首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fractional contributions (FC) of threonine to glycine and 2-ketobutyrate (KB) fluxes in fed pigs have been assessed by the constant infusion of L-[1-13C]-threonine. The analysis of the enantiomeric purity of labeled threonine by gas chromatography/mass spectrometric (GC/MS) analysis is reported as the N-TFA isopropyl ester derivative. The commercially available [1-13C]threonine comprised 98.7% of the L-enantiomer, enriched at 99 atom percentage excess (APE), and 1.3% of L-allo-threonine contaminant, also enriched at 99 APE. The enantiomeric purity of threonine in plasma of pigs infused for 10 h with [1-13C]threonine showed that the L-allo contaminant did not accumulate. The t-butyl dimethylsilyl derivatives of threonine, glycine, and 2-aminobutyrate (ABA) were used to measure the enrichment of these compounds in plasma and liver samples by GC/MS/selected ion monitoring analysis. Analyses were performed on between 1 and 5 nmol of each amino acid extracted from biological fluids and a 1:10 split injection. GC/MS parameters were assessed with standards at similar quantities and found to be satisfactory; e.g., injection of 1-10 nmol of glycine did not significantly alter the slope and the precision of the standard curve. The coefficient of variation of enrichment determination was less than 10% for standards enriched at 0.4 APE or more and biological samples enriched at 0.6 APE or greater. Within-animal coefficients of variation for four plasma samples obtained at equal intervals between 8 and 10 h of [1-13C]threonine infusion were 4, 21, and 24% for threonine, ABA, and glycine, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Resistance exercise increases heme synthesis in the bone marrow and the hemoglobin in iron-deficient rats. Post-exercise early nutrient provision facilitates skeletal muscle protein synthesis compared to late provision. However, the effects of post-exercise nutrition timing on hemoglobin synthesis are unclear. The current study investigated the effect of post-exercise meal timing on the activity of the key enzyme involved in hemoglobin synthesis, δ-aminolevulinic acid dehydratase (ALAD), in the bone marrow and examined the hemoglobin concentration in iron-deficient rats. Male 4-week-old Sprague-Dawley rats were fed an iron-deficient diet containing 12 mg iron/kg and performed climbing exercise (5 min × 6 sets/day, 3 days/week) for 3 weeks. The rats were divided into a group fed a post-exercise meal early after exercise (E) or a group fed the meal 4 h after exercise (L). A single bout of exercise performed after the 3-week training period increased the bone marrow ALAD activity, plasma iron concentration, and transferrin saturation. Although the plasma iron concentration and transferrin saturation were lower in the E group than the L group after a single bout of exercise, the basal hematocrit, hemoglobin, and TIBC after 3 weeks did not differ between the groups. Therefore, resistance exercise increases the bone marrow ALAD activity, while the post-exercise meal timing has no effect on the hemoglobin concentration in iron-deficient rats.  相似文献   

3.
Heme formation in reticulocytes from rabbits and rodents is subject to end product negative feedback regulation: intracellular "free" heme has been shown to control acquisition of transferrin iron for heme synthesis. To identify the site of control of heme biosynthesis in the human erythron, immature erythroid cells were obtained from peripheral blood and aspirated bone marrow. After incubation with human 59Fe transferrin, 2-[14C]glycine, or 4-[14C]delta-aminolevulinate, isotopic incorporation into extracted heme was determined. Addition of cycloheximide to increase endogenous free heme, reduced incorporation of labeled glycine and iron but not delta-aminolevulinate into cell heme. Incorporation of glycine and iron was also sensitive to inhibition by exogenous hematin (Ki, 30 and 45 microM, respectively) i.e. at concentrations in the range which affect cell-free protein synthesis in reticulocyte lysates. Hematin treatment rapidly diminished incorporation of intracellular 59Fe into heme by human erythroid cells but assimilation of 4-[14C]delta-aminolevulinate into heme was insensitive to inhibition by hematin (Ki greater than 100 microM). In human reticulocytes (unlike those from rabbits), addition of ferric salicylaldehyde isonicotinoylhydrazone, to increase the pre-heme iron pool independently of the transferrin cycle, failed to promote heme synthesis or modify feedback inhibition induced by hematin. In human erythroid cells (but not rabbit reticulocytes) pre-incubation with unlabeled delta-aminolevulinate or protoporphyrin IX greatly stimulated utilization of cell 59Fe for heme synthesis and also attenuated end product inhibition. In human erythroid cells heme biosynthesis is thus primarily regulated by feedback inhibition at one or more steps which lead to delta-aminolevulinate formation. Hence in man the regulatory process affects generation of the first committed precursor of porphyrin biosynthesis by delta-aminolevulinate synthetase, whereas in the rabbit separate regulatory mechanisms exist which control the incorporation of iron into protoporphyrin IX.  相似文献   

