首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subcellular distribution of the 43,000-D protein (43 kD or v1) and of some major cytoskeletal proteins was investigated in Torpedo marmorata electrocytes by immunocytochemical methods (immunofluorescence and immunogold at the electron microscope level) on frozen-fixed sections and homogenates of electric tissue. A monoclonal antibody directed against the 43-kD protein (Nghiêm, H. O., J. Cartaud, C. Dubreuil, C. Kordeli, G. Buttin, and J. P. Changeux, 1983, Proc. Natl. Acad. Sci. USA, 80:6403-6407), selectively labeled the postsynaptic membrane on its cytoplasmic face. Staining by anti-actin and anti-desmin antibodies appeared evenly distributed within the cytoplasm: anti-desmin antibodies being associated with the network of intermediate-sized filaments that spans the electrocyte, and anti-actin antibodies making scattered clusters throughout the cytoplasm without preferential labeling of the postsynaptic membrane. On the other hand, a dense coating by anti-actin antibodies became apparent on the postsynaptic membrane in homogenates of electric tissue pointing to the possible artifactual redistribution of a soluble cytoplasmic actin pool. Anti-fodrin and anti-ankyrin antibodies selectively labeled the non-innervated membrane of the cell. F actin was also detected in this membrane. Filamin and vinculin, two actin-binding proteins recently localized at the rat neuromuscular junction (Bloch, R. J., and Z. W. Hall, 1983, J. Cell Biol., 97:217-223), were detected in the electrocyte by the immunoblot technique but not by immunocytochemistry. The data are interpreted in terms of the functional polarity of the electrocyte and of the selective interaction of the cytoskeleton with the innervated and non-innervated domains of the plasma membrane.  相似文献   

2.
Abstract

We have used the electrocyte of Torpedo electric organ as a model system for the study of AchR stabilization in the post-synaptic membrane. Attention was focused on membrane cytoskeleton interactions in particular on a peripheral protein of 43 KD that is believed to participate in AchR immobilization.

Using immunocytochemical methods, we have shown that the cortical skeleton in Torpedo electrocyte displays a local differentiation proper for each specialized domain of the plasma membrane. In the postsynaptic membrane, characterized by an accumulation and a geometrical organization of the receptors in the plane of the membrane, the 43 KD protein participates in a submembraneous coating or “postsynaptic densities” that strictly codistribute with the AchR. The 43 KD protein might also account for the anchoring of intermediate-sized filaments.

The organization of the postsynaptic domain appears readily different from that of the non-innervated one where the membrane folds are maintained by a cortical meshwork of cytoskeletal proteins such as ankyrin, spectrin and oligomeric actin.

In conclusion, the asymmetrical organization of the cortical skeleton in the electrocyte offers a unique opportunity for the study of the specific aspects of membrane-skeleton interactions that take place in the postsynaptic domain.  相似文献   

3.
《The Journal of cell biology》1984,98(6):2239-2244
Four mouse monoclonal antibodies (mabs) were shown by immunoblotting procedures to recognize the major, basic, membrane-bound Mr 43,000 protein (43K protein) of acetylcholine receptor-rich postsynaptic membranes from Torpedo nobiliana . These mabs and a mab against an extracellular determinant on the acetylcholine receptor were used to localize the two proteins in electroplax (Torpedo californica) and on unsealed postsynaptic membrane fragments at the ultrastructural level. Bound mabs were revealed with a rabbit anti-mouse Ig serum and protein A-colloidal gold. The anti-43K mabs bound only to the cytoplasmic surface of the postsynaptic membrane. The distributions of the receptor and the 43K protein along the membrane were found to be coextensive. Distances between the membrane center and gold particles were very similar for anti-receptor and anti-43K mabs (29 +/- 7 nm and 26 to 29 +/- 7 to 10 nm, respectively). These results show that the 43K protein is a receptor-specific protein having a restricted spatial relationship to the membrane. They thus support models in which the 43K protein is associated with the cytoplasmic domains of the receptor molecule.  相似文献   

