hormone (GH), insulin-like growth factor I (IGF-I), progesterone (P4) and 17beta-estradiol (17-E2) concentrations have been studied in 84 mammary tumours (44 dysplasias and benign tumours and 40 malignant neoplasias) from 33 female dogs. Thirteen normal mammary glands from 80 healthy female dogs were also analysed as controls. GH concentrations were determined in mammary homogenates by radio-immunoassay. IGF-I, P4 and 17-E2 tissue levels were determined by enzyme-immunoassay (EIA) techniques. The potential correlations between GH/IGF-I concentrations and P4 and 17-E2 mammary tissue levels were investigated. Tissue GH (p<0.01) and IGF-I concentrations (p<0.01) were significantly higher in malignant tumours than in benign neoplasms. Likewise, malignant tumours were the mammary lesions that displayed the highest P4 and 17-E2 tissue levels. Strong correlations between GH/IGF-I (n=84; r=0.436; p<0.001), P4/GH (n=84; r=0.562; p<0.001) and 17-E2/IGF-I (n=84; r=0.638; p<0.001) were observed in tumoral tissue homogenates. Our study provides evidence that P4 might increase autocrine GH production which might directly stimulate local or systemic IGF-I secretion. Additionally, the IGF-I effect might be influenced by local levels of 17-E2. These results suggest that all these hormones and factors might act as local growth factors stimulating the development and/or maintenance of canine mammary tumours in an autocrine/paracrine manner.  相似文献   

14.
We have investigated the effect of basic fibroblast growth factor (bFGF) and the related int-2 gene on the growth, transformation, and differentiation of HC11 mouse mammary epithelial cells. We show that in HC11 cells infected with int-2 retroviral expression vectors, the int-2 protein can function as a bFGF-like growth factor in stimulating: (a) HC11 cell proliferation in monolayer, (b) anchorage-independent growth in soft agar, and (c) soft agar growth of the bFGF-responsive SW13 tumor cell line. These effects are observed irrespective of whether the int-2 protein is expressed in its wild-type form or is linked to a signal peptide. A candidate bFGF receptor, which is the product of the flg gene and which may recognize the int-2 protein, is expressed at high levels in HC11 cells. Following epidermal growth factor or bFGF priming and subsequent treatment with lactogenic hormones, all of the int-2 infected and the parental HC11 cells synthesize similar levels of beta-casein. However, the autocrine expression of int-2 in HC11 cells abrogates their requirement for either exogenous epidermal growth factor or bFGF priming. These data suggest that, in HC11 cells, the growth factor activity of the int-2 gene is indistinguishable from that of bFGF and does not interfere with the mammary cell differentiation program associated with lactogenesis.  相似文献   

15.
Ovarian steroids are associated with the proliferation of normal as well as tumorigenically transformed mammary epithelial cells. The experiments performed in this study were designed to establish that (1) tumorigenic transformation induced by the ras oncogene is associated with alterations in estradiol biotransformation, (2) altered endocrine responsiveness persists in the fully transformed tumor cell phenotype and (3) specific perturbations induced by the ras oncogene can be experimentally downregulated. The ras transfectant pH06T and the tumor-derived T1/Pr1 cells exhibited 3- and 43-fold increases, respectively, in C-16 alpha hydroxylation of estradiol relative to the parental mouse mammary epithelial cells (P less than 0.0001). At the cellular level, this alteration corresponded with approximately 90-fold increase in the anchorage-independent growth of T1/Pr1 cells (P less than 0.0001). Estrogen responsiveness of T1/Pr1 cells was demonstrated by their suppression of growth in phenol red-free and/or tamoxifen-supplemented medium and by the reversal of antiproliferative effect of tamoxifen by phenol red and estradiol. Indole-3-carbinol, a naturally occurring tumor suppressive agent, was able to upregulate C-2 hydroxylation at the expense of C-16 alpha hydroxylation of estradiol. Treatment of T1/Pr1 cells with indole-3-carbinol resulted in a substantial decrease in anchorage-independent growth.  相似文献   

16.
Retinoids are potent inhibitors of growth and tumor progression in many mammary carcinoma cell lines, though regulation of growth in nontumorigenic mammary epithelial cells by retinoids is less clear. Here, we have characterized the inhibition of MAC-T (a nontransformed bovine mammary epithelial cell line) cellular proliferation by retinoids and their role in regulating insulin-like growth factor binding proteins (IGFBPs). Retinoic acid (RA) (100 nM) was a potent inhibitor of MAC-T cell proliferation. Retinol was 10–100 times less effective. Neither retinoid could completely arrest growth at noncytotoxic concentrations. Retinoic acid inhibited cellular proliferation by 1 h (P < .05), but inhibition was fivefold greater by 24 h (P < .01). This second stage of growth inhibition (after 12 h) was dependent upon protein synthesis. However, RA-induced inhibition of cellular proliferation did not persist, with thymidine incorporation increasing toward control levels by 4 days in culture. Retinoic acid was less effective in inhibiting thymidine incorporation when cells were stimulated with insulin, des(1–3) IGF-I, or Long(R3) IGF-I when compared to cells stimulated with native IGF-I or serum. Inhibition of proliferation by RA was associated with increased levels of IGFBP-2 in conditioned media and in plasma membrane preparations. Treatment with insulin or des(1–3) IGF-I resulted in the appearance of IGFBP-3 in conditioned media and on the cell surface. However, RA significantly reduced IGFBP-3 levels in conditioned media and eliminated IGFBP-3 associated with the plasma membrane. Thus, RA is a potent but transient inhibitor of bovine mammary epithelial cell proliferation, and this growth inhibition is correlated with increased IGFBP-2 accumulation and inhibition of IGF-I stimulated IGFBP-3 protein secretion. © 1996 Wiley-Liss, Inc.  相似文献   

