首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved HPLC method using a silica gel column with fluorescence detection (excitation at 300 nm and emission at 365 nm) was developed for the determination of sulpiride concentrations in plasma. Analysis of sulpiride in plasma samples was simplified by a one-step liquid–liquid extraction after alkaline treatment of only 1 ml of plasma. The low limit of quantitation was 20 ng/ml with a coefficient of variation of less than 20%. A linear range was found from 20 to 1500 ng/ml. This HPLC method was validated with the precision for inter-day and intra-day runs being 0.36–8.01% and 0.29–5.25%, respectively, and the accuracy (standard deviation of mean, SD) for inter-day and intra-day runs being −1.58 to 5.02% and −2.14 to 5.21%, respectively. Bioequivalence of the two products was evaluated in 12 normal healthy male volunteers in a single-dose, two-period, two-sequence, two-treatment cross-over study. Sulpiride plasma concentrations were analyzed with this validated HPLC method. Results demonstrated that the two tablet formulations of sulpiride appear to be bioequivalent.  相似文献   

2.
In order to determine epirubicin and its metabolites at low concentrations (<38 ng/ml) in small plasma samples, a fast reliable method based on a precipitation pre-treatment and sensitive reversed-phase isocratic HPLC has been developed and validated for epirubicin in the range 5–100 ng/ml. The R.S.D. was 5–9% over this concentration range. For human serum containing 25 ng/ml of epirubicin, the inter- and intra-day variation was <10%. Recoveries of the metabolites epirubicinol, 7-deoxydoxorubicinone and 7-deoxydoxorubicinolone at 20 ng/ml ranged from 94–104%. The assay has been used to study human plasma samples taken during a 96-h infusion of epirubicin in a patient with multiple myeloma. The combined levels of the unseparated metabolites, epirubicin glucuronide and epirubicinol glucuronide, were semiquantitatively determined after treatment with β-glucuronidase. The metabolites epirubicinol and 7-deoxydoxorubicinolone, but not 7-deoxydoxorubicinone, were also detected and measured.  相似文献   

3.
A method for the quantification of 2′-deoxy-3′-thiacytidine (lamivudine, 3-TC), which incorporated the use of 3-isobutyl-methylxanthine as internal standard (I.S.) was developed and validated in human plasma, using HPLC with UV absorbance detection. Using solid-phase extraction, 3-TC and I.S. were selectively extracted from human plasma. Subsequently, chromatographic separation was performed using a YMC phenyl column with ion-pair chromatography and detection at 270 nm. The method was validated over a concentration range of 10 to 5000 ng/ml using 0.5 ml of human plasma. The extraction recovery for both 3-TC and I.S. was greater than 95%. The determination of inter- and intra-day precision (RSD) was less than 10% at all concentration levels, while the inter- and intra-day accuracy (% difference) was less than 6%.  相似文献   

4.
For toxicological purposes, an HPLC assay was developed for the simultaneous determination of haloperidol and atypical antipsychotics (risperidone, 9-hydroxyrisperidone, olanzapine, clozapine) in human plasma. After a double-step liquid-liquid extraction, compounds were separated on a C(8) column eluted with a gradient of acetonitrile and phosphate buffer 50 mM pH 3.8. A sequential ultraviolet detection was used (260, 280 and 240 nm). Calibration curves were linear in the range 10-1000 ng/ml. The limits of quantification were 5 ng/ml for all drugs. Average accuracy at four concentrations ranged from 93 to 109%. Both inter- and intra-day variation coefficients were lower than 11% for all drugs. This simple and rapid method (run time<15 min) is currently used for poison management.  相似文献   

5.
A simple and highly sensitive high-performance liquid chromatography (HPLC) method for the simultaneous quantitative determination of lansoprazole enantiomers and their metabolites, 5-hydroxylansoprazole enantiomers and lansoprazole sulfone, in human plasma have been developed. Chromatographic separation was achieved with a Chiral CD-Ph column using a mobile phase of 0.5M NaClO(4)-acetonitrile-methanol (6:3:1 (v/v/v)). The analysis required only 100 microl of plasma and involved a solid-phase extraction with Oasis HLB cartridge, with a high extraction recovery (>94.1%) and good selectivity. The lower limit of quantification (LOQ) of this assay was 10 ng/ml for each enantiomer of both lansoprazole and 5-hydroxylansoprazole, and 5 ng/ml for lansoprazole sulfone. The coefficient of variation of inter- and intra-day assay was <8.0% and accuracy was within 8.4% for all analytes (concentration range 10-1000 ng/ml). The linearity of this assay was set between 10 and 1000 ng/ml (r2>0.999 of the regression line) for each of the five analytes. This method is applicable for accurate and simultaneous monitoring of the plasma levels of lansoprazole enantiomers and their metabolites in the renal transplant recipients.  相似文献   

