共查询到20条相似文献,搜索用时 0 毫秒
1.
肌球蛋白轻链激酶活性片段对肌球蛋白轻链的非钙依赖性磷酸化作用特征 总被引:4,自引:1,他引:4
肌球蛋白轻链激酶 (MLCK)的活性片段 (MLCKF)能比完整的MLCK更有效地、以非钙依赖性的方式磷酸化肌球蛋白轻链 (MLC2 0 )。该片段是用胰蛋白酶水解MLCK ,再经DEAE 5 2柱层析分离而获得的 ,分子量约为 6 1kD。Western印迹已证实该MLCKF与完整的MLCK同源。MLCKF对肌球蛋白轻链的磷酸化作用及其作用特征通过甘油电泳及ScoinImage扫描软件检测 ,肌球蛋白ATP酶活性通过分光光度法检测。实验结果证实 ,MLCKF催化的MLC2 0 非钙依赖性磷酸化 (CIPM)比MLCK催化的CIPM效力高、耗能多 ,但比MLCK催化的MLC2 0 钙依赖性磷酸化 (CDPM)效力低、耗能少 ;MLCKF催化的CIPM与MLCK催化的CIPM均较MLCK催化的CDPM稳定 ,不易受温育温度、温育时间及离子浓度等变化的影响 ,且对MLCK抑制剂ML 9敏感性低。 相似文献
2.
3.
为了阐明非磷酸化肌球蛋白在平滑肌细胞迁移中的作用,研究探讨了非磷酸化肌球蛋白是否介导了血小板衍生生长因子(PDGF)诱导豚鼠脑基底动脉平滑肌细胞(GbaSM-4)的迁移。研究结果显示,20ng/ml以下剂量的PDGF可诱导GbaSM-4细胞发生迁移,此时肌球蛋白轻链(MLC20)磷酸化水平无变化。该迁移作用可被肌球蛋白特异性抑制剂blebbistatin所拮抗。应用RNA干扰技术抑制肌球蛋白轻链激酶表达,经免疫印迹检测经果显示,MLC20的磷酸化水平发生了显著下降;但对PDGF诱导的迁移作用无影响;在RNA干扰后blebbistatin也可抑制其迁移作用。体外ATP酶活性测定结果显示,blebbistatin对从平滑肌中提取的非磷酸化肌球蛋白的ATP酶活性有明显的抑制作用,其主要作用位点位于肌球蛋白头的头部S1。上述结果提示,非磷酸化的肌球蛋白参与了PDGF诱导的平滑肌细胞迁移。 相似文献
4.
目的:探寻MLCK的非激酶活性区域对MLCK活性的影响,进一步阐明MLCK的非激酶活性在调节平滑肌收缩过程中的分子机制。方法:利用编码MLCK全长的pColdI表达载体对其ATP结合位点进行定点突变,获得无激酶活性的MLCK突变体;应用Glycerol—PAGE鉴定肌球蛋白磷酸化水平;应用孔雀绿方法检测重组MLCK对肌球蛋白ATP酶活性的影响。结果:MLCK/△ATP(突变型)失去磷酸化肌球蛋白轻链的激酶活性;重组MLCK(野生型)和MLCK/AATP(突变型)均可以在非钙条件下激活非磷酸化肌球蛋白Mg2+-ATP酶活性,抑制磷酸化肌球蛋白的Mg2+.ATP酶活性,而且激活与抑制作用均随着MLCK浓度的增加而增大,但二者对肌球蛋白的ATP酶活性的作用没有显著差异(P〉0.05)。结论:平滑肌肌球蛋白轻链激酶及ATP结合位点突变体具有激活非磷酸化肌球蛋白ATP酶活性的作用。 相似文献
5.
6.
鸡平滑肌肌球蛋白轻链激酶在NIH 3T3细胞中的表达 总被引:2,自引:0,他引:2
肌球蛋白轻链激酶(MLCK)在调节平骨肌细胞收缩过程中具有十分重要的作用。本言语通过将MLCKcDNA插到质粒pBKrsv中构建pBKrsv-MLCK,并转染至NIH3T3细胞中,DNA-PCR、RT-PCR和Western blot分析表达转染细胞可表达MLCK。活生分析表明所表达的MLCK具有生物学活性。为进一步研究MLCK在信号传导,调节平骨肌收缩等作用奠定了基础。 相似文献
7.
