共查询到20条相似文献,搜索用时 0 毫秒
1.
Kus I Ogeturk M Oner H Sahin S Yekeler H Sarsilmaz M 《Cell biochemistry and function》2005,23(3):169-174
The aim of this study was to examine the protective effects of melatonin against CCl4-induced hepatotoxicity in the rat. Twenty-four male Wistar rats were divided into three groups. Group I was used as a control. Rats in group II were injected every other day with CCl4 for 1 month, whereas rats in group III were injected every other day with CCl4 and melatonin for 1 month. At the end of the experiment, all animals were killed by decapitation and blood samples were obtained. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total and conjugated bilirubin levels were determined. For histopathological evaluation, livers of all rats were removed and processed for light microscopy. All serum biochemical parameters were significantly higher in animals treated with CCl4 than in the controls. When rats injected with CCl4 were treated with melatonin, significantly reduced elevations in serum biochemical parameters were found. In liver sections of the CCl4-injected group, necrosis, fibrosis, mononuclear cell infiltration, haemorrhage, fatty degeneration and formation of regenerative nodules were observed. Additionally, apoptotic figures, microvesicular steatosis and hydropic degeneration in hepatocytes were seen in this group. In contrast, the histopathological changes observed after administration of CCl4 were lost from rats treated with CCl4 and melatonin. Except for mild hydropic degeneration of the hepatocytes, a normal lobular appearance was seen in the livers of this group. The results of our study indicate that melatonin treatment prevents CCl4-induced liver damage in rats. 相似文献
2.
Ogeturk M Kus I Kavakli A Oner J Kukner A Sarsilmaz M 《Cell biochemistry and function》2005,23(2):85-92
The aim of this study was to investigate possible protective effects of melatonin on carbon tetrachloride (CCl4)-induced renal damage in rats. A total of 24 animals were divided into three equal groups: the control rats received pure olive oil subcutaneously, rats in the second group were injected with CCl4 (0.5 ml kg-1, s.c. in olive oil) and rats in the third group were injected with CCl4 (0.5 ml kg-1) plus melatonin (25 mg kg-1, s.c. in 10% ethanol) every other day for 1 month. At the end of the experimental period, the animals were sacrificed and blood samples were collected. The kidneys were removed and weighed. Urea and creatinine levels were determined in blood samples. Histopathological examination of the kidney was performed using light microscopic methods. Administration of CCl4 significantly increased relative kidney weight (g per 100 g body weight) and decreased serum urea levels compared to controls (p<0.01). Melatonin treatment significantly (p<0.01) reduced relative kidney weight, and it produced a statistically equal (p=0.268) relative weight with the kidneys of control rats. CCl4 administration alone also caused histopathologically prominent damage in the kidney compared to the control group. Glomerular and tubular degeneration, interstitial mononuclear cell infiltration and fibrosis, vascular congestion around the tubules, and interstitial haemorrhage in perivascular areas were observed in the renal cortex and cortico-medullary border. However, the affect of CCl4 on the medulla was limited. Melatonin provided protection against CCl4-induced renal toxicity as was evident by histopathological evaluation. In view of the present findings, it is suggested that melatonin protects kidneys against CCl4 toxicity. 相似文献
3.
Zavodnik LB Zavodnik IB Lapshina EA Belonovskaya EB Martinchik DI Kravchuk RI Bryszewska M Reiter RJ 《Cell biochemistry and function》2005,23(5):353-359
Melatonin is an indolamine, mainly secreted by the pineal gland into the blood of mammalian species. The potential for protective effects of melatonin on carbon tetrachloride (CCl(4))-induced acute liver injury in rats was investigated in this work. CCl(4) exerts its toxic effects by generation of free radicals; it was intragastrically administered to male Wistar rats (4 g kg(-1) body weight) at 20 h before the animals were decapitated. Melatonin (15 mg kg(-1) body weight) was administered intraperitoneally three times: 30 min before and at 2 and 4 h after CCl(4) injection. Rats injected with CCl(4) alone showed significant lipid and hydropic dystrophy of the liver, massive necrosis of hepatocytes, marked increases in free and conjugated bilirubin levels, elevation of hepatic enzymes (alanine aminotransferase and aspartate aminotransferase) in plasma, as well as NO accumulation in liver and in blood. Melatonin administered at a pharmacological dose diminished the toxic effects of CCl(4). Thus it decreased both the structural and functional injury of hepatocytes and clearly exerted hepatoprotective effects. Melatonin administration also reduced CCl(4)-induced NO generation. These findings suggest that the effect of melatonin on CCl(4)-induced acute liver injury depends on the antioxidant action of melatonin. 相似文献
4.