6.
A sensitive and specific high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS-MS) method has been developed at our center for the determination of glimepiride in human plasma. After the addition of the internal standard, plasma samples were extracted by liquid-liquid extraction technique using diethyl ether. The compounds were separated on a prepacked C18 column using a mixture of acetonitrile, methanol and ammonium acetate buffer as mobile phase. A Finnigan LCQDUO ion trap mass spectrometer connected to an Alliance Waters HPLC was used to develop and validate the method. The analytical method was validated according to the FDA bioanalytical method validation guidance. The results were within the accepted criteria as stated in the aforementioned guidance. The method was proved to be sensitive and specific by testing six different plasma batches. Linearity was established for the range of concentrations 5.0-500.0 ng/ml with a coefficient of determination (r2) of 0.9998. Accuracy for glimepiride ranged from 100.58 to 104.48% at low, mid and high levels. The intra-day precision was better than 12.24%. The lower limit of quantitation (LLOQ) was identifiable and reproducible at 5.0 ng/ml with a precision of 7.96%. The proposed method enables the unambiguous identification and quantitation of glimepiride for pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

7.
An HPLC system using a simple liquid-liquid extraction and HPLC with UV detection has been validated to determine tramadol concentration in human plasma. The method developed was selective and linear for concentrations ranging from 10 to 2000 ng/ml with average recovery of 98.63%. The limit of quantitation (LOQ) was 10 ng/ml and the percentage recovery of the internal standard phenacetin was 76.51%. The intra-day accuracy ranged from 87.55 to 105.99% and the inter-day accuracy, 93.44 to 98.43% for tramadol. Good precision (5.32 and 6.67% for intra- and inter-day, respectively) was obtained at LOQ. The method has been applied to determine tramadol concentrations in human plasma samples for a pharmacokinetic study.  相似文献   

8.
A rapid, sensitive and reproducible HPLC method was developed and validated for the analysis of celecoxib in human plasma. The analysis was carried out on a monolithic silica column using UV detection at 254 nm. The assay enables the measurement of celecoxib for therapeutic drug monitoring with a minimum quantification limit of 10 ng ml(-1). The method involves simple, one-step extraction procedure, and analytical recovery was 100.5 +/- 1.3%. The calibration curve was linear over the concentration range of 10-800 ng ml(-1). The coefficients of variation for inter-day and intra-day assay were found to be less than 8%. We also demonstrate the applicability of this method for pharmacokinetic studies in humans.  相似文献   

9.
An HPLC system using solid-phase extraction and HPLC with UV detection has been validated in order to determine tramadol and o-desmethyltramadol (M1) concentrations in human plasma. The method developed was selective and linear for concentrations ranging from 50 to 3500 ng/ml (tramadol) and 50 to 500 ng/ml (M1) with mean recoveries of 94.36±12.53% and 93.52±7.88%, respectively. Limit of quantitation (LOQ) was 50 ng/ml. For tramadol, the intra-day accuracy ranged from 95.48 to 114.64% and the inter-day accuracy, 97.21 to 103.24%. Good precision (0.51 and 18.32% for intra- and inter-day, respectively) was obtained at LOQ. The system has been applied to determine tramadol concentrations in human plasma samples for a pharmacokinetic study.  相似文献   

10.
A high-performance liquid chromatographic method for the enantiospecific quantitation of S- and R-mephenytoin and its metabolites S- and R-nirvanol and S- and R-4'-hydroxymephenytoin in plasma is described. The compounds were separated using a reversed-phase C(2) column in tandem with a chiral alpha(1)-acid glycoprotein column and were detected using ultraviolet detection at 205 nm. The lower limit of quantification was 10 ng/ml for all compounds using 0.5 ml human plasma (intra-day coefficient of variation <13%, accuracy <+/-20%). The method was validated for human plasma in the concentration range 10-2000 ng/ml for each of the six compounds. The method allows for the simultaneous characterisation of the metabolic capacity of two human drug-metabolising enzymes, CYP2C19 and CYP2B6, and may be used when investigating polymorphisms or changes in activity of these two enzymes.  相似文献   

11.
An analytical method for simultaneous determination of benazepril and its active metabolite, benazeprilat, in human plasma by high-performance liquid chromatography/electrospray-mass spectrometry was developed and validated. Rutaecarpine was selected as the internal standard. The separation was achieved on a C(18) column with acetonitrile and aqueous solution (0.1% formic acid) as mobile phase with a gradient mode. The quantification of target compounds was using a selective ionization recording at m/z 425.5 for benazepril, m/z 397.5 for benzeprilat and m/z 288.3 for rutaecarpine. The correlation coefficients of the calibration curves were better than 0.992 (n = 6), in the range of 6.67-666.67 ng/ml for benazepril and benazeprilat. The inter- and intra-day accuracy, precision, linear range had been investigated in detail. The method can be used to assess the bioavailability and pharmacokinetics of the drug.  相似文献   

