首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Notch receptors are glycoproteins that mediate a wide range of developmental processes. Notch is modified in its epidermal growth factor-like domains by the addition of fucose to serine or threonine residues. O-Fucosylation is mediated by protein O-fucosyltransferase 1, and down-regulation of this enzyme by RNA interference or mutation of the Ofut1 gene in Drosophila or by mutation of the Pofut1 gene in mouse prevents Notch signaling. To investigate the molecular basis for the requirement for O-linked fucose on Notch, we assayed the ability of tagged, soluble forms of the Notch extracellular domain to bind to its ligands, Delta and Serrate. Down-regulation of OFUT1 by RNA interference in Notch-secreting cells inhibits both Delta-Notch and Serrate-Notch binding, demonstrating a requirement for O-linked fucose for efficient binding of Notch to its ligands. Conversely, overexpression of OFUT1 in cultured cells increases Serrate-Notch binding but inhibits Delta-Notch binding. These effects of OFUT1 are consistent with the consequences of OFUT1 overexpression on Notch signaling in vivo. Intriguingly, they are also opposite to, and are suppressed by, expression of the glycosyltransferase Fringe, which specifically modifies O-linked fucose. Thus, Notch-ligand interactions are dependent upon both the presence and the type of O-fucose glycans.  相似文献   

2.
Regulation of notch signaling by o-linked fucose   总被引:11,自引:0,他引:11  
Okajima T  Irvine KD 《Cell》2002,111(6):893-904
  相似文献   

3.
Epidermal growth factor-like (EGF) repeats and thrombospondin type 1 repeats (TSRs) are both small cysteine-knot motifs known to be O-fucosylated. The enzyme responsible for the addition of O-fucose to EGF repeats, protein O-fucosyltransferase 1 (POFUT1), has been identified and shown to be essential in Notch signaling. Fringe, an O-fucose beta1,3-N-acetylglucosaminyltransferase, elongates O-fucose on specific EGF repeats from Notch to form a disaccharide that can be further elongated to a tetrasaccharide. TSRs are found in many extracellular matrix proteins and are involved in protein-protein interactions. The O-fucose moiety on TSRs can be further elongated with glucose to form a disaccharide. The discovery of O-fucose on TSRs raised the question of whether POFUT1, or a different enzyme, adds O-fucose to TSRs. Here we demonstrate the existence of a TSR-specific O-fucosyltransferase distinct from POFUT1. Similar to POFUT1, the novel TSR-specific O-fucosyltransferase is a soluble enzyme that requires a properly folded TSR as an acceptor substrate. In addition, we found that a previously identified fucose-specific beta1,3-glucosyltransferase adds glucose to O-fucose on TSRs, but it does not modify O-fucose on an EGF repeat. Similarly, Lunatic fringe, Manic fringe, and Radical fringe are all capable of modifying O-fucose on an EGF repeat, but not on a TSR. Taken together, these results suggest that two distinct O-fucosylation pathways exist in cells, one specific for EGF repeat and the other for TSRs.  相似文献   

4.
Roles of Pofut1 and O-fucose in mammalian Notch signaling   总被引:1,自引:0,他引:1  
Mammalian Notch receptors contain 29-36 epidermal growth factor (EGF)-like repeats that may be modified by protein O-fucosyltransferase 1 (Pofut1), an essential component of the canonical Notch signaling pathway. The Drosophila orthologue Ofut1 is proposed to function as both a chaperone required for stable cell surface expression of Notch and a protein O-fucosyltransferase. Here we investigate these dual roles of Pofut1 in relation to endogenous Notch receptors of Chinese hamster ovary and murine embryonic stem (ES) cells. We show that fucosylation-deficient Lec13 Chinese hamster ovary cells have wild type levels of Pofut1 and cell surface Notch receptors. Nevertheless, they have reduced binding of Notch ligands and low levels of Delta1- and Jagged1-induced Notch signaling. Exogenous fucose but not galactose rescues both ligand binding and Notch signaling. Murine ES cells lacking Pofut1 also have wild type levels of cell surface Notch receptors. However, Pofut1-/- ES cells do not bind Notch ligands or exhibit Notch signaling. Although overexpression of fucosyltransferase-defective Pofut1 R245A in Pofut1-/- cells partially rescues ligand binding and Notch signaling, this effect is not specific. The same rescue is achieved by an unrelated, inactive, endoplasmic reticulum glucosidase. Therefore, mammalian Notch receptors require Pofut1 for the generation of optimally functional Notch receptors, but, in contrast to Drosophila, Pofut1 is not required for stable cell surface expression of Notch. Importantly, we also show that, under certain circumstances, mammalian Notch receptors are capable of signaling in the absence of Pofut1 and O-fucose.  相似文献   