4.
A layer of amorphous, electron-dense material is situated at the cytoplasmic surface of the postsynaptic membrane of vertebrate neuromuscular synapses. The function of this structure is not clear, but its location suggests that it may have an important role in the formation and/or maintenance of the synapse. This paper demonstrates that a monoclonal antibody raised against antigens from Torpedo electric organ binds to an intracellular, postsynaptic protein at the frog neuromuscular synapse. Indirect immunofluorescence on frozen sections of frog muscle was used to demonstrate that the antigen is concentrated at synaptic sites in normal muscle. In denervated muscle, the antigen remains concentrated at synaptic sites, but is also present at extrasynaptic regions of denervated myofibers. The antigen cannot be labeled in intact, whole muscle, but only in whole muscle that has been permeabilized with nonionic detergents. The antibody staining pattern in Triton X-100-permeabilized whole-mounts of the frog neuromuscular synapse is arranged in elongate, arborized areas which are characteristic of the frog neuromuscular synapse. The stained areas are striated and the striations occur with a periodicity that corresponds to the regular folding of the postsynaptic membrane. Immunoferritin labeling of fixed, saponin-permeabilized muscle demonstrates that the antigen is associated with amorphous material that is situated between the postsynaptic membrane and an underlying layer of intermediate filaments. The antigen, solubilized from membrane and an underlying layer of intermediate filaments. The antigen, solubilized from Torpedo electric organ by high ionic strength, was identified by antibody binding to nitrocellulose replicas of SDS gels of Torpedo tissue. In Torpedo tissue, the antibody binds to a single protein band at 51,000 daltons (51 kd). The 51-kd protein shares an antigenic determinant with intermediate filament proteins, since a monoclonal antibody to all intermediate filaments reacts with the same 51-kd protein. The monoclonal antibody also reacts with a 55-kd protein in frog skin which is localized to the perinuclear region of the epithelial cells.  相似文献   

5.
Torpedo electroplaque and vertebrate neuromuscular junctions contain high levels of a nonactin, 43,000-Mr peripheral membrane protein referred to as the 43K protein. 43K protein is associated with the cytoplasmic face of postsynaptic membranes at areas of high acetylcholine receptor density and has been implicated in the establishment and/or maintenance of these receptor clusters. Cloning of cDNAs encoding Torpedo 43K protein revealed that its amino terminus contains a consensus sequence sufficient for the covalent attachment of the rare fatty acid myristate. To examine whether 43K protein is, in fact, myristoylated, mouse muscle BC3H1 cells were metabolically labeled with either [35S]cysteine or [3H]myristate and immunoprecipitated with a monospecific antiserum raised against isolated Torpedo 43K protein. In cells incubated with either precursor, a single labeled species was specifically recovered that comigrated on SDS-PAGE with 43K protein purified from Torpedo electric organ. Approximately 95% of the 3H labeled material released from [3H]myristate-43K protein by acid methanolysis was extractable in organic solvents and eluted from a C18 reverse-phase HPLC column exclusively at the position of the methyl myristate internal standard. Thus, 43K protein contains authentic myristic acid rather than an amino or fatty acid metabolite of [3H]myristate. Myristate appears to be added to 43K protein cotranslationally and cannot be released from it by prolonged incubation in SDS, 2-mercaptoethanol, or hydroxylamine (pH 7.0 or 10.0), characteristics consistent with amino terminal myristoylation. Covalently linked myristate may be responsible for the high affinity of purified 43K protein for lipid bilayers despite the absence of a notably hydrophobic amino acid sequence.  相似文献   

6.
Acetylcholine receptor-rich membranes from the electric organ of Torpedo californica are enriched in the four different subunits of the acetylcholine receptor and in two peripheral membrane proteins at 43 and 300 kD. We produced monoclonal antibodies against the 300-kD protein and have used these antibodies to determine the location of the protein, both in the electric organ and in skeletal muscle. Antibodies to the 300-kD protein were characterized by Western blots, binding assays to isolated membranes, and immunofluorescence on tissue. In Torpedo electric organ, antibodies to the 300-kD protein stain only the innervated face of the electrocytes. The 300-kD protein is on the intracellular surface of the postsynaptic membrane, since antibodies to the 300-kD protein bind more efficiently to saponin-permeabilized, right side out membranes than to intact membranes. Some antibodies against the Torpedo 300-kD protein cross-react with amphibian and mammalian neuromuscular synapses, and the cross-reacting protein is also highly concentrated on the intracellular surface of the post-synaptic membrane.  相似文献   

