共查询到20条相似文献,搜索用时 15 毫秒
1.
Tong Q Gamper N Medina JL Shapiro MS Stockand JD 《The Journal of biological chemistry》2004,279(21):22654-22663
The phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) is accepted to be a direct modulator of ion channel activity. The products of phosphoinositide 3-OH kinase (PI3K), PtdIns(3,4)P(2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), in contrast, are not. We report here activation of the epithelial Na(+) channel (ENaC) reconstituted in Chinese hamster ovary cells by PI3K. Insulin-like growth factor-I also activated reconstituted ENaC and increased Na(+) reabsorption across renal A6 epithelial cell monolayers via PI3K. Neither IGF-I nor PI3K affected the levels of ENaC in the plasma membrane. The effects of PI3K and IGF-I on ENaC activity paralleled changes in the plasma membrane levels of the PI3K product phospholipids, PtdIns(3,4)P(2)/PtdIns(3,4,5)P(3), as measured by evanescent field fluorescence microscopy. Both PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) activated ENaC in excised patches. Activation of ENaC by PI3K and its phospholipid products corresponded to changes in channel open probability. We conclude that PI3K directly modulates ENaC activity via PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). This represents a novel transduction pathway whereby growth factors, such as IGF-I, rapidly modulate target proteins independent of signaling elicited by kinases downstream of PI3K. 相似文献
2.
Tanaka K Adachi H Konishi H Iwamatsu A Ohkawa K Shirai T Nagata S Kikkawa U Fukui Y 《Bioscience, biotechnology, and biochemistry》1999,63(2):368-372
We have searched for phosphatidylinositol (PI)-3,4,5-trisphosphate (PIP3) binding proteins in Dictyostelium discoideum using beads bearing a PIP3 analogue, PIP3-APB. One of the binding proteins with a molecular mass of 55 kDa was purified and its amino acid sequence was partially analyzed. Database searches showed that the analyzed sequence was identical to that of protein kinase B (PKB) of D. discoideum. The specific activity of D. discoideum PKB, when expressed together with constitutively active PI-3 kinase in mammalian cells, was elevated by about three-fold, suggesting that PKB could also act downstream of PI-3 kinase in Dictyostelium cells. 相似文献
3.
Sason H Milgrom M Weiss AM Melamed-Book N Balla T Grinstein S Backert S Rosenshine I Aroeti B 《Molecular biology of the cell》2009,20(1):544-555
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] are phosphoinositides (PIs) present in small amounts in the inner leaflet of the plasma membrane (PM) lipid bilayer of host target cells. They are thought to modulate the activity of proteins involved in enteropathogenic Escherichia coli (EPEC) infection. However, the role of PI(4,5)P2 and PI(3,4,5)P3 in EPEC pathogenesis remains obscure. Here we show that EPEC induces a transient PI(4,5)P2 accumulation at bacterial infection sites. Simultaneous actin accumulation, likely involved in the construction of the actin-rich pedestal, is also observed at these sites. Acute PI(4,5)P2 depletion partially diminishes EPEC adherence to the cell surface and actin pedestal formation. These findings are consistent with a bimodal role, whereby PI(4,5)P2 contributes to EPEC association with the cell surface and to the maximal induction of actin pedestals. Finally, we show that EPEC induces PI(3,4,5)P3 clustering at bacterial infection sites, in a translocated intimin receptor (Tir)-dependent manner. Tir phosphorylated on tyrosine 454, but not on tyrosine 474, forms complexes with an active phosphatidylinositol 3-kinase (PI3K), suggesting that PI3K recruited by Tir prompts the production of PI(3,4,5)P3 beneath EPEC attachment sites. The functional significance of this event may be related to the ability of EPEC to modulate cell death and innate immunity. 相似文献
4.