5.
Rare types of glycosylation often occur in a domain-specific manner and are involved in specific biological processes. In particular, O-fucose glycans are reported to regulate the functions of EGF domain-containing proteins such as Notch receptors. In the course of mass spectrometric analysis of O-glycans displayed on Drosophila Notch receptors expressed in S2 cells, we found an unusual O-linked N-acetylhexosamine (HexNAc) modification which occurs at a site distinct from those of O-fucose and O-glucose glycosylations. Modification site mapping by mass spectrometry and amino acid substitution studies revealed that O-HexNAc modification occurs on a serine or threonine located between the fifth and sixth cysteines within the EGF domain. This modification occurs simultaneously along with other closely positioned O-glycosylations. This modification was determined to be O-beta-GlcNAc by galactosyltransferase labeling and beta-N-acetyl-hexosaminidase digestion experiments and by immunoblotting with a specific antibody. O-GlcNAc modification occurs at multiple sites on Notch epidermal growth factor repeats. O-GlcNAc modification was also found on the extracellular domain of Delta, a ligand for Notch receptors. Although the O-GlcNAc modification is known to regulate a wide range of cellular processes, the list of known modified proteins has previously been limited to intracellular proteins in animals. Thus, the finding of O-GlcNAc modification in extracellular environments predicts a distinct glycosylation process that might be associated with a novel regulatory mechanism for Notch receptor activity.  相似文献   

6.
O-Fucose has been identified on epidermal growth factor-like (EGF) repeats of Notch, and elongation of O-fucose has been implicated in the modulation of Notch signaling by Fringe. O-Fucose modifications are also predicted to occur on Notch ligands based on the presence of the C(2)XXGG(S/T)C(3) consensus site (where S/T is the modified amino acid) in a number of the EGF repeats of these proteins. Here we establish that both mammalian and Drosophila Notch ligands are modified with O-fucose glycans, demonstrating that the consensus site was useful for making predictions. The presence of O-fucose on Notch ligands raised the question of whether Fringe, an O-fucose specific beta 1,3-N-acetylglucosaminyltransferase, was capable of modifying O-fucose on the ligands. Indeed, O-fucose on mammalian Delta 1 and Jagged1 can be elongated with Manic Fringe in vivo, and Drosophila Delta and Serrate are substrates for Drosophila Fringe in vitro. These results raise the interesting possibility that alteration of O-fucose glycans on Notch ligands could play a role in the mechanism of Fringe action on Notch signaling. As an initial step to begin addressing the role of the O-fucose glycans on Notch ligands in Notch signaling, a number of mutations in predicted O-fucose glycosylation sites on Drosophila Serrate have been generated. Interestingly, analysis of these mutants has revealed that O-fucose modifications occur on some EGF repeats not predicted by the C(2)XXGGS/TC(3) consensus site. A revised, broad consensus site, C(2)X(3-5)S/TC(3) (where X(3-5) are any 3-5 amino acid residues), is proposed.  相似文献   