Mehmet Ramazan Şekeroğlu Zübeyir Huyut Erdem Çokluk Hanefi Özbek Hamit Hakan Alp 《Journal of biochemical and molecular toxicology》2017,31(12)
Oxidative stress had a great importance in development of complications in diabetes. We investigated effects of melatonin and pentoxifylline in diabetic mice. Swiss albino mice (n = 40) were divided into four groups: alloxan‐induced diabetes mellitus (DM), alloxan‐induced diabetes with melatonin supplementation (DM + MLT), alloxan‐induced diabetes with pentoxifylline supplementation (DM + PTX), and control. Glutathione‐peroxidase (GSH‐Px) activity, malondialdehyde (MDA) and reduced glutathione (GSH) levels, and susceptibility to oxidation of erythrocytes were measured. MDA levels were higher than control in the DM and DM + MLT. The DM had more MDA level than the DM + MLT and DM + PTX (P < 0.001). After in vitro oxidation, MDA levels of all groups were found higher than the control. However, they were significantly lower than the DM in DM + PTX and DM + MLT (P < 0.001). Although GSH levels of the DM and DM + PTX were less than the control, GSH‐Px activity of the DM was lower than the control and DM + PTX (P < 0.05). We suggest that there is increased oxidative stress and compromised antioxidant status of erythrocytes in diabetes; however, it can be effectively prevented by melatonin or pentoxifylline supplementation. 相似文献
5.
Sarkar A Pradhan S Mukhopadhyay I Bose SK Roy S Chatterjee M 《Cell biology international》1999,23(10):703-708
The underlying molecular mechanisms of the antihepatotoxic activity of Trianthema portulacastrum by monitoring its effect on mouse liver DNA-chain break, sugar-base damage and chromosomal aberrations, during chronic or acute treatment with carbon tetrachloride (CCl(4)) have been studied. Daily oral feeding with the ethanolic extract (150 mg/kg basal diet, per os) was given 2 weeks before CCl(4)treatment and continued until the end of the experiment (13 weeks). T. portulacastrum extract offer unique protection (P< 0.05-0. 001) against the induction of liver-specific structural-type chromosomal anomalies 15, 30 or 45 days after the last CCl(4)insult, compared to control mice. This was further evidenced by extract-mediated protection (15 days prior feeding following a single necrogenic dose of CCl(4)) of the generation of DNA chain-break and Fe-sugar-base damage assays. The observed hepatoprotective mechanism could be due to its ability to counteract oxidative injury to DNA in the liver of mouse. 相似文献
6.
Onur Ertik Goksel Sener Refiye Yanardag 《Journal of biochemical and molecular toxicology》2023,37(3):e23268
In this present study, the duration of melatonin (Mel) administered to diabetic rats was prolonged so as to examine its effects on the biochemical liver parameters of diabetic rats. In the experiment, Male Sprague Dawley rats were divided randomly into five groups; the control, diabetic + Mel, diabetic, diabetic + insulin, and diabetic + Mel + insulin. Diabetes mellitus was induced by administration of a single dose of streptozotocin (60 mg/kg) intraperitoneally and rats were given vehicle as a solvent for Mel every day for 12 weeks. In the diabetic + Mel group, diabetic rats were administered Mel (10 mg/kg/day) for 12 weeks to treat diabetes. The diabetic + insulin group were diabetic rats given insulin (6 U/kg) subcutaneously for 12 weeks. The diabetic + Mel + insulin rats received insulin and Mel at the same dose and time. At the end of the experiment, the animals were decapitated and liver tissues were taken. The protective effect of Mel on liver tissue of diabetic rats was investigated, total antioxidant status, total oxidant status, reactive oxygen species, oxidative stress index, adenosine deaminase, xanthine oxidase, paraoxonase 1, sodium/potassium ATPase, myeloperoxidase, γ-glutamyl transferase, sorbitol dehydrogenase, tumor necrosis factor-alpha, homocysteine, nitric oxide, glucose-6-phosphate dehydrogenase, and glycoprotein levels were determined in liver tissues. Treatment with Mel and/or insulin has been found to have a protective effect on biochemical parameters. The results showed that administration of Mel to diabetic rats prevented the distortion of the studied biochemical parameters of liver tissues. 相似文献
7.