12.
A method was developed for the quantification of matrine in human plasma using a liquid-liquid extraction procedure followed by gas-chromatography-mass spectrometry (GC/MS) analysis. Deuterated matrine, an internal standard of the analysis, was spiked into the plasma samples before extraction. Linear detection responses were obtained for matrine concentrations ranging from 10 to 500 ng/ml. The intra-day and inter-day precision ranged from 0.4 to 4.0% and 1.0-3.5%, respectively. The intra-day accuracy was between -7.3 and 4.5%. The limit of quantification for matrine was 23 ng/ml. The extraction efficiency averaged about 38%. The validated GC/MS method will be used to quantify matrine in human plasma samples collected in a clinical trial study.  相似文献   

13.
Naloxone, the analyte and the internal standard, sumatriptan, are extracted from plasma using solid-phase extraction columns. Chromatography and detection are performed using isocratic reversed-phase high-performance liquid chromatography (HPLC) with coulometric end-point detection. The standard curve was linear over the range 0–50 ng/ml of naloxone in plasma. The reproducibility, the coefficient of variation (C.V.) of the method over the range of the standard curve was 6.2–11.2%. The recovery averaged 90.4±8.9%. A plasma profile following i.v. administration of naloxone in one normal healthy volunteer is presented.  相似文献   

14.
An HPLC-ESI-MS/MS method using collision induced dissociation - multiple reaction monitoring was developed for the quantification of eight Hoodia gordonii steroid glycosides and their metabolites in porcine plasma samples. The method was validated for the three most important glycosides and was successfully applied also for the related glycosides and metabolites. The limits of quantification were 0.04 ng ml(-1) for the two main steroid glycosides and 0.1 ng ml(-1) for the detiglated metabolites. These limits are sufficiently low to allow monitoring the concentration-time profiles in plasma after feeding H. gordonii. The standard deviations of the intra-day measurements were better than 20% for concentrations below 5 ng ml(-1) and better than 10% for concentrations above 5 ng ml(-1). The method was successfully applied to plasma samples collected from a porcine pharmacokinetics study.  相似文献   

15.
A sensitive and selective high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of bufuralol enantiomers in plasma and pharmaceutical formulations. Enantiomeric resolution was achieved on a vancomycin macrocyclic antibiotic chiral stationary phase (CSP) known as Chirobiotic V with UV detection set at 254 nm. The polar ionic mobile phase (PIM) consisting of methanol-glacial acetic acid-triethylamine (100:0.015:0.010, v/v/v) has been used at a flow rate of 0.5 ml/min. The method is highly specific where other coformulated compounds did not interfere. The stability of bufuralol enantiomers under different degrees of temperature was also studied. The results showed that the drug is stable for at least 7 days at 70 degrees C. The method was validated for its linearity, accuracy, precision and robustness. An experimental design was used during validation to evaluate method robustness. The calibration curves in plasma were linear over the range of 5-500 ng/ml for each enantiomer with detection limit of 2 ng/ml. The mean relative standard deviation (RSD) of the results of within-day precision and accuracy of the drug were 0.05) between inter- and intra-day studies for each enantiomer which confirmed the reproducibility of the assay method. The mean extraction efficiency for S-(-)- and R-(+)-bufuralol from plasma was in the range 97-102% at 15-400 ng/ml level for each enantiomer. The overall recoveries of bufuralol enantiomers from pharmaceutical formulations was in the range 99.6-102.2% with %RSD ranging from 1.06 to 1.16%. The assay method proved to be suitable as chiral quality control for bufuralol formulations by HPLC and for therapeutic drug monitoring.  相似文献   

16.
Puerarin, an isoflavone C-glycoside, has been identified as the major active component isolated from Pueraria lobata (Kudzu) responsible for suppression of alcohol drinking. In order to conduct clinical studies of Kudzu's efficacy, a method for measuring its bioavailability and pharmacokinetic profile is needed. We have developed a gradient reversed-phase HPLC system for pharmacokinetic study of puerarin in human plasma. Solid-phase extraction was performed on an abselut Nexus cartridge (60 mg/3 ml) possessing adsorbent function with a recovery of >97% and 4-hydroxybenzoic acid was used as an internal standard. The HPLC assay was performed on a YMC ODS-A column (150 mm x 4.6mm i.d., 5 microm particle size). The HPLC mobile phase consisted of methanol/0.5% acetic acid with 20-35% methanol gradient at a flow-rate of 0.8 ml/min. The UV wavelength was set at 254 nm. Calibration of the overall analytical procedure gave a linear signal (r>0.999) over a puerarin concentration range of 5-500 ng/ml in human plasma. The lower limit of quantification was ca. at 8 ng/ml of puerarin in plasma. The detection limit (defined as signal-to-noise ratio of about 3) was approximately 3 ng/ml. The preliminary pharmacokinetic study after oral administration of the Kudzu capsules containing 400mg of puerarin to a healthy volunteer confirmed that the present method was suitable for determining puerarin in human plasma.  相似文献   