7.
The synapse-specific Mr 43,000 protein (43K protein) and the acetylcholine receptor were visualized by freeze-etch immunoelectron microscopy in preparations of purified Torpedo postsynaptic membranes. Vesicles were immobilized on glass and then sheared open by sonication to expose the cytoplasmic surface. Membranes were labeled with monoclonal antibodies to the 43K protein or the acetylcholine receptor. The cytoplasmic surface was devoid of filamentous structure, and the 43K protein and the cytoplasmic projection of the acetylcholine receptor were associated with prominent surface particles. Acetylcholine receptor and 43K protein, in membrane surfaces in direct contact with glass coated with polyornithine, segregated into dense particle aggregates separated by smooth membrane patches, whereas those in contact with glass coated with Alcian Blue underwent little or no detectable rearrangement. After treatment of vesicles at alkaline pH to remove the 43K protein, the cytoplasmic surfaces were still covered by a dense array of particles that were more uniform in shape and appeared slightly shorter than those seen on unextracted membranes, but similar in height to the extracellular projection. Monoclonal antibodies to the acetylcholine receptor labeled these particles, while antibodies to 43K protein did not. We conclude that the 43K protein is in direct association with the receptor and that complexes of the receptor and 43K protein can undergo surface-induced lateral redistribution. In addition, the cytoplasmic projection of the acetylcholine receptor is sufficiently large to be readily detected by freeze-etch electron microscopy and is similar in height to the extracellular projection.  相似文献   

8.
9.
Interactions of the major Mr 43 000 peripheral membrane protein (43K protein) with components of Torpedo postsynaptic membranes have been examined. Treatment of membranes with copper o-phenanthroline promotes the polymerization of 43K protein to dimers and higher oligomers. These high molecular weight forms of 43K protein can be converted to monomers by reduction with dithiothreitol and do not contain any of the other major proteins found in these membranes, including the subunits of the acetylcholine receptor, as shown by immunoblotting with monoclonal antibodies. To study directly its interactions with the membrane, the 43K protein was radioiodinated and purified by immunoaffinity chromatography. Purified 43K protein binds tightly to pure liposomes of various compositions in a manner that is not inhibited by KCl concentrations up to 0.75 M. The binding can be reversed by adjusting the pH of the reaction to 11, the same treatment that removes 43K protein from postsynaptic membranes. Unlabeled 43K protein solubilized from Torpedo membranes with cholate can be reconstituted with exogenously added lipids in the absence of the receptor. The results suggest that 43K protein molecules are amphipathic and that they may interact with each other and with the lipid bilayer. These interactions cannot explain the coextensive distribution of 43K proteins with acetylcholine receptors in situ. However, they could account for the association of the 43K protein with the postsynaptic membrane and may contribute to the maintenance of the structure of the cytoplasmic specialization of which this protein is a major component.  相似文献   

10.
《The Journal of cell biology》1989,109(4):1753-1764
To identify proteins associated with nicotinic postsynaptic membranes, mAbs have been prepared to proteins extracted by alkaline pH or lithium diiodosalicylate from acetylcholine receptor-rich (AChR) membranes of Torpedo electric organ. Antibodies were obtained that recognized two novel proteins of 87,000 Mr and a 210,000:220,000 doublet as well as previously described proteins of 43,000 Mr, 58,000 (51,000 in our gel system), 270,000, and 37,000 (calelectrin). The 87-kD protein copurified with acetylcholine receptors and with 43- and 51-kD proteins during equilibrium centrifugation on continuous sucrose gradients, whereas a large fraction of the 210/220-kD protein was separated from AChRs. The 87-kD protein remained associated with receptors and 43-kD protein during velocity sedimentation through shallow sucrose gradients, a procedure that separated a significant amount of 51-kD protein from AChRs. The 87- and 270-kD proteins were cleaved by Ca++- activated proteases present in crude preparations and also in highly purified postsynaptic membranes. With the exception of anti-37-kD antibodies, some of the monoclonals raised against Torpedo proteins also recognized determinants in frozen sections of chick and/or rat skeletal muscle fibers and in permeabilized chick myotubes grown in vitro. Anti-87-kD sites were concentrated at chick and rat endplates, but the antibodies also recognized determinants present at lower site density in the extrasynaptic membrane. Anti-210:220-kD labeled chick endplates, but studies of neuron-myotube cocultures showed that this antigen was located on neurites rather than the postsynaptic membrane. As reported in other species, 43-kD determinants were restricted to chick endplates and anti-51-kD and anti-270-kD labeled extrasynaptic as well as synaptic membranes. None of the cross reacting antibodies recognized determinants on intact (unpermeabilized) myotubes, so the antigens must be located on the cytoplasmic aspect of the surface membrane. The role that each intracellular determinant plays in AChR immobilization at developing and mature endplates remains to be investigated.  相似文献   