The temporal relationship between Ca2+-induced contraction and phosphorylation of 20 kDa myosin light chain (MLC) during a step increase in Ca2+ was investigated using permeabilized phasic smooth muscle from rabbit portal vein and guinea-pig ileum at 25°C. We describe here a Ca2+-induced Ca2+ desensitization phenomenon in which a transient rise in MLC phosphorylation is followed by a transient rise in contractile force. During and after the peak contraction, the force to phosphorylation ratio remained constant. Further treatment with cytochalasin D, an actin fragmenting agent, did not affect the transient increase in phosphorylation, but blocked force development. Together, these results indicate that the transient phosphorylation causes the transient contraction and that neither inhomogeneous contractility nor reduced thin filament integrity effects the transient phosphorylation. Lastly, we show that known inhibitors to MLC kinase kinases and to a Ca2+-dependent protein phosphatase did not eliminate the desensitized contractile force. This study suggests that the Ca2+-induced Ca2+ desensitization phenomenon in phasic smooth muscle does not result from any of the known intrinsic mechanisms involved with other aspects of smooth muscle contractility. 相似文献
8.
Regulation of the Actin-Activated Mg-ATPase of Brain Myosin via Phosphorylation by the Brain Ca2+ , Calmodulin-Dependent Protein Kinases 总被引:2,自引:0,他引:2
Etsuro Tanaka Kohji Fukunaga Hideyuki Yamamoto Takafumi Iwasa Eishichi Miyamoto 《Journal of neurochemistry》1986,47(1):254-262
We have previously isolated two Ca2+, calmodulin-dependent protein kinases with molecular weights of 120,000 (120K enzyme) and 640,000 (640K enzyme), respectively, by gel filtration analysis from rat brain. Chicken gizzard myosin light-chain kinase and the 120K enzyme phosphorylated two light chains of brain myosin, whereas the 640K enzyme phosphorylated both the two light chains and the heavy chain. The phosphopeptides of the light chains digested by Staphylococcus aureus V8 protease were similar among chicken gizzard myosin light-chain kinase, the 120K enzyme, and the 640K enzyme. Only the seryl residue in the light chains and the heavy chain was phosphorylated by the enzymes. The phosphorylation of brain myosin by any of these enzymes led to an increase in actin-activated Mg-ATPase activity. The results suggest that brain myosin is regulated by brain Ca2+, calmodulin-dependent protein kinases in a similar but distinct mechanism in comparison with that of smooth muscle myosin. 相似文献
9.
The kinetics of myosin regulatory light chain (MLC) phosphorylation by recombinant AMP-activated protein kinase (AMPK) were compared with commercial AMPK from rat liver and smooth muscle myosin light chain kinase (smMLCK). With identical amounts of activity units, initial rates of phosphorylation of MLC were at least 100-fold less with recombinant AMPK compared to smMLCK, whereas with rat liver AMPK significant phosphorylation was seen. In Madin-Darby Canine Kidney cells, AMPK activation led to an increase in MLC phosphorylation, which was decreased by a Rho kinase inhibitor without affecting AMPK activation. Therefore, MLC phosphorylation during energy deprivation does not result from direct phosphorylation by AMPK.
Structured summary
- MINT-6800264: smMLCK (uniprotkb:P11799) phosphorylates (MI:0217) MLC (uniprotkb:P08590) by protein kinase assay (MI:0424)
- MINT-6800252: AMPK (uniprotkb:Q13131) phosphorylates (MI:0217) ACC2 (uniprotkb:000763) by protein kinase assay (MI:0424)
10.