17.
A sensitive and specific method for the simultaneous determination of the unchanged drug (solifenacin) and its major metabolite (M1, 4S-hydroxy solifenacin) in rat plasma was developed and validated. Both solifenacin and M1 were extracted from rat plasma by a two-step liquid-liquid extraction and analyzed by semi-micro HPLC with UV detection at an absorbance wavelength of 220 nm. The chromatographic separations were performed on a TSKgel ODS-80Ts (5 microm, 150 mmx2.0 mm i.d.) reversed-phase column with a mobile phase of 0.1 M phosphate buffer (pH 3.0):acetonitrile (71:29, v/v). The intra-day precision (expressed as coefficient of variation, CV) ranged from 0.4% to 1.7%, and the accuracy (expressed as relative error, RE) ranged from -5.2% to 2.0% for solifenacin. The corresponding precision ranged from 1.3% to 3.2%, and accuracy ranged from -4.0% to 8.6% for M1. The lower limit of quantitation for both solifenacin and M1 was 2 ng/ml when 1 ml of plasma was used. No endogenous interference was observed in rat plasma.  相似文献   

18.
A method to determine sildenafil in human plasma involving liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed. Sildenafil and the internal standard (I.S.), diazepam, are extracted from human plasma with ether-dichloromethane (3:2, v/v) at basic pH and analyzed by reversed-phase high-performance liquid chromatography (HPLC) using methanol-10mM ammonium acetate pH 7.0 (85:15, v/v) as the mobile phase. Detection by electrospray positive ionization mass spectrometry in the multiple-reaction monitoring mode was linear over the concentration range 0.125-40.0 ng/ml. Intra- and inter-day precision of the assay at four concentrations within this range were 2.5-8.0%. The method was used to evaluate plasma concentration-time profiles in healthy volunteers given an oral dose of 20mg sildenafil as a combination tablet also containing apomorphine.  相似文献   

19.
An isocratic online-enrichment HPLC-assay was developed allowing for the simple and fast separation and quantitation of STI-571 and its main metabolite N-desmethyl-STI (N-DesM-STI) in plasma, urine, cerebrospinal fluid (CSF), culture media and cell preparations in various concentrations using UV-detection at 260 nm. The analytical procedure consists of an online concentration of STI-571 and N-DesM-STI in the HPLC system followed by the elution on a ZirChrom-PBD analytical column. Time of analysis is 40 min including the enrichment time of 5 min. The detection limit is 10 ng/ml in plasma, CSF, culture medium (RPMI) and 25 ng/ml in urine for both STI-571 and N-DesM-STI. The intra-day precision, as expressed by the coefficient of variation (CV), in plasma samples ranges between 1.74 and 8.60% for STI-571 and 1.45 and 8.87% for N-DesM-STI. The corresponding values for urine measurements are 2.17-7.54% (STI-571) and 1.31-9.51% (N-DesM-STI). The inter-day precision analyzed over a 7-month time period was 8.31% (STI-571) or 6.88% (N-DesM-STI) and 16.45% (STI-571) or 14.83% (N-DesM-STI) for a concentration of 1000 ng/ml in plasma and 750 ng/ml in urine, respectively. Moreover, we demonstrate that with an alternative, but more time and labor consuming sample preparation and the implementation of electrochemical detection, a detection limit < 10 ng/ml can be achieved. The method described was used to perform pharmacokinetic measurements of STI-571 and N-desmethyl-STI in patient samples and for kinetic measurements of intracellular STI-571 and N-DesM-STI following in vitro incubation.  相似文献   

20.
A high-performance liquid chromatographic (HPLC) procedure has been developed for the quantification of L-365,260 (I), a cholecystokinin and gastrin receptor antagonist, in dog and rat plasma. The method involves liquid—liquid extraction and HPLC with ultraviolet detection. Standard curves were linear over the range 7.5–2000 ng/ml for rat and dog plasma. The method is reproducible and reliable with a detection limit of 7.5 ng/ml in biological fluids. The mean coefficients of variation for concentrations within the range of the standard curve range were 3.84 and 2.56%, respectively, for intra-day analysis and 4.48 and 4.26%, respectively, for inter-day analysis. Application of the development was successfully demonstrated by quantifying the concentration of I in both dog and rat plasma samples following an intravenous or oral dose of 5 mg/kg I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号