11.
B E Flucher  M P Daniels 《Neuron》1989,3(2):163-175
We have used immunogold electron microscopy to study the organization of the acetylcholine receptor, 43 kd protein, voltage-sensitive Na+ channel, and ankyrin in the postsynaptic membrane of the rat neuromuscular junction. The acetylcholine receptor and the 43 kd protein are concentrated at the crests of the postsynaptic folds, coextensive with the subsynaptic density. In contrast, Na+ channels and ankyrin are concentrated in the membranes of the troughs and in perijunctional membranes, both characterized by discontinuous submembrane electron-dense plaques. This configuration of interspersed postsynaptic membrane domains enriched in either Na+ channels or acetylcholine receptors may facilitate the initiation of the muscle action potential. Furthermore, the results support the involvement of ankyrin in immobilizing Na+ channels in specific membrane domains, analogous to the proposed involvement of the 43 kd protein in acetylcholine receptor immobilization.  相似文献   

12.
Treatment of the electric organ of Torpedo marmorata with Triton X-100 in the presence of 2 mM MgCl2 generated a cytoskeletal fraction in which a 54 kDa polypeptide is a major constituent. This 54 kDa polypeptide accounted for about 8% of the cellular protein when total electric organ tissue was analyzed by two-dimensional gel electrophoresis. Immunoblotting experiments showed that this protein reacts with monoclonal antibodies to desmin, the major intermediate filament protein of avian and mammalian muscle tissue. Negative stain analysis revealed that filaments of about 10 nm diameter are the major structural elements of the electric organ cytoskeleton. In the presence of Ca2+ there was a rapid degradation of the desmin-like protein and intermediate filaments due to a Ca2+-activated protease. Some of the resulting fragments retained antigenic activity against the desmin antibodies. Immunoblotting of membrane fractions enriched in acetylcholine receptor revealed desmin in addition to some actin. A further cytoskeletal component was identified from biochemical and immunological properties as a homologue of the mammalian neurofilament L-polypeptide. Thus Torpedo expresses proteins homologous to the mammalian desmin and neurofilament L-protein which can be detected using immunological approaches. Immunofluorescence microscopy was used to map the location of various cytoskeletal proteins of the cholinergic synapse on paraffin sections and on en face preparations of membranes. Desmin staining was restricted to electrocytes and in en face preparations was seen associated with both the ventral receptor-containing membrane and with the non-innervated dorsal membrane. Antibodies to neurofilament L-protein stained only the axons and not the electrocytes. Staining for fodrin, a non-erythrocyte spectrin, resulted in submembraneous decoration of both the axons and the electrocytes. Axonal staining for neurofilaments and microtubules did not extend into the ends of the nerve terminal arborizations.  相似文献   

13.
In this study, acetylcholine receptor-rich postsynaptic membranes from electric tissues of the electric rays Narcine brasiliensis and Torpedo californica are negatively contrasted for thin-section electron microscopy through the use of tannic acid. Both outer (extracellular) and inner (cytoplasmic) membrane surfaces are negatively contrasted, and can be studied together in transverse sections. The hydrophobic portion of the membrane appears as a thin (approximately 2 nm), strongly contrasted band. This band is the only image given by membrane regions which are devoid of acetylcholine receptor. In regions of high receptor density, however, both surfaces of the membrane are seen to bear or be associated with material which extends approximately 6.5 nm beyond the center of the bilayer. The material on the outer surface can be identified with the well-known extracellular portion of the receptor molecule. A major portion of the inner surface image is eliminated by extraction of the membranes at pH 11 to remove peripheral membrane proteins, principally the 43,000 Mr (43K) protein. The images thus suggest a cytoplasmic localization of the 43K protein, with its distribution being coextensive with that of the receptor. They also suggest that the 43K protein extends farther from the cytoplasmic surface than does the receptor.  相似文献   