Ismail Cetin Ozturk Feral Ozturk Mehmet Gul Burhan Ates Asli Cetin 《Cell biochemistry and function》2009,27(5):309-315
This study was planned to investigate the protective effect of l (+)‐ascorbic acid (Vit C) on CCl4‐induced hepatotoxicity and oxidative stress in the liver of Wistar rats (Rattus Norvegicus, strain Wistar). Twenty‐four adult male Wistar rats were fed with standard rat chow diet for 10 days and randomly were divided into four groups of six each as follows: (1) control, (2) CCl4, (3) “CCl4 + Vit C”, (4) Vit C groups. CCl4 was applied to rats belonging to CCl4 and “CCl4 + Vit C” groups subcutaneously at 1 mg kg?1 dose CCl4 for 3 days. Vit C applied to “CCl4 + Vit C” and “Vit C” group rats intraperitoneally at 300 mg kg?1 dose for 3 days. All rats were sacrificed and livers were quickly removed on the fourth day of the experiment. MDA, total glutathione (T.GSH) levels and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH‐PX) activities were measured in the liver of all groups of rats and also serum alanine amino transferase (ALT) and aspartate amino transferase (AST) activities were detected to determine liver functions in all groups of rats. Histopathological changes were evaluated by light and transmission electron microscopes. In “CCl4 + Vit C” group, MDA level was significantly decreased (p < 0.05) and SOD, CAT, GSH‐PX activities were significantly increased (p < 0.005, 0.01, 0.05) respectively, T.GSH level was significantly increased (p < 0.005) and serum ALT and AST activities were significantly decreased (p < 0.01, 0.05), respectively, when compared with CCl4 group. These results show that Vit C has a highly protective effect on hepatotoxicity and oxidative stress caused by CCl4. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
8.
为明确冬虫夏草菌丝提取物对急性肝损伤小鼠谷丙转氨酶(ALT)、谷草转氨酶(AST)、肝细胞变性及坏死程度的影响,采用四氯化碳(CCl4)诱导小鼠急性化学性肝损伤模型,将动物随机分成5组,分别是空白对照组、模型组、冬虫夏草菌丝提取物低剂量组(1.11g/kg BW)、中剂量组(3.33g/kg BW)、高剂量组(10.00g/kg BW),检测血清ALT、AST值,并取肝脏作病理切片,观察肝脏的病理损伤情况。冬虫夏草菌丝提取物高剂量组能明显降低CCl4急性肝损伤小鼠血清ALT值,减轻肝细胞坏死程度,表明冬虫夏草菌丝提取物对化学性肝损伤有辅助保护功能。 相似文献
9.
Rodríguez MI Carretero M Escames G López LC Maldonado MD Tan DX Reiter RJ Acuña-Castroviejo D 《Free radical research》2007,41(1):15-24
Heart mitochondria from female senescence-accelerated (SAMP8) and senescence-resistant (SAMR1) mice of 5 or 10 months of age, were studied. Mitochondrial oxidative stress was determined by measuring the levels of lipid peroxidation, glutathione and glutathione disulfide and glutathione peroxidase and reductase activities. Mitochondrial function was assessed by measuring the activity of the respiratory chain complexes and ATP content. The results show that the age-dependent mitochondrial oxidative damage in the heart of SAMP8 mice was accompanied by a reduction in the electron transport chain complex activities and in ATP levels. Chronic melatonin administration between 1 and 10 months of age normalized the redox and the bioenergetic status of the mitochondria and increased ATP levels. The results support the presence of significant mitochondrial oxidative stress in SAM mice at 10 months of age, and they suggest a beneficial effect of chronic pharmacological intervention with melatonin, which reduces the deteriorative and functional oxidative changes in cardiac mitochondria with age. 相似文献
10.