17.
A novel human keratinocyte-derived autocrine factor (KAF) was purified from conditioned medium by using heparin affinity chromatography as the first step. Purified KAF stimulated the growth of normal human keratinocytes, mouse AKR-2B cells, and a mouse keratinocyte cell line (BALB/MK). Heparin sulfate inhibited KAF mitogenic activity on all cell types tested and inhibited the ability of KAF to compete with epidermal growth factor for cell surface binding. Interestingly, KAF stimulated the growth of BALB/MK cells at high cell density but failed to stimulate these cells at clonal density. Protein microsequencing of the first 20 NH2-terminal amino acid residues of purified KAF revealed identity to the NH2 terminus of human amphiregulin (AR). Northern (RNA) blot analysis with AR-specific cRNA demonstrated that human keratinocytes, as well as mammary epithelial cell cultures, expressed high levels of AR mRNA. In contrast, AR mRNA was not detected in normal human fibroblasts or melanocytes and was present at reduced levels in several mammary tumor cell lines. The mitogenic activity of purified AR was also shown to be inhibited by heparin sulfate, and an AR-specific enzyme-linked immunosorbent assay (ELISA) revealed that KAF and AR are antigenically related. We have previously shown that human keratinocytes can grow in an autocrine manner. Our present study demonstrates that one of the growth factors responsible for this autocrine growth (KAF) is similar or identical to AR and that KAF and AR bioactivity can be negatively regulated by heparin sulfate.  相似文献   

18.
19.
Mammary gland development and breast cancer growth require multiple factors both of endocrine and paracrine origin. We analyzed the roles of Epidermal Growth Factor Receptor (EGFR) and Hepatocyte Growth Factor Receptor (Met) in mammary epithelial cells and mammary tumor cells derived from a mutated-ErbB2 transgenic mice. By using highly specific tyrosine kinase inhibitors we found that MCF-10A and NMuMG mammary epithelial cell lines are totally dependent on EGFR activation for their growth and survival. Proliferation and 3D-morphogenesis assays showed that HGF had no role in maintaining mammary cell viability, but was the only cytokine able to rescue EGFR-inhibited mammary cells. Insulin-Like Growth Factor-I (IGF-I), basic-Fibroblast Growth Factor (b-FGF) and Neuregulin, which are well known mammary morphogenic factors, did not rescue proliferation or morphogenesis in these cell lines, following EGFR inhibition. Similarly, ErbB2-driven tumor cells are EGFR-dependent and also display HGF-mediated rescue. Western-blot analysis of the signaling pathways involved in rescue after EGFR inhibition indicated that concomitant ERK1/2 and AKT activation was exclusively driven by Met, but not by IGF-I or b-FGF. These results describe a unique role for EGFR and Met in mammary epithelial cells by showing that similar pathways can be used by tumorigenic cells to sustain growth and resist to EGFR-directed anti-tumorigenic drugs.  相似文献   

20.
In Con8 rat mammary epithelial tumor cells, the synthetic glucocorticoid dexamethasone stimulates transepithelial electrical resistance (TER), promotes the remodeling of apical junctions, and down-regulates the level of fascin, an actin-bundling protein that can bind to beta-catenin. We have previously shown that ectopic expression of fascin prevented the glucocorticoid-mediated recruitment of tight junction and adherens junction proteins to the site of cell-cell contact. Here we demonstrate that exogenous treatment or constitutive production of transforming growth factor-alpha (TGF-alpha) ablated the dexamethasone down-regulation of the fascin protein level and disrupted the dexamethasone-induced remodeling of the apical junction and stimulation of the monolayer TER. The response to TGF-alpha was polarized in that basolateral, but not apical, exposure to this growth factor coordinately reversed the steroid control of fascin production and tight junction formation. Expression of dominant negative RasN17 or treatment with the PD098059 MEK inhibitor abolished or attenuated the TGF-alpha disruptive effects on TER, junction remodeling, and fascin protein levels. Our results implicate the regulation of fascin protein levels as a target of cross-talk between the Ras-dependent growth factor signaling and glucocorticoid signaling pathways that controls tight junction dynamics in mammary epithelial tumor cells. We propose that reversing the down-regulation of fascin is critical for the ability of TGF-alpha to disrupt the glucocorticoid-induced remodeling of the apical junction that leads to tight junction formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号