7.
The Notch family of signaling receptors plays key roles in determining cell fate and growth control. Recently, a number of laboratories have shown that O-fucose glycans on the epidermal growth factor (EGF)-like repeats of the Notch extracellular domain modulate Notch signaling. Fringe, a known modifier of Notch function, is an O-fucose specific beta1,3-N-acetylglucosaminyltransferase. The transfer of GlcNAc to O-fucose on Notch by fringe results in the potentiation of signaling by the Delta class of Notch ligands, but causes inhibition of signaling by the Serrate/Jagged class of Notch ligands. Interestingly, addition of a beta1,4 galactose by beta4GalT-1 to the GlcNAc added by fringe is required for Jagged1-induced Notch signaling to be inhibited in a co-culture assay. Thus, both fringe and beta4GalT-1 are modulators of Notch function. Several models have been proposed to explain how alterations in O-fucose glycans result in changes in Notch signaling, and these models are discussed.  相似文献   

8.
Two glycosyltransferases that transfer sugars to epidermal growth factor (EGF) domains, OFUT1 and Fringe, regulate Notch signaling. To characterize the impact of glycosylation at the 23 consensus O-fucose sites in Drosophila Notch, we conducted deletion mapping and site-specific mutagenesis and then assayed the binding of soluble forms of Notch to cell-surface ligands. Our results support the conclusion that EGF11 and EGF12 are essential for ligand binding, but indicate that other EGF domains also make substantial contributions to ligand binding. Characterization of Notch deletion constructs and O-fucose site mutants further revealed that no single site or region can account for the influence of Fringe on Notch-ligand binding. Additionally, we observed an influence of Fringe on a Notch fragment including only 4 of its 36 EGF domains (EGF10-13). Together, our observations imply that glycosylation influences Notch-ligand interactions through a distributive mechanism that involves local interactions with multiple EGF domains and led us to suggest a structural model for how Notch interacts with its ligands.  相似文献   

9.
O-Fucose is an unusual form of glycosylation found on epidermal growth factor-like (EGF) repeats and thrombospondin type 1 repeats (TSRs) in many secreted and transmembrane proteins. Recently O-fucose on EGF repeats was shown to play important roles in Notch signaling. In contrast, physiological roles for O-fucose on TSRs are unknown. In the accompanying paper (Luo, Y., Nita-Lazar, A., and Haltiwanger, R. S. (2006) J. Biol. Chem. 281, 9385-9392), we demonstrated that an enzyme distinct from protein O-fucosyltransferase 1 adds O-fucose to TSRs. A known homologue of O-fucosyltransferase 1 is putative protein O-fucosyltransferase 2. The cDNA sequence encoding O-fucosyltransferase 2 was originally identified during a data base search for fucosyltransferases in Drosophila. Like O-fucosyltransferase 1, O-fucosyltransferase 2 is conserved from Caenorhabditis elegans to humans. Although O-fucosyltransferase 2 was assumed to be another protein O-fucosyltransferase, no biochemical characterization existed supporting this contention. Here we show that RNAi-mediated reduction of the O-fucosyltransferase 2 message significantly decreased TSR-specific O-fucosyltransferase activity in Drosophila S2 cells. We also found that O-fucosyltransferase 2 is predominantly localized in the endoplasmic reticulum compartment of these cells. Furthermore, we expressed recombinant Drosophila O-fucosyltransferase 2 and showed that it O-fucosylates TSRs but not EGF repeats in vitro. These results demonstrate that O-fucosyltransferase 2 is in fact a TSR-specific O-fucosyltransferase.  相似文献   

10.
糖基化对Notch信号传递系统的影响   总被引:2,自引:0,他引:2  
Notch信号分子是多细胞生物发育过程中高度保守的一类十分重要的跨膜信 号受体糖蛋白家族.这一信号途径通过局部细胞间的相互作用而产生对多种不成熟细胞分化 的抑制信号, 精确调控细胞的分化潜能,在细胞发育、增殖、分化中起关键作用,参与造血 、T细胞发育、血管生成等重要生理过程.Notch受体分子上具有多种寡糖链,包括N-聚糖、O-岩藻糖聚糖、O-葡萄糖聚糖等,这些寡糖以及相关糖基转移酶对Notch受体-配体结合以及Notch信号传递功能有重要影响.本文就近年来有关Notch受体糖基化及其对Notch信号传递过程的研究进行综述.  相似文献   