Maksimchik YZ Lapshina EA Sudnikovich EY Zabrodskaya SV Zavodnik IB 《Cell biochemistry and function》2008,26(1):11-18
In recent years, N-acetyl-L-cysteine (NAC) has been widely investigated as a potentially useful protective and antioxidative agent to be applied in many pathological states. The aim of the present work was further evaluation of the mechanisms of the NAC protective effect under carbon tetrachloride-induced acute liver injuries in rats. The rat treatment with CCl4 (4 g/kg, intragastrically) caused pronounced hepatolysis observed as an increase in blood plasma bilirubin levels and hepatic enzyme activities, which agreed with numerous previous observations. The rat intoxication was accompanied by an enhancement of membrane lipid peroxidation (1.4-fold) and protein oxidative damage (protein carbonyl group and mixed protein-glutathione disulphide formations) in the rat liver. The levels of nitric oxide in blood plasma and liver tissue significantly increased (5.3- and 1.5-fold, respectively) as blood plasma triacylglycerols decreased (1.6-fold). The NAC administration to control and intoxicated animals (three times at doses of 150 mg/kg) elevated low-molecular-weight thiols in the liver. The NAC administration under CCl4-induced intoxication prevented oxidative damage of liver cells, decreased membrane lipid peroxidation, protein carbonyls and mixed protein-glutathione disulphides formation, and partially normalized plasma triacylglycerols. At the same time the NAC treatment of intoxicated animals did not produce a marked decrease of the elevated levels of blood plasma ALT and AST activities and bilirubin. The in vitro exposure of human red blood cells to NAC increased the cellular low-molecular-weight thiol levels and retarded tert-butylhydroperoxide-induced cellular thiol depletion and membrane lipid peroxidation as well as effectively inhibited hypochlorous acid-induced erythrocyte lysis. Thus, NAC can replenish non-protein cellular thiols and protect membrane lipids and proteins due to its direct radical-scavenging properties, but it did not attenuate hepatotoxicity in the acute rat CCl4-intoxication model. 相似文献
11.
Cheshchevik VT Dremza IK Lapshina EA Zabrodskaya SV Kujawa J Zavodnik IB 《Cell biochemistry and function》2011,29(6):481-488
The aim of the present work was to investigate the mechanisms of oxidative damage of the liver mitochondria under diabetes and intoxication in rats as well as to evaluate the possibility of corrections of mitochondrial disorders by pharmacological doses of melatonin. The experimental (30 days) streptozotocin‐induced diabetes mellitus caused a significant damage of the respiratory activity in rat liver mitochondria. In the case of succinate as a respiratory substrate, the ADP‐stimulated respiration rate V3 considerably decreased (by 25%, p < 0·05) as well as the acceptor control ratio (ACR) V3/V2 markedly diminished (by 25%, p < 0·01). We observed a decrease of the ADP‐stimulated respiration rate V3 by 35% (p < 0·05), with glutamate as substrate. In this case, ACR also decreased (by 20%, p < 0·05). Surprisingly, the phosphorylation coefficient ADP/O did not change under diabetic liver damage. Acute rat carbon tetrachloride‐induced intoxication resulted in considerable decrease of the phosphorylation coefficient because of uncoupling of the oxidation and phosphorylation processes in the liver mitochondria. The melatonin administration during diabetes (10 mg·kg‐1 body weight, 30 days, daily) showed a considerable protective effect on the liver mitochondrial function, reversing the decreased respiration rate V3 and the diminished ACR to the control values both for succinate‐dependent respiration and for glutamate‐dependent respiration. The melatonin administration to intoxicated animals (10 mg·kg−1 body weight, three times) partially increased the rate of succinate‐dependent respiration coupled with phosphorylation. The impairment of mitochondrial respiratory plays a key role in the development of liver injury under diabetes and intoxication. Melatonin might be considered as an effector that regulates the mitochondrial function under diabetes. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
12.