A. V. Chibalin O. D. Lopina S. P. Petukhov L. A. Vasilets 《Journal of bioenergetics and biomembranes》1993,25(1):61-66
Ca,phospholipid-dependent (PKC) andcAMP-dependent (PKA) protein kinases phosphorylate the -subunit of the Na,K-ATPase from duck salt gland with the incorporation of 0.3 and 0.5 mol32P/mol of -subunit, respectively. PKA (in contrast to PKC) phosphorylates the -subunit only in the presence of detergents. Limited tryptic digestion of the Na,K-ATPase phosphorylated by PKC demonstrates that32P is incorporated into the N-terminal 41-kDa fragment of the -subunit. Selective chymotrypsin cleavage of phosphorylated enzyme yields a 35-kDa radioactive fragment derived from the central region of the -subunit molecule. These findings suggest that PKC phosphorylates the -subunit of the Na,K-ATPase within the region restricted by C3 and T1 cleavage sites. 相似文献
11.
《Cell communication & adhesion》2013,20(2):125-138
In the present study, we have examined how modulation of protein kinase C (PKC) activity affected desmosome organization in HeLa cells. Immunofluorescence and electron microscopy showed that PKC activation upon short exposure to 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in a reduction of intercellular contacts, splitting of desmosomes and dislocation of desmosomal components from the cell periphery towards the cytoplasm. As determined by immunoblot analysis of Triton X-100-soluble and -insoluble pools of proteins, these morphological changes were not correlated with modifications in the extractability of both desmoglein and plakoglobin, but involved almost complete solubilization of the desmosomal plaque protein, desmoplakin. Immunoprecipitation experiments and immunoblotting with anti-phosphoserine, anti-phosphothreonine and anti-phosphotyrosine antibodies revealed that desmoplakin was mainly phosphorylated on serine and tyrosine residues in both treated and untreated cells. While phosphotyrosine content was not affected by PKC activation, phosphorylation on serine residues was increased by about two-fold. This enhanced serine phosphorylation coincided with the increase in the protein solubility, suggesting that phosphorylation of desmoplakin may be a mechanism by which PKC mediates desmosome disassembly. Consistent with the loss of PKC activity, we also showed that down-modulation of the kinase (in response to prolonged TPA treatment) or its specific inhibition (by GF109203X) had opposite effects and increased desmosome formation. Taken together, these results clearly demonstrate an important role for PKC in the regulation of desmosomal junctions in HeLa cells, and identify serine phosphorylation of desmoplakin as a crucial event in this pathway. 相似文献
12.
Sergey Doronin Fubao Lin Hsien-yu Wang Craig C. Malbon 《Protein expression and purification》2000,20(3):451
The ability of the cytoplasmic, full-length C-terminus of the β2-adrenergic receptor (BAC1) expressed in Escherichia coli to act as a functional domain and substrate for protein phosphorylation was tested. BAC1 was expressed at high-levels, purified, and examined in solution as a substrate for protein phosphorylation. The mobility of BAC1 on SDS–PAGE mimics that of the native receptor itself, displaying decreased mobility upon chemical reduction of disulfide bonds. Importantly, the C-terminal, cytoplasmic domain of the receptor expressed in E. coli was determined to be a substrate for phosphorylation by several candidate protein kinases known to regulate G-protein-linked receptors. Mapping was performed by proteolytic degradation and matrix-assisted laser desorption ionization, time-of-flight mass spectrometry. Purified BAC1 is phosphorylated readily by protein kinase A, the phosphorylation occurring within the predicted motif RRSSSK. The kinetic properties of the phosphorylation by protein kinase A displayed cooperative character. The activated insulin receptor tyrosine kinase, which phosphorylates the beta-adrenergic receptor in vivo, phosphorylates BAC1. The Y364 residue of BAC1 was predominantly phosphorylated by the insulin receptor kinase. GRK2 catalyzed modest phosphorylation of BAC1. Phosphorylation of the human analog of BAC1 in which Cys341 and Cys378 were mutated to minimize disulfide bonding constraints, displayed robust phosphorylation following thermal activation, suggesting under standard conditions that the population of BAC1 molecules capable of assuming the “activated” conformer required by GRKs is low. BAC1 was not a substrate for protein kinase C, suggesting that the canonical site in the second cytoplasmic loop of the intact receptor is preferred. The functional nature of BAC1 was tested additionally by expression of BAC1 protein in human epidermoid carcinoma A431 cells. BAC1 was found to act as a dominant-negative, blocking agonist-induced desensitization of the beta-adrenergic receptor when expressed in mammalian cells. Thus, the C-terminal, cytoplasmic tail of this G-protein-linked receptor expressed in E. coli acts as a functional domain, displaying fidelity with regard to protein kinase action in vivo and acting as a dominant-negative with respect to agonist-induced desensitization. 相似文献
13.