4.
Resistance exercise increases heme synthesis in the bone marrow, but it does not improve the hemoglobin status in severe iron-deficient rats on a diet containing less than 5?mg iron/kg. The current study investigated whether resistance exercise could mitigate hemoglobin status via increasing heme synthesis in moderately iron-deficient rats. Male 4-week-old Sprague-Dawley rats were fed an iron-deficient diet containing 12?mg iron/kg for 3?weeks. The rats were divided into two groups: a sedentary (S) group (n?=?7) or an exercise (E) group (n?=?7). The rats in the E group performed a climbing exercise (5?min?×?6?sets/day, 3?days/week). The aminolevulinic acid dehydratase activity, hematocrit, and hemoglobin tended to be higher in group E than S. The iron content in the flexor hallucis longus muscle was significantly higher in E than S, whereas the content in the liver, spleen, kidney, and heart did not significantly differ between the groups. Therefore, resistance exercise appears to improve hemoglobin via increasing heme synthesis in the bone marrow in moderately iron-deficient rats.  相似文献   

5.
Transfusion of stored red blood cells (RBCs) is associated with increased morbidity and mortality in trauma patients. Pro-oxidant, pro-inflammatory, and nitric oxide (NO) scavenging properties of stored RBCs are thought to underlie this association. In this study we determined the effects of RBC washing and nitrite and antiheme therapy on stored RBC-dependent toxicity in the setting of trauma-induced hemorrhage. A murine (C57BL/6) model of trauma–hemorrhage and resuscitation with 1 or 3 units of RBCs stored for 0–10 days was used. Tested variables included washing RBCs to remove lower MW components that scavenge NO, NO-repletion therapy using nitrite, or mitigation of free heme toxicity by heme scavenging or preventing TLR4 activation. Stored RBC toxicity was determined by assessment of acute lung injury indices (airway edema and inflammation) and survival. Transfusion with 5 day RBCs increased acute lung injury indexed by BAL protein and neutrophil accumulation. Washing 5 day RBCs prior to transfusion did not decrease this injury, whereas nitrite therapy did. Transfusion with 10 day RBCs elicited a more severe injury resulting in ~90% lethality, compared to <15% with 5 day RBCs. Both washing and nitrite therapy significantly protected against 10 day RBC-induced lethality, suggesting that washing may be protective when the injury stimulus is more severe. Finally, a spectral deconvolution assay was developed to simultaneously measure free heme and hemoglobin in stored RBC supernatants, which demonstrated significant increases of both in stored human and mouse RBCs. Transfusion with free heme partially recapitulated the toxicity mediated by stored RBCs. Furthermore, inhibition of TLR4 signaling, which is stimulated by heme, using TAK-242, or hemopexin-dependent sequestration of free heme significantly protected against both 5 day and 10 day mouse RBC-dependent toxicity. These data suggest that RBC washing, nitrite therapy, and/or antiheme and TLR4 strategies may prevent stored RBC toxicities.  相似文献   

