首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The structural gene for glutamine synthetase, glnA, from Amycolatopsis mediterranei U32 was cloned via screening a genomic library using the analog gene from Streptomyces coelicolor. The clone was functionally verified by complementing for glutamine requirement of an Escherichia coli glnA null mutant under the control of a lac promoter. Sequence analysis showed an open reading frame encoding a protein of 466 amino acid residues. The deduced amino acid sequence bears significant homologies to other bacterial type I glutamine synthetases, specifically, 71% and 72% identical to the enzymes of S. coelicolor and Mycobacterium tuberculosis, respectively. Disruption of this glnA gene in A. mediterranei U32 led to glutamine auxotrophy with no detectable glutamine synthetase activity in vivo. In contrast, the cloned glnA^+ gene can complement for both phenotypes in trans. It thus suggested that in A. mediterranei U32, the glnA gene encoding glutamine synthetase is uniquely responsible for in vivo glutamine synthesis under our laboratory defined physiological conditions.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
L V Wray  S H Fisher 《Gene》1988,71(2):247-256
The Streptomyces coelicolor glutamine synthetase (GS) structural gene (glnA) was cloned by complementing the glutamine growth requirement of an Escherichia coli strain containing a deletion of its glnALG operon. Expression of the cloned S. coelicolor glnA gene in E. coli cells was found to require an E. coli plasmid promoter. The nucleotide sequence of an S. coelicolor 2280-bp DNA segment containing the glnA gene was determined and the complete glnA amino acid sequence deduced. Comparison of the derived S. coelicolor GS protein sequence with the amino acid sequences of GS from other bacteria suggests that the S. coelicolor GS protein is more similar to the GS proteins from Gram-negative bacteria than it is with the GS proteins from two Gram-positive bacteria, Bacillus subtilis and Clostridium acetobutylicum.  相似文献   

18.
19.
A 3.3-kb BamHI fragment of Lactobacillus delbrueckii subsp. bulgaricus DNA was cloned and sequenced. It complements an Escherichia coli glnA deletion strain and hybridizes strongly to a DNA containing the Bacillus subtilis glnA gene. DNA sequence analysis of the L. delbrueckii subsp. bulgaricus DNA showed it to contain the glnA gene encoding class I glutamine synthetase, as judged by extensive homology with other prokaryotic glnA genes. The sequence suggests that the enzyme encoded in this gene is not controlled by adenylylation. Based on a comparison of glutamine synthetase sequences, L. delbrueckii subsp. bulgaricus is much closer to gram-positive eubacteria, especially Clostridium acetobutylicum, than to gram-negative eubacteria and archaebacteria. The fragment contains another open reading frame encoding a protein of unknown function consisting of 306 amino acids (ORF306), which is also present upstream of glnA of Bacillus cereus. In B. cereus, a repressor gene, glnR, is found between the open reading frame and glnA. Two proteins encoded by the L. delbrueckii subsp. bulgaricus gene were identified by the maxicell method; the sizes of these proteins are consistent with those of the open reading frames of ORF306 and glnA. The lack of a glnR gene in the L. delbrueckii subsp. bulgaricus DNA in this position may indicate a gene rearrangement or a different mechanism of glnA gene expression.  相似文献   

20.
Growth of soil bacteria is often limited by the availability of essential nutrients such as carbon, nitrogen and phosphate. The reaction to a specific nutrient starvation triggers interconnected responses to equilibrate the metabolism. It is known that PhoP (response regulator involved in phosphate control) specifically binds to several promoters of genes involved in nitrogen metabolism which are also regulated by GlnR (regulator involved in nitrogen control). In this article we report a novel cross-talk between GlnR and the SARP-like regulator, AfsR. AfsR binds to some PhoP-regulated promoters including those of afsS (a small regulatory protein of secondary metabolism), pstS (a component of the phosphate transport system) and phoRP (encoding the two component system itself). We have characterized the regulation exerted upon the nitrogen regulator glnR gene by AfsR, using EMSA and DNase I footprinting assays as well as in vivo expression studies with ΔphoP, ΔafsR and ΔafsR-ΔphoP mutants. Both PhoP and AfsR proteins are able to bind to overlapping regions within the glnR promoter producing different effects. This work demonstrates a cross-talk of three different regulators of both primary and secondary metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号