以四氯化碳(Carbon tetrachloride,CCl4)诱导小鼠肝组织纤维化为研究模型,发现并探讨纤维化肝组织与正常肝组织在蛋白质组水平上的差异。实验小鼠(C57 BL/6)随机分为两组,由橄榄油和四氯化碳诱导15周,并分别对这两组肝组织的全蛋白表达谱进行质谱检测,应用GO(Gene Ontology)功能分类分析和KEGG(Kyoto Enyoolpedia of Genes and Genomes)信号通路的富集分析方法对鉴定到的全蛋白表达谱进行差异表达分析。在对照组和实验组中,我们分别鉴定到17 382和20 486条特异性肽段,图谱平均利用率大于50%,共计鉴定到蛋白4 991种(蛋白特异性肽段个数至少为1),其中差异表达蛋白有2 135种(差异倍数大于或等于2),表达上调蛋白1 264种,下调蛋白871种。纤维化肝脏组织中与细胞外基质组成(Extracellular matrix organization)、细胞骨架组成(Cytoskeleton organization)、有机磷酸代谢(Organophosphate metabolic process)、细胞定位(Cellular localization)和细胞组分调节(Regulation of cellular component organization)相关蛋白的表达是上调的;另外,与小分子代谢(Small molecule metabolic process)、蛋白质转运(Protein transport)和有机氮化合物的代谢(Organonitrogen compound metabolic process),以及四吡咯的合成过程(Tetrapyrrole biosynthetic process)有关蛋白的表达是下调的。信号通路富集分析结果表明,纤维化与VEGF和T细胞受体信号调节通路密切相关。结果提示,纤维化的形成不仅是一个复杂的信号转导过程,更是一个炎症与免疫相互促成的结果;增强肝实质细胞的存活,降低相关信号的传递及接收都有可能对纤维化的发生和发展起到抑制效果。 相似文献
13.
Carbon tetrachloride (CCl4), a potent hepatotoxin, is linked to the histopathological outcomes of inflammatory or oxidative stress, and cell death. However, further study of additional dysmetabolism induced by CCl 4 toxicant has not yet been investigated. In current study, chronical and acute exposures of CCl 4 in mice were used to unmask the biological molecular mechanism responsible for insulin-dependent metabolic disorder. In experimental methods, a number of biochemical assays were used in assessment of biological impacts on insulin-produced pancreas and insulin-responsive hepatocyte after long- and short-term exposures of CCl 4 toxicant, respectively. As a result, data from oral glucose tolerance test showed that CCl 4 exposures induced glucose tolerance and disrupted blood insulin and glucagon levels time-dependently. Meanwhile, biochemical and histocytological analyses further indicated that CCl 4 exposures significantly resulted in liver cell damage, induced abnormal changes of hepatic and skeletal glycogen synthesis. In addition, acute CCl 4-exposed mice showed reduced functional proteins of glucose transporter 2 (GLUT2), insulin receptor β, insulin receptor substrate 1, glycogen synthase kinase 3β (GSK3β), p-AKT Ser473 associated with AKT signaling pathway in liver cells, whereas acute CCl 4 exposure downregulated the endogenous expressions of the insulin and glucagon hormonal proteins in the pancreas. Taken together, the current findings highlight that CCl 4 impaired insulin-dependent glucose homeostasis through modulating hepatocellular AKT signaling pathway in acute CCl 4 exposure and GLUT2/GSK3β pathway in chronic CCl 4-exposed liver cells. 相似文献
14.
Xinshuai Li Shu Song Mengting Xu Yuyun Hua Yun Ding Xiaoyu Shan Guoliang Meng Yuqin Wang 《Journal of biochemical and molecular toxicology》2019,33(2)
Sirtuin3 (SIRT3) plays an important role in maintaining normal mitochondrial function and alleviating oxidative stress. After carbon tetrachloride (CCl4) administration, the expression of SIRT3 decreased in the liver of mice, which indicated that the SIRT3 might play a crucial role during chemical‐induced acute hepatic injury. To verify the hypothesis, CCl 4 was given to induce acute hepatic injury in SIRT3 knockout (KO) mice and wild‐type (WT) mice. CCl 4‐induced liver injury was more severe in SIRT3 KO mice compared with the WT mice. In addition, the oxidative stress induced by CCl 4 was enhanced in the SIRT3 KO mice. Furthermore, the increased expression of dynamin‐related protein 1 was also aggravated in SIRT3 KO mice after CCl 4 administration. In conclusion, our study demonstrated that SIRT3 deficiency exacerbated CCl 4‐induced impairment of the liver in mice, and the mechanism might be related to enhanced oxidative stress. 相似文献
15.