6.
Although the physiological role of tissue-specific translational control of gene expression in mammals has long been suspected on the basis of biochemical studies, direct evidence has been lacking. Here, we report on the targeted disruption of the gene encoding the heme-regulated eIF2alpha kinase (HRI) in mice. We establish that HRI, which is expressed predominantly in erythroid cells, regulates the synthesis of both alpha- and beta-globins in red blood cell (RBC) precursors by inhibiting the general translation initiation factor eIF2. This inhibition occurs when the intracellular concentration of heme declines, thereby preventing the synthesis of globin peptides in excess of heme. In iron-deficient HRI(-/-) mice, globins devoid of heme aggregated within the RBC and its precursors, resulting in a hyperchromic, normocytic anemia with decreased RBC counts, compensatory erythroid hyperplasia and accelerated apoptosis in bone marrow and spleen. Thus, HRI is a physiological regulator of gene expression and cell survival in the erythroid lineage.  相似文献   

7.
Rat livers were perfused by the nonrecirculating technique with medium containing [15N]glycine and sodium benzoate. At various times, the isotopic enrichment of hepatic free glycine, hepatic glycyl-tRNA, and perfusate hippurate was measured by GLC-MS. After 60 min, these parameters had reached approximately maximal values. At 90 min, the perfusate hippurate had a 30% greater enrichment of 15N than the intracellular glycine or glycyl-tRNA. Hippurate enrichment was half that of the medium glycine. The rat livers secreted apolipoprotein B (B-100 plus B-48) at a rate of 22 micrograms/g per h. From the 15N enrichment and the secretion rate, an intrahepatic pool size of 86 micrograms/g of apoB was calculated. From the minimal intracellular transit time of 30 min, an apoB fractional synthetic rate (FSR) of 2 pools/h was indicated, whereas the FSR estimated from the 15N-enrichment was 0.26/h. A possible explanation for the discrepancy is that apoB may recycle within the hepatocyte. On the basis of the present experiments, when hippurate enrichment is used as a measure of the enrichment of intrahepatic glycine in in vivo studies with 15N-labeled glycine, a correction should be applied, under normal metabolic circumstances, of approximately 20-30%.  相似文献   

8.
9.
We tested the hypothesis that an elevation in albumin synthetic rate contributes to increased plasma albumin content during exercise-induced hypervolemia. Albumin synthetic rate was measured in seven healthy subjects at 1-5 and 21-22 h after 72 min of intense (85% peak oxygen consumption rate) intermittent exercise and after 5 h recovery in either upright (Up) or supine (Sup) postures. Deuterated phenylalanine (d(5)-Phe) was administrated by a primed-constant infusion method, and fractional synthetic rate (FSR) and absolute synthetic rate (ASR) of albumin were calculated from the enrichment of d(5)-Phe in plasma albumin, determined by gas chromatography-mass spectrometry. FSR of albumin in Up increased significantly (P < 0.05) from 4.9 +/- 0.9%/day at control to 7.3 +/- 0.9%/day at 22 h of recovery. ASR of albumin increased from 87.9 +/- 17.0 to 141.1 +/- 16.6 mg albumin. kg body wt(-1). day(-1). In contrast, FSR and ASR of albumin were unchanged in Sup (3.9 +/- 0.4 to 4.0 +/- 1.4%/day and 74.2 +/- 8.9 to 85.3 +/- 23.9 mg albumin. kg body wt(-1). day(-1) at control and 22 h of recovery, respectively). Increased albumin synthesis after upright intense exercise contributes to the expansion of greater albumin content and its maintenance. We conclude that stimuli related to posture are critical in modulating the drive for albumin synthesis after intense exercise.  相似文献   