Vascular smooth muscle cell contractile state is the primary determinant of blood vessel tone. Vascular smooth muscle cell contractility is directly related to the phosphorylation of myosin light chains (MLCs), which in turn is tightly regulated by the opposing activities of myosin light chain kinase (MLCK) and myosin phosphatase. Myosin phosphatase is the principal enzyme that dephosphorylates MLCs leading to relaxation. Myosin phosphatase is regulated by both vasoconstrictors that inhibit its activity to cause MLC phosphorylation and contraction, and vasodilators that activate its activity to cause MLC dephosphorylation and relaxation. The RhoA/ROCK pathway is activated by vasoconstrictors to inhibit myosin phosphatase activity. The mechanism by which RhoA and ROCK are localized to and interact with myosin light chain phosphatase (MLCP) is not well understood. We recently found a new member of the myosin phosphatase complex, myosin phosphatase-rho interacting protein, that directly binds to both RhoA and the myosin-binding subunit of myosin phosphatase in vitro, and targets myosin phosphatase to the actinomyosin contractile filament in smooth muscle cells. Because myosin phosphatase-rho interacting protein binds both RhoA and MLCP, we investigated whether myosin phosphatase-rho interacting protein was required for RhoA/ROCK-mediated myosin phosphatase regulation. Myosin phosphatase-rho interacting protein silencing prevented LPA-mediated myosin-binding subunit phosphorylation, and inhibition of myosin phosphatase activity. Myosin phosphatase-rho interacting protein did not regulate the activation of RhoA or ROCK in vascular smooth muscle cells. Silencing of M-RIP lead to loss of stress fiber-associated RhoA, suggesting that myosin phosphatase-rho interacting protein is a scaffold linking RhoA to regulate myosin phosphatase at the stress fiber. 相似文献
14.
Vincent Panneton Apurba Nath Fadi Sader Nathalie Delaunay Ariane Pelletier Dominic Maier Karen Oh David R. Hipfner 《The Journal of biological chemistry》2015,290(34):20960-20971
Protein kinases carry out important functions in cells both by phosphorylating substrates and by means of regulated non-catalytic activities. Such non-catalytic functions have been ascribed to many kinases, including some members of the Ste20 family. The Drosophila Ste20 kinase Slik phosphorylates and activates Moesin in developing epithelial tissues to promote epithelial tissue integrity. It also functions non-catalytically to promote epithelial cell proliferation and tissue growth. We carried out a structure-function analysis to determine how these two distinct activities of Slik are controlled. We find that the conserved C-terminal coiled-coil domain of Slik, which is necessary and sufficient for apical localization of the kinase in epithelial cells, is not required for Moesin phosphorylation but is critical for the growth-promoting function of Slik. Slik is auto- and trans-phosphorylated in vivo. Phosphorylation of at least two of three conserved sites in the activation segment is required for both efficient catalytic activity and non-catalytic signaling. Slik function is thus dependent upon proper localization of the kinase via the C-terminal coiled-coil domain and activation via activation segment phosphorylation, which enhances both phosphorylation of substrates like Moesin and engagement of effectors of its non-catalytic growth-promoting activity. 相似文献
15.