11.
In the last two decades, our knowledge of the role of glycans in development and signal transduction has expanded enormously. While most work has focused on the importance of N-linked or mucin-type O-linked glycosylation, recent work has highlighted the importance of several more unusual forms of glycosylation that are the focus of this review. In particular, the ability of O-fucose glycans on the epidermal growth factor-like (EGF) repeats of Notch to modulate signaling places glycosylation alongside phosphorylation as a means to modulate protein-protein interactions and their resultant downstream signals. The recent discovery that O-glucose modification of Notch EGF repeats is also required for Notch function has further expanded the range of glycosylation events capable of modulating Notch signaling. The prominent role of Notch during development and in later cell-fate decisions underscores the importance of these modifications in human biology. The role of glycans in intercellular signaling events is only beginning to be understood and appears ready to expand into new areas with the discovery that thrombospondin type 1 repeats are also modified with O-fucose glycans. Finally, a rare form of glycosylation called C-mannosylation modifies tryptophans in some signaling competent molecules and may be a further layer of complexity in the field. We will review each of these areas focusing on the glycan structures produced, the consequence of their presence, and the enzymes responsible.  相似文献   

12.
Cripto is a membrane-bound co-receptor for Nodal, a member of the transforming growth factor-beta superfamily. Mouse embryos lacking either Cripto or Nodal have the same lethal phenotype at embryonic day 7.5. Previous studies suggest that O-fucosylation of the epidermal growth factor-like (EGF) repeat in Cripto is essential for the facilitation of Nodal signaling. Substitution of Ala for the Thr to which O-fucose is attached led to functional inactivation of both human and mouse Cripto. However, embryos null for protein O-fucosyltransferase 1, the enzyme that adds O-fucose to EGF repeats, do not exhibit a Cripto null phenotype and die at about embryonic day 9.5. This suggested that the loss of O-fucose from the EGF repeat may not have led to the inactivation of Cripto in previous studies. Here we investigate this hypothesis and show the following: 1) protein O-fucosyltransferase 1 is indeed the enzyme that adds O-fucose to Cripto; 2) Pofut1(-/-) embryonic stem cells behave the same as Pofut1(+/+) embryonic stem cells in a Nodal signaling assay; 3) Pofut1(-/-) and Pofut1(+/+) embryoid bodies are indistinguishable in their ability to differentiate into cardiomyocytes; and 4) none of 10 amino acid substitutions at Thr(72), including Ser which acquires O-fucose, rescues the activity of mouse Cripto in Nodal signaling assays. Therefore, the Thr to which O-fucose is linked in Cripto plays a key functional role, but O-fucose at Thr(72) is not required for Cripto to function in cell-based signaling assays or in vivo. By contrast, we show that O-fucose, and not the Thr to which it is attached, is required in the ligand-binding domain of Notch1 for Notch1 signaling.  相似文献   

13.
Notch is a large cell-surface receptor known to be an essential player in a wide variety of developmental cascades. Here we show that Notch1 endogenously expressed in Chinese hamster ovary cells is modified with O-linked fucose and O-linked glucose saccharides, two unusual forms of O-linked glycosylation found on epidermal growth factor-like (EGF) modules. Interestingly, both modifications occur as monosaccharide and oligosaccharide species. Through exoglycosidase digestions we determined that the O-linked fucose oligosaccharide is a tetrasaccharide with a structure identical to that found on human clotting factor IX: Sia-alpha2,3-Gal-beta1, 4-GlcNAc-beta1,3-Fuc-alpha1-O-Ser/Thr. The elongated form of O-linked glucose appears to be a trisaccharide. Notch1 is the first membrane-associated protein identified with either O-linked fucose or O-linked glucose modifications. It also represents the second protein discovered with an elongated form of O-linked fucose. The sites of glycosylation, which fall within the multiple EGF modules of Notch, are highly conserved across species and within Notch homologs. Since Notch is known to interact with its ligands through subsets of EGF modules, these results suggest that the O-linked carbohydrate modifications of these modules may influence receptor-ligand interactions.  相似文献   

14.