10.
Bone marrow from mature goats and sheep was cultured in plasma clots, and three erythropoietin (ESF)-dependent responses-growth (colony formation), differentiation (globin production), and initiation of hemoglobin C (alpha2beta2C) synthesis--were quantitated. ESF concentrations below 0.01 U/ml supported colony growth and adult hemoglobin production in cultures of goat marrow, while maximal hemoglobin C synthesis (70%), as measured between 72 and 96 h in culture, required a 100-fold higher ESF concentration. Sheep marrow was cultured in a medium enriched to enhance growth and to permit complete maturation of colonies. These colonies active in hemoglobin synthesis between 24 and 96 h produced mainly adult hemoglobin, and only between 96 and 120 h did sheep colonies develop which produced mainly hemoglobin C (up to 70%). A similar heterogeneity may exist among goat colonies. Thus, when goat bone marrow was fractionated by unit gravity sedimentation, more hemoglobin C synthesis was observed in colonies derived from cells of intermediate sedimentation velocity than in colonies derived from the most rapidly sedimenting cells. Brief exposure of sheep (in vivo) and goat (in vitro) bone marrow to a high ESF concentration committed precursor cells to the generation of colonies which, even at low ESF concentration, produced hemoglobin C. Committment to hemoglobin phenotype appears to be an early and probably irreversible event in the development of an erythroid cell.  相似文献   

11.
Ciprofloxacin concentrations were determined in serum, bone and bone marrow of rabbits. Four experimental groups of animals were examined: group A (n = 6) received a dosage of 60 mg/kg/day intramuscularly for 4 weeks, groups B (n = 6), C (n = 15) and D (n = 15) received dosages of 120 mg/kg/day subcutaneously for 2 days, 2 weeks, and 4 weeks, respectively. In the kinetic portion of the study, peak serum concentrations of ciprofloxacin measured at the 15 min sampling time were: 2.61 +/- 0.27 micrograms/ml in the 60 mg/kg/day group (group A) and 3.24 +/- 0.78 micrograms/ml in the 120 mg/kg/day group (group B). At necropsy, rabbits in group A had mean ciprofloxacin concentrations of 3.60 +/- 2.27 micrograms/ml in serum, 2.24 +/- 1.19 micrograms/g in marrow and 1.19 +/- 0.44 micrograms/g in bone. Rabbits in group B achieved mean levels of 4.02 +/- 1.23 micrograms/ml in serum, 2.48 +/- 0.79 micrograms/g in marrow, and 1.35 +/- 0.40 micrograms/g in bone. Rabbits in group C achieved mean levels of 5.65 +/- 2.16 micrograms/ml in serum, 3.74 +/- 1.33 micrograms/g in marrow and 1.92 +/- 0.94 micrograms/g in bone. Rabbits in group D achieved mean levels of 7.24 +/- 2.50 micrograms/ml in serum, 4.48 +/- 1.68 micrograms/g in marrow, and 1.93 +/- 0.54 micrograms/g in bone. Differences between mean values for the four experimental groups were not statistically significant.  相似文献   

12.
Redox-mediated injury is an important pathway in the destruction of beta thalassemic red blood cells (RBC). Because of the autoxidation of the unstable hemoglobin chains and subsequent release of globin free heme and iron, significant amounts of superoxide (O2-) and, more importantly, hydrogen peroxide (H2O2) are generated intracellularly. Hence, catabolism of H2O2 is crucial in preventing cellular injury. Removal of H2O2 is mediated via two primary pathways: GSH-dependent glutathione peroxidase or catalase. Importantly, both pathways are ultimately dependent on NADPH. In the absence of any exogenous oxidants, model thalassemic RBC demonstrated significantly decreased GSH levels (P < 0.001 at 20 h). Perhaps of greater pathophysiologic importance, however, was the finding that the model thalassemic RBC exhibited significantly (P < 0.001) decreased catalase activity. Following 20 h incubation at 37 degrees C only 61.5 +/- 2.9% of the initial catalase activity remained in the alpha-hemoglobin chain-loaded cells versus 104.6 +/- 4.5 and 108.2 +/- 3.2% in the control and control-resealed cells, respectively. The mechanism underlying the loss of both catalase activity and GSH appears to be the same in that both catabolic pathways require adequate NADPH levels. As shown in this study, model beta thalassemic cells are unable to maintain a normal ( approximately 1.0) NADPH/NADP(total) ratio and, after 20 h, the model beta thalassemic cells have a significantly (P < 0.001) lower ratio ( approximately 0.5) which is quite similar to a G6PD-deficient RBC. In support of these findings, direct inactivation of catalase gives rise to significantly increased oxidant damage. In contrast, GSH depletion is not closely associated with oxidant sensitivity. Indeed, the consumption of GSH noted in the thalassemic RBC may be via a prooxidant pathway as augmentation of cellular GSH levels actually enhances alpha-hemoglobin chain-mediated injury.  相似文献   