14.
A 58-kD protein, identified in extracts of postsynaptic membrane from Torpedo electric organ, is enriched at sites where acetylcholine receptors (AChR) are concentrated in vertebrate muscle (Froehner, S. C., A. A. Murnane, M. Tobler, H. B. Peng, and R. Sealock. 1987. J. Cell Biol. 104:1633-1646). We have studied the 58-kD protein in AChR clusters isolated from cultured rat myotubes. Using immunofluorescence microscopy we show that the 58-kD protein is highly enriched at AChR clusters, but is also present in regions of the myotube membrane lacking AChR. Within clusters, the 58-kD protein codistributes with AChR, and is absent from adjacent membrane domains involved in myotube-substrate contact. Semiquantitative fluorescence measurements suggest that molecules of the 58-kD protein and AChR are present in approximately equal numbers. Differential extraction of peripheral membrane proteins from isolated AChR clusters suggests that the 58-kD protein is more tightly bound to cluster membrane than is actin or spectrin, but less tightly bound than the receptor-associated 43-kD protein. When AChR clusters are disrupted either in intact cells or after isolation, the 58-kD protein still codistributes with AChR. Clusters visualized by electron microscopy after immunogold labeling and quick-freeze, deep-etch replication show that, within AChR clusters, the 58-kD protein is sharply confined to AChR-rich domains, where it is present in a network of filaments lying on the cytoplasmic surface of the membrane. Additional actin filaments overlie, and are attached to, this network. Our results suggest that within AChR domains of clusters, the 58-kD protein lies between AChR and the receptor-associated 43-kD protein, and the membrane-skeletal proteins, beta-spectrin, and actin.  相似文献   

15.
Two high-affinity mAbs were prepared against Torpedo dystrophin, an electric organ protein that is closely similar to human dystrophin, the gene product of the Duchenne muscular dystrophy locus. The antibodies were used to localize dystrophin relative to acetylcholine receptors (AChR) in electric organ and in skeletal muscle, and to show identity between Torpedo dystrophin and the previously described 270/300-kD Torpedo postsynaptic protein. Dystrophin was found in both AChR-rich and AChR-poor regions of the innervated face of the electroplaque. Immunogold experiments showed that AChR and dystrophin were closely intermingled in the AChR domains. In contrast, dystrophin appeared to be absent from many or all AChR-rich domains of the rat neuromuscular junction and of AChR clusters in cultured muscle (Xenopus laevis). It was present, however, in the immediately surrounding membrane (deep regions of the junctional folds, membrane domains interdigitating with and surrounding AChR domains within clusters). These results suggest that dystrophin may have a role in organization of AChR in electric tissue. Dystrophin is not, however, an obligatory component of AChR domains in muscle and, at the neuromuscular junction, its roles may be more related to organization of the junctional folds.  相似文献   

16.
The ventral, postsynaptic membranes of the electroplaques of Narcine were found to containe intramembranous particles similar in location, packing density (about 5700/micron 2), transmembrane position and end appearance to nicotinic acetylcholine receptor-channel molecules. In fixed tissue the particles were limited to the cytoplasmic lamina, while in unfixed tissue an equivalent number were found symmetrically in both laminae. Four populations of particle diameters were observed in each unfixed lamina, even though other morphological evidence indicates the presence of large number of molecules of uniform structure, and biochemical studies of isolated postsynaptic membranes indicate that at least 70% of the membrane protein is receptor-channel protein. Intramembranous particles in dorsal, non-innervated electroplaque membranes, presumably representing Na+, K+-associated ATPase and other channel proteins, were found to have similar characteristics to particles in ventral membranes. Receptor-channel molecules cannot, therefore, be distinguished from other intrinsic membrane proteins by freeze-replication alone.  相似文献   

17.
A subsynaptic protein of Mr approximately 300 kD is a major component of Torpedo electric organ postsynaptic membranes and copurifies with the AChR and the 43-kD subsynaptic protein. mAbs against this protein react with neuromuscular synapses in higher vertebrates, but not at synapses in dystrophic muscle. The Torpedo 300-kD protein comigrates in SDS-PAGE with murine dystrophin and reacts with antibodies against murine dystrophin. The sequence of a partial cDNA isolated by screening an expression library with mAbs against the Torpedo 300-kD protein shows striking homology to mammalian dystrophin, and in particular to the b isoform of dystrophin. These results indicate that dystrophin is a component of the postsynaptic membrane at neuromuscular synapses and raise the possibility that loss of dystrophin from synapses in dystrophic muscle may have consequences that contribute to muscular dystrophy.  相似文献   