Katarzyna Kazmierczak Michelle Jones Olga M. Hernandez Danuta Szczesna-Cordary 《Journal of molecular biology》2009,387(3):706-103
To study the regulation of cardiac muscle contraction by the myosin essential light chain (ELC) and the physiological significance of its N-terminal extension, we generated transgenic (Tg) mice by partially replacing the endogenous mouse ventricular ELC with either the human ventricular ELC wild type (Tg-WT) or its 43-amino-acid N-terminal truncation mutant (Tg-Δ43) in the murine hearts. The mutant protein is similar in sequence to the short ELC variant present in skeletal muscle, and the ELC protein distribution in Tg-Δ43 ventricles resembles that of fast skeletal muscle. Cardiac muscle preparations from Tg-Δ43 mice demonstrate reduced force per cross-sectional area of muscle, which is likely caused by a reduced number of force-generating myosin cross-bridges and/or by decreased force per cross-bridge. As the mice grow older, the contractile force per cross-sectional area further decreases in Tg-Δ43 mice and the mutant hearts develop a phenotype of nonpathologic hypertrophy while still maintaining normal cardiac performance. The myocardium of older Tg-Δ43 mice also exhibits reduced myosin content. Our results suggest that the role of the N-terminal ELC extension is to maintain the integrity of myosin and to modulate force generation by decreasing myosin neck region compliance and promoting strong cross-bridge formation and/or by enhancing myosin attachment to actin. 相似文献
16.
Phosphorylation of smooth muscle actin by the catalytic subunit of the cAMP-dependent protein kinase 总被引:1,自引:0,他引:1
M P Walsh S Hinkins D J Hartshorne 《Biochemical and biophysical research communications》1981,102(1):149-157
Partially purified smooth muscle (chicken gizzard) actomyosin contains two major substrates of cAMP-dependent protein kinase: a protein of Mr = 130,000, identified as the calmodulin-dependent myosin light chain kinase, and a protein of Mr = 42,000. This latter protein was shown by a variety of electrophoretic procedures to be actin. Purified smooth muscle actin also was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. The rate of phosphorylation of smooth muscle actin was significantly enhanced by depolyjerization of actin. A maximum of 2.0 mol phosphate could be incorporated per mol G-actin. Skeletal muscle F-actin was not significantly phosphorylated by protein kinase; however, skeletal G-actin is a substrate for the protein kinase although its rate of phosphorylation was significantly slower than that of smooth muscle G-actin. 相似文献
17.
Abstract : We have shown previously that phosphate groups on the amino-terminal head domain region of the middle molecular mass subunit of neurofilament proteins (NF-M) are added by second messenger-dependent protein kinases. Here, we have identified Ser23 as a specific protein kinase A phosphorylation site on the native NF-M subunit and on two synthetic peptides, S1 (14RRVPTETRSSF24) and S2 (21RSSFSRVSGSPSSGFRSQSWS41), localized within the amino-terminal head domain region. Ser23 was identified as a phosphorylation site on the 32P-labeled α-chymotryptic peptide that carried >80% of the 32P-phosphates incorporated into the NF-M subunit by protein kinase A. The synthetic peptides S1 and S2 were phosphorylated 18 and two times more efficiently by protein kinase A than protein kinase C, respectively. Neither of the peptides was phosphorylated by casein kinase II. The sequence analyses of the chemically modified phosphorylated serine residues showed that Ser23 was the major site of phosphorylation for protein kinase A on both S1 and S2 peptides. Low levels of incorporation of 32P-phosphates into Ser22, Ser28, and Ser32 by protein kinase A were also observed. Protein kinase C incorporated 32P-phosphates into Ser22, Ser23, Ser25, Ser28, Ser32, and a threonine residue, but none of these sites could be assigned as a major site of phosphorylation. Analyses of the phosphorylated synthetic peptides by liquid chromatography-tandem mass spectrometry also showed that protein kinase A phosphorylated only one site on peptide S1 and that ions with up to four phosphates were detected on peptide S2. Analysis of the data from the tandem ion trap mass spectrometry by using the computer program PEPSEARCH did not unequivocally identify the specific sites of phosphorylation on these serine-rich peptides. Our data suggest that Ser23 is a major protein kinase A-specific phosphorylation site on the amino-terminal head region of the NF-M subunit. Phosphorylation of Ser23 on the NF-M subunit by protein kinase A may play a regulatory role in neurofilament assembly and/or the organization of neurofilaments in the axon. 相似文献
18.