13.
Serum copper determination is important to confirm hypocupremia. Twenty healthy kids constituted the Control Group, and sixteen kids with symptoms of copper deficiency, the Problem Group. Animals from the Problem Group showed a low number of red blood cells (RBC) and variations in RBC size and shape. The values found for hemoglobin and mean corpuscular hemoglobin (MCH) in the Control Group were 10.42 +/- 1.34 g.dL(-1) and 33.07 +/- 1.11 g.dL(-1) respectively, while the levels of the Problem Group were 7.95 +/- 1.21 g.dL(-1) and 29.45 +/- 0.78 g.dL(-1), respectively. The kids from the Problem Group presented an important increase in monocytes, neutrophiles and leukocytes; precursor cells of the neutrophile were also observed. The anemia of these animals was hypochromic and macrocytic. Our results indicate that Creole kids with serum copper levels > 450 microg.L(-1) improved after treatment with copper glycinate. The six goats with cupremia < 450 microg.mL(-1) were unable to improve their deficiency and died.  相似文献   

14.
V Rogalsky  G Todorov  T Den  T Ohnuma 《FEBS letters》1992,304(2-3):153-156
Protein kinase C (PKC) activity and DNA synthesis were measured in human fetal bone marrow fibroblasts following treatment with tumor necrosis factor alpha (TNF alpha) (500 U/ml) or conditioned media containing natural cell proliferation inhibitor (CM-NCPI). Treatment with TNF alpha led to growth stimulation (120 +/- 7% of control in 24 h, 141 +/- 6% in 72 h). At the same time particulate PKC activity diminished, reaching 55 +/- 8% of control in 24 h and remaining at this level at 72 h. CM-NCPI treatment of the cells resulted in a decrease in DNA synthesis (by 39 +/- 6% in 2 h, by 58 +/- 5% in 24 h, and by 78 +/- 8% in 72 h). This was accompanied by a significant rise in particulate PKC activity which increased over 3-fold in 2 h, over 5-fold in 24 h, and up to 11-fold in 72 h. This 11-fold elevation was maintained after 2 week exposure of the fibroblasts to CM-NCPI. The PKC inhibitor neomycin abolished CM-NCPI induced growth inhibition, whereas PKC activator 12-O-tetradecanoylphorbol 13-acetate intensified it. These results suggest that CM-NCPI acts as PKC activator and that negative growth regulation by extracellular agents may involve stimulation of PKC activity.  相似文献   

15.
Sustained erythropoiesis and concurrent bone marrow hyperplasia are proposed to be responsible for low bone mass density (BMD) in chronic hemolytic pathologies. As impaired erythropoiesis is also frequent in these conditions, we hypothesized that free heme may alter marrow and bone physiology in these disorders. Bone status and bone marrow erythropoiesis were studied in mice with hemolytic anemia (HA) induced by phenylhydrazine (PHZ) or Plasmodium infection and in bled mice. All treatments resulted in lower hemoglobin concentrations, enhanced erythropoiesis in the spleen and reticulocytosis. The anemia was severe in mice with acute hemolysis, which also had elevated levels of free heme and ROS. No major changes in cellularity and erythroid cell numbers occurred in the bone marrow of bled mice, which generated higher numbers of erythroid blast forming units (BFU-E) in response to erythropoietin. In contrast, low numbers of bone marrow erythroid precursors and BFU-E and low concentrations of bone remodelling markers were measured in mice with HA, which also had blunted osteoclastogenesis, in opposition to its enhancement in bled mice. The alterations in bone metabolism were accompanied by reduced trabecular bone volume, enhanced trabecular spacing and lower trabecular numbers in mice with HA. Taken together our data suggests that hemolysis exerts distinct effects to bleeding in the marrow and bone and may contribute to osteoporosis through a mechanism independent of the erythropoietic stress.  相似文献   