18.
R Gysin  B Yost  S D Flanagan 《Biochemistry》1986,25(6):1271-1278
Creatine kinase, actin, and nu 1 are three proteins of Mr 43 000 associated with membranes from electric organ highly enriched in nicotinic acetylcholine receptor. High levels of creatine kinase are required to maintain adequate ATP levels, while actin may play a role in maintaining the synaptic cytoskeleton. Previous investigations have prompted the conclusion that postsynaptic specializations at the receptor-enriched membrane domains in electroplax contain the brain form of creatine kinase rather than the form of creatine kinase predominantly found in muscle. We have examined this conclusion by purifying Torpedo brain creatine kinase to virtual homogeneity in order to examine its immunochemical, molecular, and electrophoretic properties. On the basis of immunological cross-reactivity and isozyme analysis, the receptor-associated creatine kinase is identified to be of the muscle type. When the molecular characteristics of Torpedo brain and muscle creatine kinase are compared, the brain enzyme is positioned at a more basic pH during chromatofocusing and on two-dimensional gel electrophoresis (pI = 7.5-7.9). Furthermore, electrophoretic mobilities of the brain and muscle forms of creatine kinase differ in sodium dodecyl sulfate electrophoresis: the brain isozyme of creatine kinase has lower apparent molecular weight (Mr 41 000) when compared with the muscle enzyme (Mr 43 000). On the basis of the results of our current investigations, the hypothesis that the brain isozyme of creatine kinase is a component of the postsynaptic specializations of the Torpedo californica electroplax must be abandoned. Recent sequence data have established close homology between Torpedo and mammalian muscle creatine kinases. On the basis of electrophoretic criteria, our results indicate that a lower degree of homology exists between the brain isozymes.  相似文献   

19.
43K rapsyn is a peripheral protein specifically associated with the nicotinic acetylcholine receptor (nAChR) present in the postsynaptic membrane of the neuromuscular junction and of the electrocyte, and is essential for its clustering. Here, we demonstrate a novel specific phosphorylation of 43K rapsyn by endogenous protein kinase(s) present in Torpedo electrocyte nAChR-rich membranes and identify thiamine triphosphate (TTP) as the phosphate donor. In the presence of Mg(2+) and [gamma-(32)P]-TTP, 43K rapsyn is specifically phosphorylated with a (32)P-half-maximal incorporation at approximately 5-25 microM TTP. The presence of TTP in the cytosol and of 43K rapsyn at the cytoplasmic face of the postsynaptic membrane, together with TTP-dependent phosphorylation of 43K rapsyn without added exokinases, suggests that TTP-dependent-43K-rapsyn phosphorylation may occur in vivo. In addition, phosphoamino acid and chemical stability analysis suggests that the residues phosphorylated are predominantly histidines. Inhibition of phosphorylation by Zn(2+) suggests a possible control of 43K rapsyn phosphorylation state by its zinc finger domain. Endogenous kinase(s) present in rodent brain membranes can also use [gamma-(32)P]-TTP as a phosphodonor. The use of a phosphodonor (TTP) belonging to the thiamine family but not to the classical (ATP, GTP) purine triphosphate family represents a novel phosphorylation pathway possibly important for synaptic proteins.  相似文献   

20.
Acetylcholine receptor enriched membrane fragments were obtained from the electric organs of Torpedo marmorata. The purified membrane fragments contained several proteins in addition to the acetylcholine receptor subunits. One of these was shown to be actin by means of immune blotting with a monoclonal antibody. Brief treatment of the membranes with pH 11.0 buffer removed actin and the other non-receptor proteins including the receptor-associated 43 000 mol. wt. polypeptide. This polypeptide was shown to bind actin after transferring the proteins from one- and two-dimensional polyacrylamide gels to nitrocellulose paper and incubating the nitrocellulose blots with actin. Specifically bound actin was demonstrated using the monoclonal antibodies to actin. No calcium or calmodulin dependency of binding was observed. The findings suggest that the 43 000 mol. wt. polypeptide is a link between the membrane-bound acetylcholine receptor and the cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号