Chenxia Hu Lingfei Zhao Jingjing Tao Lanjuan Li 《Journal of cellular and molecular medicine》2019,23(11):7151-7162
The liver is composed of hepatocytes, cholangiocytes, Kupffer cells, sinusoidal endothelial cells, hepatic stellate cells (HSCs) and dendritic cells; all these functional and interstitial cells contribute to the synthesis and secretion functions of liver tissue. However, various hepatotoxic factors including infection, chemicals, high‐fat diet consumption, surgical procedures and genetic mutations, as well as biliary tract diseases such as sclerosing cholangitis and bile duct ligation, ultimately progress into liver cirrhosis after activation of fibrogenesis. Melatonin (MT), a special hormone isolated from the pineal gland, participates in regulating multiple physiological functions including sleep promotion, circadian rhythms and neuroendocrine processes. Current evidence shows that MT protects against liver injury by inhibiting oxidation, inflammation, HSC proliferation and hepatocyte apoptosis, thereby inhibiting the progression of liver cirrhosis. In this review, we summarize the circadian rhythm of liver cirrhosis and its potential mechanisms as well as the therapeutic effects of MT on liver cirrhosis and earlier‐stage liver diseases including liver steatosis, nonalcoholic fatty liver disease and liver fibrosis. Given that MT is an antioxidative and anti‐inflammatory agent that is effective in eliminating liver injury, it is a potential agent with which to reverse liver cirrhosis in its early stage. 相似文献
16.
Marcela Aida González María del Carmen Contini Nestor Millen Stella Teresita Mahieu 《Cell biochemistry and function》2012,30(8):701-708
The process of regenerating liver is the result of a balance between stimulating factors and inhibitors of hepatocyte proliferation. Melatonin and its metabolites have been found to protect tissues against oxidative damage generated by a variety of toxic agents and metabolic processes. Furthermore, studies in liver of rats showed a decrease in the liver mitochondrial hydroxylation of drugs returning to the normal state after the administration of antioxidants. This study was designed to determine, in experimental animals, whether the administration of an antioxidant agent such as melatonin could prevent cells events leading to tissue injury and hepatic dysfunction after partial hepatectomy (PH). Biliary flow (BF), oxidative stress in hepatic tissue and Na+/K+ATPase activities in whole plasma membrane were determined. PH decreased the Na+/K+ATPase activity. PH significantly reduced the BF (36%) and promoted oxidative stress with an increase of lipoperoxidation and decrease of glutathione peroxidase and catalase activities. Treatment with melatonin prevented the decrease of BF in rats with hepatectomy and normalized the Na+/K+ATPase activity. Moreover, melatonin markedly attenuated oxidative stress produced by PH. This may be the results of the higher efficacy of melatonin in scavenging various free radicals and also because of its ability in stimulating the antioxidant enzymes. We suggest that oxidative stress before and during liver regeneration has a crucial role in cholestasis, apoptotic/necrotic hepatocellular damage and the impairment in liver transport function induced by PH and that melatonin could modulate the degree of oxidative stress and through it prevent the alterations in liver function carrier. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
17.
Summary In the serum of rats with liver cirrhosis induced by 12-week intermittent carbon tetrachloride (CCl4) injection, free L-tryptophan (Trp) levels increased with decreases in total Trp, albumin-bound Trp, and albumin levels. In the serum of the cirrhotic rats, there were no changes in the ratio of albumin-bound Trp to albumin and the level of free fatty acids which are known to weaken the binding of Trp to albumin. In the liver of the cirrhotic rats, there were increases in protein and free Trp (i.e., non-protein Trp) contents and a decrease in total tryptophan 2,3-dioxygenase (TDO) activity. The decreased TDO activity was mainly due to the reduction of apo-TDO activity. When [3H]Trp was injected into the portal vein of the cirrhotic and control rats, radioactivity derived from the injected [3H]Trp in the liver was higher in the cirrhotic rats than in the control rats at 10min after the injection, while the radioactivity in the serum was lower in the former rats than in the latter rats. These results indicate that the increased Trp is easily taken up into the cirrhotic liver, and suggest that the Trp taken up into the cirrhotic liver could be utilized for the maintenance of synthesis of proteins in the tissue through the reduction of Trp metabolism due to reduced TDO activity in the tissue. 相似文献
18.