16.
It is currently controversial whether mucosal hyperproliferation is involved in colorectal cancerogenesis. The purpose of the present study was to examine protein synthetic rate as an indicator of potential tissue proliferation in grossly normal rectal mucosa from cancer-bearing subjects and to compare this rate with that in mucosa from subjects posttumor removal. Six postabsorptive patients with localized rectal cancer and five postsurgical control subjects received a primed constant infusion of [1-(13)C]leucine (0.16 micromol/kg min, 9.6 micromol/kg prime). Forceps biopsies from the mucosa were taken after 3 and 6 h. Protein synthesis was calculated from protein-bound leucine enrichment (determined by capillary GC-combustion IRMS) and from the enrichment of free intracellular leucine (determined by GC-quadrupole MS). In cancer-bearing subjects, mucosal protein synthesis amounted to 1.28 +/- 0.24%/h. This rate was significantly higher (P < 0.05) than the corresponding rate of mucosa from patients after cancer removal (0.69 +/- 0.09%/h). These findings do not support the concept that colorectal cancer originates from a proliferative disease of the whole colon. Increased mucosal protein synthesis appears to depend on the presence of the tumor itself and should therefore be considered a secondary phenomenon.  相似文献   

17.
目的:研究血红素代谢限速酶和珠蛋白代谢在运动性贫血发生机理中的功能和作用,及营养补充对运动性贫血防治效果的作用机制。方法:本实验对30只雄性Wistar大鼠进行等量随机分为3组(n=10):对照组(C)、运动组(P)和运动+营养组(G)。30m/min、0%坡度、每次1min为起始训练方式,前5周和后4周时训练时间的加速度为每次2min,训练频率为每天2次(前两周例外)。11周的跑台运动结束后应用RT-PCR和免疫组织化学的方法测试骨髓每氨基-γ酮戊酸合成酶(ALAs)、铁螯合酶(ferrochelatase)、α-珠蛋白、β-珠蛋白的基因表达和肝脏血红素氧舍酶-1(HO-1)的活性。结果:11周跑台运动可以增加大鼠肝脏HO-1的活性和骨髓β-珠蛋白的基因表达(P〈0.01,P〈0.05),抗运动性贫血复合剂补充并不能改变大鼠运动后血红素代谢限速酶和珠蛋白基因表达和活性,且运动+营养组大鼠肝脏HO-1活性水平显著高于对照组(P〈0.01),即递增负荷跑台运动不能影响大鼠骨髓血红素合成酶和α-珠蛋白的基因表达,但能够影响大鼠肝脏血红素分解酶的活性水平和骨髓β-珠蛋白的基因表达。结论:肝脏HO-1活性水平的升高可能是运动性贫血表现出低Hb、RBC和Hct水平的原因之一。  相似文献   