The epithelial Na+ channel (ENaC) belongs to the structurally conserved ENaC/Degenerin superfamily. These channels are blocked by amiloride and its analogues. Several amino acid residues have been implicated in amiloride binding. Primary among these are alphaSer-583, betaGly-525, and gammaGly-542, which are present at a homologous site within the three subunits of ENaC. Mutations of the beta and gamma glycines greatly weakened amiloride block, but, surprisingly, mutation of the serine of the alpha subunit resulted in moderate (<5-fold) weakening of amiloride K(i). We investigated the role of alphaSer-583 in amiloride binding by systematically mutating alphaSer-583 and analyzing the mutant channels with two-electrode voltage clamp. We observed that most mutations had moderate effects on amiloride block, whereas those introducing rings showed dramatic effects on amiloride block. In addition, mutations introducing a beta-methyl group at this site altered the electric field of ENaC, affecting both amiloride binding and the voltage dependence of channel gating. We also found that the His mutation, in addition to greatly weakening amiloride binding, appends a voltage-sensitive gate within the pore of ENaC at low pH. Because diverse residues at alpha583, such as Asn, Gln, Ser, Gly, Thr, and Ala, have similar amiloride binding affinities, our results suggest that the wild type Ser side chain is not important for amiloride binding. However, given that some alphaSer-583 mutations affect the electrical properties of the channel whereas those introducing rings greatly weaken amiloride block, we conclude that amiloride binds at or near this site and that alphaSer-583 may have a role in ion permeation through ENaC. 相似文献
5.
6.
The hypothesis that the intracellularNa+ concentration([Na+]i)is a regulator of the epithelialNa+ channel (ENaC) was tested withthe Xenopus oocyte expression systemby utilizing a dual-electrode voltage clamp.[Na+]iaveraged 48.1 ± 2.2 meq (n = 27)and was estimated from the amiloride-sensitive reversal potential.[Na+]iwas increased by direct injection of 27.6 nl of 0.25 or 0.5 MNa2SO4.Within minutes of injection,[Na+]istabilized and remained elevated at 97.8 ± 6.5 meq(n = 9) and 64.9 ± 4.4 (n = 5) meq 30 min after theinitial injection of 0.5 and 0.25 MNa2SO4,respectively. This increase of[Na+]icaused a biphasic inhibition of ENaC currents. In oocytes injected with0.5 MNa2SO4(n = 9), a rapid decrease of inwardamiloride-sensitive slope conductance(gNa) to 0.681 ± 0.030 of control within the first 3 min and a secondary, slowerdecrease to 0.304 ± 0.043 of control at 30 min were observed.Similar but smaller inhibitions were also observed with the injectionof 0.25 MNa2SO4.Injection of isotonicK2SO4(70 mM) or isotonicK2SO4made hypertonic with sucrose (70 mMK2SO4-1.2M sucrose) was without effect. Injection of a 0.5 M concentration ofeitherK2SO4,N-methyl-D-glucamine (NMDG) sulfate, or 0.75 M NMDG gluconate resulted in a much smaller initial inhibition (<14%) and little or no secondary decrease. Thusincreases of[Na+]ihave multiple specific inhibitory effects on ENaC that can betemporally separated into a rapid phase that was complete within 2-3 min and a delayed slow phase that was observed between 5 and 30 min. 相似文献
7.
In this review we have described data supporting the conclusion that PtdIns(3,4,5)P3 may regulate the activation state of ARF6 through an ability to recruit the ARF exchange factors ARNO, GRP1 and cytohesin-1 to the plasma membrane. The downstream consequences of such a PtdIns(3,4,5)P3-dependent activation of ARF6 are presently unclear. However, given the role of ARF6 in fusion events at the plasma membrane, we have proposed that PtdIns(3,4,5)P3 may regulate vesicle trafficking at this membrane through its ability to activate ARF6. This is an attractive possibility given the number of PtdIns(3,4,5)P3-dependent pathways which involve some aspect of vesicle trafficking at the plasma membrane, for instance glucose transport, membrane ruffling and cell movement. 相似文献
8.
Tensin2 reduces intracellular phosphatidylinositol 3,4,5-trisphosphate levels at the plasma membrane
Sassan Hafizi Anna Gustafsson Cecilia Oslakovic Anders Tengholm Bruno O. Villoutreix 《Biochemical and biophysical research communications》2010,399(3):396-1844
Tensins are proposed cytoskeleton-regulating proteins. However, Tensin2 additionally inhibits Akt signalling and cell survival. Structural modelling of the Tensin2 phosphatase (PTPase) domain revealed an active site-like pocket receptive towards phosphoinositides. Tensin2-expressing HEK293 cells displayed negligible levels of plasma membrane phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) under confocal microscopy. However, mock-transfected cells, and Tensin2 cells harbouring a putative phosphatase-inactivating mutation, exhibited significant PtdIns(3,4,5)P3 levels, which decreased upon phosphatidylinositol 3-kinase inhibition with LY294002. In contrast, wtTensin3, mock and mutant cells were identical in membrane PtdIns(3,4,5)P3 and Akt phosphorylation. In vitro lipid PTPase activity was however undetectable in isolated recombinant PTPase domains of both Tensins, indicating a possible loss of structural stability when expressed in isolation. In summary, we provide evidence that Tensin2, in addition to regulating cytoskeletal dynamics, influences phosphoinositide-Akt signalling through its PTPase domain. 相似文献
9.