Ferré Natàliae Girona Josefa Cabré Maria Joven Jorge La Ville Agnes Masana Lluis Patern´in José Luis Camps Jordi 《Molecular and cellular biochemistry》1999,198(1-2):57-60
The aim of this study was to identify apolar aldehydes in liver homogenates from rats with CCl4-induced cirrhosis and, as a corollary, the antioxidant effect of zinc administration. The study was performed in five control rats and in ten cirrhotic rats which were further sub-divided into two groups to receive either a standard diet or one supplemented with zinc. The percentage of hepatic fibrosis, plasma malondialdehyde concentration and alanine aminotransferase activity were measured as well as the following aldehydes: hexanal, octanal, decanal, 2-hexenal, 2-octenal, 2-nonenal, 2,4-heptadienal and 2,4-decadienal. Of the 10 cirrhotic rats, 4 had elevated concentrations of the highly toxic 2,4-dialkenals which coincided with a higher percentage of fibrosis and plasma alanine aminotransferase activity. These aldehydes were not observed in the control group. Zinc administration was associated with a reduction of the hepatic malondialdehyde concentration and an amelioration on the degree of hepatic injury. In conclusion, this study demonstrates the presence of the highly toxic 2,4-dialkenals in hepatic tissue of rats whith CCl4-induced cirrhosis. Results obtained would suggest that these particular aldehydes may be related to the severity of the hepatic injury. 相似文献
19.
Carlos Borges Filho Lucian Del Fabbro Silvana P. Boeira Ana Flávia Furian Lucielli Savegnago Letiére Cabreira Soares Antonio Luiz Braga Cristiano R. Jesse 《Cell biochemistry and function》2013,31(2):152-158
From a pharmacological point of view, organoseleniums are compounds with important and interesting antioxidant and biological activities. The aim of this study was to evaluate the hepatoprotective effect of bis(4‐methylbenzoyl) diselenide (BMD) against carbon tetrachloride (CCl4)–induced oxidative damage in mice. The animals received BMD (25 mg/kg p.o., for 3 days), and after 1 day, CCl4 (1 mg/kg body weight) was administered by intraperitoneal route. One day after the CCl4 exposure, the animals were euthanized for biochemical and histological analysis. Treatment with BMD (25 mg/kg p.o.) protected against aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma‐glutamyl transferase and lactate dehydrogenase activity increases induced by CCl4 plasma exposure. Treatment with BMD (25 mg/kg) protected against increases in thiobarbituric reactive species and decreasing non‐protein thiols and ascorbic acid levels in liver of mice. Catalase and superoxide dismutase activity inhibition in the liver caused by CCl4 were protected by treatment with BMD (25 mg/kg). Glutathione S‐transferase activity was inhibited by CCl4 and remained unaltered even after treatment with BMD. Sections of liver from CCl4‐exposed mice presented an intense infiltration of inflammatory cells and loss of the cellular architecture. BMD (25 mg/kg) attenuated CCl4‐induced hepatic histological alterations. The results demonstrated the hepatoprotective effects of BMD in the mouse liver, possibly by modulating the antioxidant status. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
20.
Glycyrrhetic acid (GA), the main hydrolysate of glycyrrhizic acid extracted from the roots of the Chinese herb Glycyrrhiza glabra, was reported to be accumulated in hepatocytes due to the extensive distribution of GA receptors in liver. A series of hepatocyte-specific derivatives on the basis of anetholtrithione and glycyrrhizic were designed and synthesized. The potential beneficial effect was evaluated in carbon tetrachloride (CCl4)-induced liver injury model. In addition, the hepatoprotective activity of these derivatives was assessed by measuring levels of serum marker enzymes, including serum glutamate oxaloacetate transaminase (GOT), serum glutamate pyruvate transaminase (GPT), alkaline phosphatase (AKP), lactate dehydrogenase (LDH) and the ratio of GSH to GSSG. Gratifyingly, compounds 5a–c (100 mg/kg, p.o.) markedly prevented CCl4-induced elevation of levels of serum GPT, GOT. A comparative histopathological study of liver exhibited almost a normal liver lobular architecture and cell structure of the livers, as compared to CCl4-treated group. These findings were confirmed with the histopathological observations, where hepatocyte-specific glycyrrhetic acid derivatives 5a–c were capable of reversing the toxic effects of CCl4 on hepatocytes. 相似文献