18.
Erythroid colonies were generated in response to erythropoietin in plasma clot cultures of sheep and goat bone marrow cells. At low concentration erythropoietin only hemoglobin A (betaA globin) was synthesized in goat cultures, but at high concentrations 50% of the hemoglobin synthesized was hemoglobin C (betaC globin). This effect of erythropoietin on the expression of a specific beta globin gene was manifested only after 72 h in vitro and followed the development of erythroid colonies. Sheep colonies behaved differently from those of goat in that little or no betaC globin synthesis occurred even at high erythropoietin concentration. To investigate this difference, sheep marrow cells were fractionated by unit gravity sedimentation. The erythroid colony-forming cells sedimented more rapidly (3.5-6mm/h) than the hemoglobinized eththroid precursors (1-3.5 mm/h), suggesting that the colonies were formed from an early erythroid precursor, However, the colonies formed from the sheep marrow fractions synthesized only betaA globin even at concentrations of erythropoietin sufficient to stimulate betaC globin synthesis in goat colonies. Morphologically, the goat colonies were larger and more mature than those of the sheep. By 96 h in vitro three-fourths of the goat colonies contained enucleated red cells compared to only 3% of the sheep colonies. Thus, erythropoietin had an equivalent effect in stimulating erythroid colony growth from the marrow of both species although there were both biochemical and morphological differences between the colonies. Hemoglobin switching appeared to require exposure of an early precursor to high erythropoietin concentration, but the results with sheep marrow suggested that the rate of colony growth and cellular maturation might also be important.  相似文献   

19.
Hemin treatment of mouse Friend virus-transformed cells in cultured caused a dose-dependent increase in hemoglobin synthesis. By the addition of radioactively labeled hemin and by the analysis of the radioactive heme in hemoglobin, only 60 to 70% of heme in the newly synthesized hemoglobin was accounted for by the exogenously added hemin. In keeping with this finding, hemin treatment increased the activity of two enzymes in the heme biosynthetic activity, i.e. delta-aminolevulinate (ALA) dehydratase and uroporphyrinogen-I (URO) synthase in these cells. Incorporation of [2(-14C)]glycine, [14C]ALA, and 59Fe into heme was also significantly increased in the cells treated with hemin, suggesting that essentially all enzyme activities in the heme biosynethetic pathway were increased after hemin treatment. These results indicate that heme in the newly synthesized hemoglobin in hemin-treated Friend cells derives both from hemin added to the culture and from heme synthesized intracellularly. In addition, these results suggest that the stimulation of heme biosynthesis by hemin in Friend virus-transformed cells is in contrast to the hemin repression of heme biosynthesis in liver cells.  相似文献   

20.
The genotoxic potential of 42.2 +/- 0.2 GHz electromagnetic millimeter-wave radiation was investigated in adult male BALB/c mice. The radiation was applied to the nasal region of the mice for 30 min/day for 3 consecutive days. The incident power density used was 31.5 +/- 5.0 mW/cm2. The peak specific absorption rate was calculated as 622 +/- 100 W/kg. Groups of mice that were injected with cyclophosphamide (15 mg/kg body weight), a drug used in the treatment of human malignancies, were also included to determine if millimeter-wave radiation exposure had any influence on drug-induced genotoxicity. Concurrent sham-exposed and untreated mice were used as controls. The extent of genotoxicity was assessed from the incidence of micronuclei in polychromatic erythrocytes of peripheral blood and bone marrow cells collected 24 h after treatment. The results indicated that the incidence of micronuclei in 2000 polychromatic erythrocytes was not significantly different among untreated, millimeter wave-exposed, and sham-exposed mice. The group mean incidences were 6.0 +/- 1.6, 5.1 +/- 1.5 and 5.1 +/- 1.3 in peripheral blood and 9.1 +/- 1.1, 9.3 +/- 1.6 and 9.1 +/- 1.6 in bone marrow cells, respectively. Mice that were injected with cyclophosphamide exhibited significantly increased numbers of micronuclei, 14.6 +/- 2.7 in peripheral blood and 21.3 +/- 3.9 in bone marrow cells (P< 0.0001). The drug-induced micronuclei were not significantly different in millimeter wave-exposed and sham-exposed mice; the mean incidences were 14.3 +/- 2.8 and 15.4 +/- 3.0 in peripheral blood and 23.5 +/- 2.3 and 22.1 +/- 2.5 in bone marrow cells, respectively. Thus there was no evidence for the induction of genotoxicity in the peripheral blood and bone marrow cells of mice exposed to electromagnetic millimeter-wave radiation. Also, millimeter-wave radiation exposure did not influence cyclophosphamide-induced micronuclei in either type of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号