Arginine vasopressin (AVP)-induced tyrosine phosphorylation was studied in a rat smooth muscle cell line, A-10, by western blotting, using a monoclonal antibody against phosphotyrosine. AVP stimulated the phosphorylation of several cellular proteins of molecular mass 60-130 kDa in a time- and dose-dependent manner. Phosphorylation was mediated largely by V(1)receptor subtype since it was inhibited by selective V(1)antagonist and was only partially elicited by the V(2)agonist, desmopressin. Heterotrimeric G-proteins seemed to be involved in the phosphorylation mechanism because fluoraluminates, an activator of heterotrimeric G-proteins (and thus an uncoupler of the receptor-G-protein interaction) inhibited the AVP-induced phosphorylation. The protein kinase C (PKC) inhibitors: staurosporine, H7 and GF109203X are able to block the AVP-stimulated phosphorylation. The last of these has been shown to be one of the most selective inhibitors of PKC. These results indicate that PKC is upstream of the phosphorylation, a motion which is supported by the fact that the AVP-stimulated phosphorylation was downregulated by phorbol esters. 相似文献
19.
Gao Y Kawano K Yoshiyama S Kawamichi H Wang X Nakamura A Kohama K 《Biochemical and biophysical research communications》2003,305(1):16-21
Myosin light chain kinase (MLCK) is a multifunctional regulatory protein of smooth muscle contraction [IUBMB Life 51 (2001) 337, for review]. The well-established mode for its regulation is to phosphorylate the 20 kDa myosin light chain (MLC 20) to activate myosin ATPase activity. MLCK exhibits myosin-binding activity in addition to this kinase activity. The myosin-binding activity also stimulates myosin ATPase activity without phosphorylating MLC 20 [Proc. Natl. Acad. Sci. USA 96 (1999) 6666]. We engineered an MLCK fragment containing the myosin-binding domain but devoid of a catalytic domain to explore how myosin is stimulated by this non-kinase pathway. The recombinant fragment thus obtained stimulated myosin ATPase activity by V(max)=5.53+/-0.63-fold with K(m)=4.22+/-0.58 microM (n=4). Similar stimulation figures were obtained by measuring the ATPase activity of HMM and S1. Binding of the fragment to both HMM and S1 was also verified, indicating that the fragment exerts stimulation through the myosin heads. Since S1 is in an active form regardless of the phosphorylated state of MLC 20, we conclude that the non-kinase stimulation is independent of the phosphorylating mode for activation of myosin. 相似文献
20.
Brittney McInnis Stevan Marcus 《Biochemical and biophysical research communications》2010,399(4):665-669
In the fission yeast, Schizosaccharomyces pombe, cyclic AMP (cAMP)-dependent protein kinase (PKA) is not essential for viability under normal culturing conditions, making this organism attractive for investigating mechanisms of PKA regulation. Here we show that S. pombe cells carrying a deletion in the adenylate cyclase gene, cyr1, express markedly higher levels of the PKA catalytic subunit, Pka1, than wild type cells. Significantly, in cyr1Δ cells, but not wild type cells, a substantial proportion of Pka1 protein is hyperphosphorylated. Pka1 hyperphosphorylation is strongly induced in cyr1Δ cells, and to varying degrees in wild type cells, by both glucose starvation and stationary phase stresses, which are associated with reduced cAMP-dependent PKA activity, and by KCl stress, the cellular adaptation to which is dependent on PKA activity. Interestingly, hyperphosphorylation of Pka1 was not detected in either cyr1+ or cyr1Δ S. pombe strains carrying a deletion in the PKA regulatory subunit gene, cgs1, under any of the tested conditions. Our results demonstrate the existence of a cAMP-independent mechanism of PKA catalytic subunit phosphorylation, which we propose could serve as a mechanism for inducing or maintaining specific PKA functions under conditions in which its cAMP-dependent activity is downregulated. 相似文献