Background  

The evolutionarily conserved Notch signalling pathway regulates multiple developmental processes in a wide variety of organisms. One critical posttranslational modification of Notch for its function in vivo is the addition of O-linked fucose residues by protein O-fucosyltransferase 1 (POFUT1). In addition, POFUT1 acts as a chaperone and is required for Notch trafficking. Mouse embryos lacking POFUT1 function die with a phenotype indicative of global inactivation of Notch signalling. O-linked fucose residues on Notch can serve as substrates for further sugar modification by Fringe (FNG) proteins. Notch modification by Fringe differently affects the ability of ligands to activate Notch receptors in a context-dependent manner indicating a complex modulation of Notch activity by differential glycosylation. Whether the context-dependent effects of Notch receptor glycosylation by FNG reflect different requirements of distinct developmental processes for O-fucosylation by POFUT1 is unclear.  相似文献   

15.
Fringe plays a key role in the specification of boundaries during development by modulating the ability of Notch ligands to activate Notch receptors. Fringe is a fucose-specific beta1,3-N-acetylglucosaminyltransferase that modifies O-fucose moieties on the epidermal growth factor-like (EGF) repeats of Notch. To investigate how the change in sugar structure caused by Fringe modulates Notch activity, we have analyzed the sites of O-fucose and Fringe modification on mouse Notch1. The extracellular domain of Notch1 has 36 tandem EGF repeats, many of which are predicted to be modified with O-fucose. We recently proposed a broadened consensus sequence for O-fucose, C(2)X(3-5)(S/T)C(3) (where C(2) and C(3) represent the second and third conserved cysteines), significantly expanding the potential number of modification sites on Notch. Here we demonstrate that sites predicted using this broader consensus sequence are modified with O-fucose on mouse Notch1, and we present evidence suggesting that the consensus can be further refined to C(2)X(4-5)(S/T)C(3). In particular, we demonstrate that EGF 12, a portion of the ligand-binding site, is modified with O-fucose and that this site is evolutionarily conserved. We also show that endogenous Fringe proteins in Chinese hamster ovary cells (Lunatic fringe and Radical fringe) as well as exogenous Manic fringe modify O-fucose on many but not all EGF repeats of mouse Notch1. These findings suggest that the Fringes show a preference for O-fucose on some EGF repeats relative to others. This specificity appears to be encoded within the amino acid sequence of the individual EGF repeats. Interestingly, our results reveal that Manic fringe modifies O-fucose both at the ligand-binding site (EGF 12) and in the Abruptex region. These findings provide insight into potential mechanisms by which Fringe action on Notch receptors may influence both the affinity of Notch-ligand binding and cell-autonomous inhibition of Notch signaling by ligand.  相似文献   

16.
Regulation of Notch signaling by glycosylation   总被引:4,自引:0,他引:4  
Notch receptors are approximately 300 kDa cell surface glycoproteins whose activation by Notch ligands regulates cell fate decisions in the metazoa. The extracellular domain of Notch receptors has many epidermal growth factor like repeats that are glycosylated with O-fucose and O-glucose glycans as well as N-glycans. Disruption of O-fucose glycan synthesis leads to severe Notch signaling defects in Drosophila and mammals. Removal or addition of O-fucose glycan consensus sites on Notch receptors also leads to Notch signaling defects. Ligand binding and ligand-induced Notch signaling assays have provided insights into how changes in the O-fucose glycans of Notch receptors alter Notch signaling.  相似文献   