Regulation of phosphatidylinositol 3-kinase activity and phosphatidylinositol 3,4,5-trisphosphate accumulation by neutrophil priming agents 总被引:4,自引:0,他引:4
Cadwallader KA Condliffe AM McGregor A Walker TR White JF Stephens LR Chilvers ER 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(6):3336-3344
Neutrophil priming by agents such as TNF-alpha and GM-CSF causes a dramatic increase in the response of these cells to secretagogue agonists and affects the capacity of neutrophils to induce tissue injury. In view of the central role of phosphatidylinositol 3-kinase (PI3-kinase) in regulating NADPH oxidase activity we examined the influence of priming agents on agonist-stimulated phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) accumulation in human neutrophils. Pretreatment of neutrophils with TNF-alpha or GM-CSF, while not influencing fMLP-stimulated PtdIns(3,4,5)P3 accumulation at 5 s, caused a major increase in PtdIns(3,4,5)P3 at later times (10-60 s), which paralleled the augmented superoxide anion (O2-) response. The intimate relationship between PtdIns(3,4,5)P3 accumulation and O2- release was confirmed using platelet-activating factor, which caused full but transient priming of both responses. Likewise, LY294002, a PI3-kinase inhibitor, and genistein, a tyrosine kinase inhibitor, caused parallel inhibition of O2- generation and PtdIns(3,4,5)P3 accumulation; in contrast, radicicol, which inhibits receptor-mediated activation of p85 PI3-kinase, had no effect on either response. Despite major increases in PI3-kinase activity observed in p85 and anti-phosphotyrosine immunoprecipitates in growth factor-stimulated smooth muscle cells, no such increase was observed in primed/stimulated neutrophils. In contrast, both fMLP and TNF-alpha alone caused a 3-fold increase in PI3-kinase activity in p110gamma PI3-kinase immunoprecipitates. p21(ras) activation (an upstream regulator of PI3-kinase) was unaffected by priming. These data demonstrate that timing and magnitude of PtdIns(3,4,5)P3 accumulation in neutrophils correlate closely with O2- generation, that PI3-kinase-gamma is responsible for the enhanced PtdIns(3,4,5)P3 production seen in primed cells, and that factors other than activation of p21(ras) underlie this response. 相似文献
10.
《The Journal of general physiology》1996,108(1):49-65
We examined the regulation of a cloned epithelial Na+ channel (alpha beta gamma-rENaC) by protein kinase A (PKA) and protein kinase C (PKC). Experiments were performed in Xenopus oocytes and in planar lipid bilayers. At a holding potential of -100 mV, amiloride-sensitive current averaged -1,279 +/- 111 nA (n = 7) in alpha beta gamma-rENaC- expressing oocytes. Currents in water-injected oocytes were essentially unresponsive to 10 microM amiloride. A 1-h stimulation of PKC with 100 nM of PMA inhibited whole-cell currents in Xenopus oocytes to 17.1 +/- 1.8, and 22.1 +/- 2.6% of control (n = 7), at holding potentials of - 100 and +40 mV, respectively. Direct injection of purified PKC resulted in similar inhibition to that observed with PMA. Additionally, the inactive phorbol ester, phorbol-12-myristate-13-acetate, 4-O-methyl, was without effect on alpha beta gamma-rENaC currents. Pretreatment with the microtubule inhibitor colchicine (100 microM) did not modify the inhibitory effect of PMA; however, pretreatment with 20 microM cytochalasin B decreased the inhibitory action of PMA to < 20% of that previously observed. In vitro-synthesized alpha beta gamma-rENaC formed an amiloride-sensitive Na(+)-selective channel when incorporated into planar lipid bilayers. Addition of PKC, diacyl-glycerol, and Mg-ATP to the side opposite that which amiloride blocked, decreased the channel''s open probability (Po) from 0.44 +/- 0.06 to 0.13 +/- 0.03 (n = 9). To study the effects of PKA on alpha beta gamma-rENaC expressed in Xenopus oocytes, cAMP levels were elevated with 10 microM forskolin and 1 mM isobutyl-methyl-xanthine. This cAMP-elevating cocktail did not cause any stimulation of alpha beta gamma-rENaC currents in either the inward or outward directions. This lack of activation was also observed in oocytes preinhibited with PMA and in oocytes pretreated with cytochalasin B and PMA. Neither alpha-rENaC nor alpha beta gamma-rENaC incorporated into planar lipid bilayers could be activated with PKA and Mg-ATP added to either side of the membrane, as Po remained at 0.63 +/- 0.06 (n = 7) and 0.45 +/- 0.05 (n = 9), respectively. We conclude that: alpha beta gamma-rENaC is inhibited by PKC, and that alpha beta gamma- rENaC is not activated by PKA. 相似文献
11.