17.
O-Fucosylation is a post-translational glycosylation in which an O-fucose is covalently attached to the hydroxyl group of a specific serine or threonine residue. This modification occurs within the consensus sequence C2X(4-5)(S/T)C3 present on epidermal growth factor-like repeats of several proteins, including the Notch receptors and their ligands. The enzyme responsible for the addition of O-fucose to epidermal growth factor-like repeats is protein O-fucosyltransferase 1. Protein O-fucosyltransferase 1-mediated O-fucosylation is essential in Notch signaling, folding and targeting to the cell surface. Here, we studied the expression pattern of protein O-fucosyltransferase 1 in cattle and showed that the active enzyme is present in all tissues examined from embryo and adult as a glycoprotein with two N-glycans. By comparing protein O-fucosyltransferase 1 sequences available in databases, we observed that mammalian protein O-fucosyltransferase 1 enzymes possess two putative N-glycosylation sites, and that only the first is conserved among bilaterians. To gain more insight regarding the significance of N-glycans on protein O-fucosyltransferase 1, we substituted, by site-directed mutagenesis, bovine protein O-fucosyltransferase 1 N65, N163 or both, with L or Q. We demonstrated that the loss of N-glycan on N163 caused a slight decrease in protein O-fucosyltransferase 1 activity. In contrast, glycosylation of N65 was crucial for protein O-fucosyltransferase 1 functionality. Loss of glycosylation at N65 resulted in aggregation of protein O-fucosyltransferase 1, suggesting that N-glycosylation at this site is essential for proper folding of the enzyme.  相似文献   

18.
19.
The extracellular domain of mouse Notch1 contains 36 tandem epidermal growth factor-like (EGF) repeats, many of which are modified with O-fucose. Previous work from several laboratories has indicated that O-fucosylation plays an important role in ligand mediated Notch activation. Nonetheless, it is not clear whether all, or a subset, of the EGF repeats need to be O-fucosylated. Three O-fucose sites are invariantly conserved in all Notch homologues with 36 EGF repeats (within EGF repeats 12, 26, and 27). To investigate which O-fucose sites on Notch1 are important for ligand-mediated signaling, we mutated the three invariant O-fucose sites in mouse Notch1, along with several less highly conserved sites, and evaluated their ability to transduce Jagged1- and Delta1-mediated signaling in a cell-based assay. Our analysis revealed that mutation of any of the three invariant O-fucose sites resulted in significant changes in both Delta1 and Jagged1 mediated signaling, but mutations in less highly conserved sites had no detectable effect. Interestingly, mutation of each invariant site gave a distinct effect on Notch function. Mutation of the O-fucose site in EGF repeat 12 resulted in loss of Delta1 and Jagged1 signaling, while mutation of the O-fucose site in EGF repeat 26 resulted in hyperactivation of both Delta1 and Jagged1 signaling. Mutation of the O-fucose site in EGF repeat 27 resulted in faulty trafficking of the Notch receptor to the cell surface and a decreased S1 processing of the receptor. These results indicate that the most highly conserved O-fucose sites in Notch1 are important for both processing and ligand-mediated signaling in the context of a cell-based signaling assay.  相似文献   

20.
Three mammalian fringe proteins are implicated in controlling Notch activation by Delta/Serrate/Lag2 ligands during tissue boundary formation. It was proved recently that they are glycosyltransferases that initiate elongation of O-linked fucose residues attached to epidermal growth factor-like sequence repeats in the extracellular domain of Notch molecules. Here we demonstrate the existence of functional diversity among the mammalian fringe proteins. Although both manic fringe (mFng) and lunatic fringe (lFng) decreased the binding of Jagged1 to Notch2 and not that of Delta1, the decrease by mFng was greater in degree than that by lFng. We also found that both fringe proteins reduced Jagged1-triggered Notch2 signaling, whereas neither affected Delta1-triggered Notch2 signaling. However, the decrease in Jagged1-triggered Notch2 signaling by mFng was again greater than that by lFng. Furthermore, we observed that each fringe protein acted on a different site of the extracellular region of Notch2. Taking these findings together, we propose that the difference in modulatory function of multiple fringe proteins may result from the distinct amino acid sequence specificity targeted by these glycosyltransferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号