12.
13.
14.
Hendron E Patel P Hausenfluke M Gamper N Shapiro MS Booth RE Stockand JD 《The Journal of biological chemistry》2002,277(37):34480-34488
The activity of membrane proteins is controlled, in part, by protein-protein interactions localized to the plasma membrane. In the current study, domains within the epithelial Na(+) channel (ENaC) reactive at the plasma membrane were identified using a novel yeast one-hybrid screen. The cytosolic N terminus of alphaENaC and the cytosolic C termini of alpha-, beta-, and gammaENaC contained domains reactive at the plasma membrane. Fluorescent micrographs of epithelial cells overexpressing fusion proteins of enhanced green fluorescent protein and mENaC cytosolic domains were consistent with those in yeast. A novel membrane reactive domain within the cytosolic C terminus of gamma-mENaC was localized to the 17 amino acids between residues Thr(584)-Pro(600). Two overlapping internalization signals within the C terminus of gamma-mENaC, a WW-binding domain (PY motif) and a tyrosine-based endocytic signal, were additive with respect to decreasing complementation and expression levels of hybrid proteins. Decreases in expression levels of hybrid proteins containing the PY and endocytic motif were reversed with latrunculin A, an inhibitor of endosomal movement. Decreases in complementation and expression levels of hybrid proteins mediated by the combined PY and overlapping endocytic motif proceeded in the absence of established ubiquitination sites within ENaC. In addition, the endocytic motif was active in the absence of the PY motif, demonstrating that these two domains, while possibly interacting, also have discrete functions. The novel domains within the cytosolic N terminus of alphaENaC and the C termini of alpha-, beta-, and gammaENaC identified here are likely to be involved in protein-protein and/or protein-lipid interactions localized to the plasma membrane. We hypothesize that these newly identified domains play a role in modulating ENaC activity. 相似文献
15.
A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. 总被引:12,自引:6,他引:12 下载免费PDF全文
Biophysical evidence has placed the binding site for the naturally occurring marine toxins tetrodotoxin (TTX) and saxitoxin (STX) in the external mouth of the Na+ channel ion permeation pathway. We developed a molecular model of the binding pocket for TTX and STX, composed of antiparallel beta-hairpins formed from peptide segments of the four S5-S6 loops of the voltage-gated Na+ channel. For TTX the guanidinium moiety formed salt bridges with three carboxyls, while two toxin hydroxyls (C9-OH and C10-OH) interacted with a fourth carboxyl on repeats I and II. This alignment also resulted in a hydrophobic interaction with an aromatic ring of phenylalanine or tyrosine residues for the brainII and skeletal Na+ channel isoforms, but not with the cysteine found in the cardiac isoform. In comparison to TTX, there was an additional interaction site for STX through its second guanidinium group with a carboxyl on repeat IV. This model satisfactorily reproduced the effects of mutations in the S5-S6 regions and the differences in affinity by various toxin analogs. However, this model differed in important ways from previously published models for the outer vestibule and the selectivity region of the Na+ channel pore. Removal of the toxins from the pocket formed by the four beta-hairpins revealed a structure resembling a funnel that terminated in a narrowed region suitable as a candidate for the selectivity filter of the channel. This region contained two carboxyls (Asp384 and Glu942) that substituted for molecules of water from the hydrated Na+ ion. Simulation of mutations in this region that have produced Ca2+ permeation of the Na+ channel created a site with three carboxyls (Asp384, Glu942, and Glu1714) in proximity. 相似文献
16.
Cl- interference with the epithelial Na+ channel ENaC 总被引:2,自引:0,他引:2
Bachhuber T König J Voelcker T Mürle B Schreiber R Kunzelmann K 《The Journal of biological chemistry》2005,280(36):31587-31594
The cystic fibrosis transmembrane conductance regulator (CFTR) is a protein kinase A and ATP-regulated Cl- channel that also controls the activity of other membrane transport proteins, such as the epithelial Na+ channel ENaC. Previous studies demonstrated that cytosolic domains of ENaC are critical for down-regulation of ENaC by CFTR, whereas others suggested a role of cytosolic Cl- ions. We therefore examined in detail the anion dependence of ENaC and the role of its cytosolic domains for the inhibition by CFTR and the Cl- channel CLC-0. Coexpression of rat ENaC with human CFTR or the human Cl- channel CLC-0 caused inhibition of amiloride-sensitive Na+ currents after cAMP-dependent stimulation and in the presence of a 100 mM bath Cl- concentration. After activation of CFTR by 3-isobutyl-1-methylxanthine and forskolin or expression of CLC-0, the intracellular Cl- concentration was increased in Xenopus oocytes in the presence of a high bath Cl- concentration, which inhibited ENaC without changing surface expression of alpha beta gammaENaC. In contrast, a 5 mM bath Cl- concentration reduced the cytosolic Cl- concentration and enhanced ENaC activity. ENaC was also inhibited by injection of Cl- into oocytes and in inside/out macropatches by exposure to high cytosolic Cl- concentrations. The effect of Cl- was mimicked by Br-, Br-, NO3(-), and I-. Inhibition by Cl- was reduced in trimeric channels with a truncated COOH terminus of betaENaC and gammaENaC, and it was no longer detected in dimeric alpha deltaCbeta ENaC channels. Deletion of the NH2 terminus of alpha-, beta-, or gammaENaC, mutations in the NH2-terminal phosphatidylinositol bisphosphate-binding domain of betaENaC and gammaEnaC, and activation of phospholipase C, all reduced ENaC activity but allowed for Cl(-)-dependent inhibition of the remaining ENaC current. The results confirm a role of the carboxyl terminus of betaENaC for Cl(-)-dependent inhibition of the Na+ channel, which, however, may only be part of a complex regulation of ENaC by CFTR. 相似文献
17.
The epithelial Na+ channel (ENaC) is the apical entry pathway for Na+ in many Na+-reabsorbing epithelia. ENaC is a heterotetrameric protein composed of homologous alpha, beta, and gamma subunits. Mutations in ENaC cause severe hypertension or salt wasting in humans; and consequently, ENaC activity is tightly controlled. According to the concept of Na+ self-inhibition, the extracellular Na+ ion itself can reduce ENaC activity. The molecular basis for Na+ self-inhibition is unknown. Here, we describe cloning of a new ENaC subunit from Xenopus laevis (epsilonxENaC). epsilonxENaC can replace alphaxENaC and formed functional, highly selective, amiloride-sensitive Na+ channels when coexpressed with betaxENaC and gammaxENaC. Channels containing epsilonxENaC showed strong inhibition by extracellular Na+. This Na+ self-inhibition was significantly slower than for alphaxENaC-containing channels. Using site-directed mutagenesis, we show that the proximal part of the large extracellular domain controls the speed of self-inhibition. This suggests that this region is involved in conformational changes during Na+ self-inhibition. 相似文献
18.
A mu-conotoxin-insensitive Na+ channel mutant: possible localization of a binding site at the outer vestibule. 总被引:2,自引:1,他引:2 下载免费PDF全文
We describe a mutation in the outer vestibule region of the adult rat skeletal muscle voltage-gated Na+ channel (microliter) that dramatically alters binding of mu-conotoxin GIIIA (mu-CTX). Mutating the glutamate at position 758 to glutamine (E758Q) decreased mu-CTX binding affinity by 48-fold. Because the mutant channel showed both low tetrodotoxin (TTX) and mu-CTX affinities, these results suggested that mu-CTX bound to the outer vestibule and implied that the TTX- and mu-CTX-binding sites partially overlapped in this region. The mutation decreased the association rate of the toxin with little effect on the dissociation rate, suggesting that Glu-758 could be involved in electrostatic guidance of mu-CTX to its binding site. We propose a mechanism for mu-CTX block of the Na+ channel based on the analogy with saxitoxin (STX) and TTX, on the requirement of mu-CTX to have an arginine in position 13 to occlude the channel, and on this experimental result suggesting that mu-CTX binds in the outer vestibule. In this model, the guanidinium group of Arg-13 of the toxin interacts with two carboxyls known to be important for selectivity (Asp-400 and Glu-755), with the association rate of the toxin increased by interaction with Glu-758 of the channel. 相似文献
19.
Actin filaments regulate epithelial Na+ channel activity 总被引:14,自引:0,他引:14
Cantiello H. F.; Stow J. L.; Prat A. G.; Ausiello D. A. 《American journal of physiology. Cell physiology》1991,261(5):C882